
Vol. 45 No. 12 IPSJ Journal Dec. 2004

Regular Paper

Low-intrusion Debugger for Python and Ruby

Distributed Multi-thread Programs

Norio Sato,† Kazuhiro Nagai,† Yasushi Itoh,†

Masamitsu Ogura† and Keisuke Kosuga†

Major scripting languages such as Perl 5, Python and Ruby, provide with multi-thread
features that could improve response time as for network programming, etc. We propose a new
type of thread-aware debugger that provides us with “low-intrusion” debug environment. In
the “high-intrusion” (or “stop-the-world”) environment that existing thread-aware debuggers
provide with, we must suspend the whole execution of a debugged process at each time of
debug operations and responses. In contrast, the “low-intrusion” environment enables us to
test the behavior of individual threads while other threads remain unaffected, which makes
it possible to test a process under scheduling perturbations and workload in operation. We
present the features and implementation of a debugger we have developed for Python and
extended for Ruby. The debugger consists of client and server parts to handle communicating
processes via network. Both parts are coupled with asynchronous messages encoded in a
common format. This allows for developing the client part in common, while the server parts
are implemented for individual languages. The client part can catch more than one process at
the same time, and provides users with full GUI support to facilitate the handling of multiple
threads inside of the processes. We have implemented the server parts with extended modules:
trace-hook reinforcements, a dedicated thread that is listening to debug commands coming
from the client part, and functions call-backed by individual debug-gee threads. We show the
applications are wide: multi-thread programs, distributed objects, and Web programming.
We present typical threading patterns for which low-intrusion is effective. We compare low-
and high-intrusion environments, and propose an integration of both environments together
with real-time tracing capability.

1. Introduction

Real-time programs such as concurrent
servers, distributed objects, web services and
web-server programs often run as communi-
cating processes distributed among different
computers. Such processes exchange asyn-
chronous messages with each other, while each
process executes multiple threads for interleav-
ing requests and responses. Recently, in this
area where performance bottleneck is network
latency rather than execution speed of ma-
chine instructions, scripting languages such as
Python 6),7) and Ruby 13), thanks to their high
productivity, are coming to wider use 8),14).

Whatever languages are used, this increases
scale and complexity as a whole, and results in
program code prone to hidden bugs that are
hard to detect. In this “asynchronous world”,
debugging tools are few while the needs are
many 1). One effective approach is to use de-
buggers for wider stages of development, from
unit test, integration test, stress test to opera-

† Department of Information and Computer Science,
Kanazawa Institute of Technology

tional test.
Debugging distributed and multi-threaded

programs needs much more efforts than sin-
gle threaded programs. The difficulty to de-
tect synchronization errors or resource conflicts
is due to the non-determinacy of concurrency,
and more practically, due to the difficulty to
test with scheduling perturbations.

As an effective feature, we propose “low-
intrusion” debug environment that enables us
to check the behavior of individual threads, by
break, step, trace, resume and suspend, etc.,
while the execution of other threads remain
unaffected. This conceptually opposes to the
traditional environment 2) we call “stop-the-
world” or “high-intrusion” environment, where
the debugged process is suspended each time of
command input and event response.

The “low-intrusion” environment enables us
to cause scheduling perturbations at debug
time, which offers us many chances to detect
synchronization error code. It enables us to de-
bug a process without stopping its interactions
with outside world so that the debugged process
may have the working load by receiving inputs
and sending outputs as in operation. It enables

2741

2742 IPSJ Journal Dec. 2004

us to input commands while a debugged pro-
cess is running. None of these is possible in
“high-intrusion” environment.

The “low-intrusion” environment is one of the
fundamental concepts for the multi-thread and
multi-process oriented interactive debugger we
have developed, which we hereafter refer to as
“Dionea”☆1.

The representative interactive native code de-
buggers such as “GDB”3)☆2 and “DBX”5)☆3

support more or less multi-threading enhance-
ments with the traditional “stop-the-world”
environment. The Java language debugger
“jdb”is very close to DBX☆4. The existing de-
buggers for scripting languages are either un-
able or insufficient to test multi-threaded pro-
grams. For example, “Pdb” for Python works
only for single (“main”) thread. For Ruby,
“Rdb” and a remote “Ruby debugger”☆5 do ex-
ist and have support for multi-threading, but
are highly intrusive.

The first support language of Dionea is
Python that is simple but has advanced features
suitable for large scale distributed systems,
as well as many other applications. Python
has multi-threading API in an object oriented
way 9). Python is convenient for our research
work, because its source code for scripting en-
gine (interpreter) with many supportive mod-
ules☆6 is completely open and free. Next, we
have extended Dionea to support Ruby. Ruby
offers more advanced constructs than Python
with its full-featured object orientation, itera-
tors (i.e., blocks invoked by ‘yield’), and thread-
ing constructs, with many supportive library
modules 13).

This paper presents the features and imple-
mentation of Dionea, and discusses about low-
intrusiveness and applications. In the follow-
ing, Section 2 describes the design require-
ments. Section 3 describes characteristic fea-
tures of Dionea. Section 4 describes the im-

☆1 Dionea means “Venus fly catcher”, a plant whose
academic name is “Dionaea Muscipula.”

☆2 GNU debugger for UNIX recognizes Light-Weight
Processes, which is not always “user threads” in So-
laris.

☆3 For Solaris, Sun Micro proprietary.
☆4 Both DBX and jdb are thread-aware, and can easily

suspend a thread, but cannot handle asynchronous
debug events.

☆5 This works on top of “dRuby (Distributed

Ruby)” 15). It catches only one process at the same
time.

☆6 http://www.python.org/

plementation. Section 5 presents how to ap-
ply Dionea to some typical network and multi-
thread programs. Section 6 discusses about the
low-intrusiveness in time and range, and evalu-
ates the features that Dionea supports.

2. Requirements

2.1 Concurrent Remote Debugging of
Multiple Processes

Remote debugging, i.e., connecting and
launching remote processes, is essential to de-
bug communicating processes. We hereafter re-
fer to the debugged process as “debuggee”.

Being able to handle more than one debuggees
is desirable, not only for user ergonomics by
saving window space but, more important, for
new (potential) capabilities☆7.

2.2 Low-intrusive Debug Environment
Break points per-thread and common

to threads: We should support several
types of break points: 1) per-thread, i.e.,
effective to only one thread; 2) common to
all the threads, i.e., any thread that hits the
break point, breaks, while other threads re-
main unaffected by the breakpoint hit; and
3) process as a whole, i.e., traditional break
points.

Controlling individual threads: A thread
of interest should be suspended or resumed,
or stepped sequentially, while other threads
are running normally.

Plug-in and out of instrumentation
code: Being able to plug in and out instru-
mentation code during debugging is neces-
sary to monitor the real-time behavior of
the debuggee. Such instrumentation code
may be attached to any place of program
code☆8.

Interleaving debug sessions: User in-
teractions to control individual debugee
threads should be independent of each
other. We call each interaction sequence
“session”. Sessions must be interleaved
but should not be inter-mixed in user in-
terface. The debugger, therefore, must ac-
cept one or more break or step events at
the same time, and react for the session
that the user wants.

☆7 e.g., automatic tracing of spawned processes, syn-
chronizing related events coming from different de-
buggees.

☆8 Extending trace points for a set of class methods is
a part of aspect oriented programming (AOP).

Vol. 45 No. 12 Low-intrusion Debugger for Python and Ruby 2743

Fig. 1 Dionea architecture.

2.3 Graphical User Interface (GUI)
We must facilitate the management and op-

eration of involved processes and possibly many
threads. GUI support is essential to en-
able users to grasp the whole status of de-
buggees, particularly that for the management
of threads, and to switch interleaved sessions.

2.4 Multiple Language Support
Different languages are used in distibuted ap-

plications. Processes that execute code written
in different languages may communicate with
each other☆. Dionea should be able to debug
such processes together.

2.5 Portability for Different Platforms
Scripting languages are portable, therefore,

Dionea should not be specific to any operating
system or to any thread library☆☆.

3. Proposed Debugger

3.1 Basic Archtecture
As shown in Fig. 1, in Dionea, the user in-

terface and the debug operation parts are sep-
arated. We call the former “debug client”, and
the latter “debug server”. This separation en-
ables remote debugging one or more communi-
cating processes with one debugger.

3.2 Running and Connecting Debugee
A debuggee is run by the debug server as

below independently of the debug client, or
through a dialog window of the debug client.

$dds.py 10000 /path/to/test.py&
The debug client is run by the command as

below, and, through its dialog window, can con-
nect a debuggee that is already run as above, or
can (remote) run a debuggee. When run, the

☆ using YAML format as later introduced, or XML
format in web services.

☆☆ Python interpreter runs with POSIX, GNU P-th,
etc., thread librares. Ruby interpreter has its self-
contained threading inside.

main thread in the the debuggee suspends wait-
ing for debug commands.

$ dionea &
The debug client can disconnect and let the

debuggee continue to run normally, leaving no
debug side-effect. It can reconnect the debugee,
and force it to terminate its execution.

3.3 Graphic User Interface (GUI)
Dionea interfaces with users by means of

GUI, as shown in Fig. 2. The GUI consists of
five views and a tool bar.

Debuggee view (the right-hand side up-
per): A tree form shows connected de-
buggees as its nodes and their threads as
their leaves. Each leaf has an indicator to
show the status of the thread. The sta-
tus is either “running (R)”, or “debug sus-
pended (break) (B)” or “locked (L)”☆☆☆.
The status indication is modified dynam-
ically, when a change is detected in the de-
bugee. We need the information of to which
thread (or process) for the the debug server
to operate commands and to which thread
(or process) for the debug client to show its
session contents in the window views. We
must also retain a set of debug events for
each session. We call the set of information
belonging to a process “process context”
and that belonging to a thread “thread con-
text”. A process context has one or more
thread contexts. A thread (process) con-
text can be switched from one to another
by clicking a leaf (node), which causes the
contents of other views that are described
in the following to change.

Source code view (left hand side): By
default, the suspended place of the selected
thread is highlighted on the source code file.
The source code file can explicitly be se-
lected using the “source code tree” in an
icon of the tool bar (upper left).

Input and output views (right-hand
side middle): These views offer the stan-
dard input and output of the debugee, and
is a part of process context.

Command shell (right-hand side lower):
This view offers Command User Interface
(CUI) to input commands and receives the
output of the debugee, and is a part of
thread context.

Tool bar (upper): Less frequently used

☆☆☆ For Ruby, “sleeping (S)” is distinguishable from
“running”.

2744 IPSJ Journal Dec. 2004

Fig. 2 User interface.

views, dialogues and frequently used com-
mands are made icons. The former are
source code file tree which is a part of pro-
cess context, and connection disconnection
dialogue. The latter are icons for step, and
up/down operations. The “disturb” mode
icon is for catching a thread that is being
newly created.

3.4 Commands and Icons
Getting source code files: The source

code for scripting languages always resides
in the computer where the debuggee runs.
The source code tree is built at connection
time using the load-path directories of the
debuggee. The contents of source files are
obtained on-demand and cached. Source
code requesting commands are issued im-
plicitly when a node of the source code tree
is clicked, and when needed to show the
thread context. Since scripting languages
allow for source code modification at debug

time, we will enable the renewal of source
view by explicit user requests. This issue,
however, may involve break point renewal,
and is left for further study.

Getting thread status: “status <thread
number>” is a means to know the thread
status, which is implicitly issued when the
thread context is switched to be current.
“statusList” is an inquiry of the whole
thread status to the debug server. These
commands are debugger internal and there-
fore, the users need not to use them.

Thread operations:
“settrace <thread number>” requests

the interpreter to trace the specified
thread. A thread runs normally be-
fore this command is operated. This
command is issued when the thread is
clicked for the first time in the debuggee
view. The thread number is taken from
the selected thread context.

Vol. 45 No. 12 Low-intrusion Debugger for Python and Ruby 2745

Fig. 3 breakpoints dialog.

Fig. 4 tracepoints dialog.

“suspend <thread number>” or “resume
<thread number>” causes the specified
running thread to be suspended at next
line, or to be resumed. The thread
number by default is taken from the
current thread context.

Break and trace points and their oper-
ations: The commands for setting break
and trace points are not simple. Therefore,
they can be set, changed their nature, and
deleted by transitively clicking on the lines
in source view (see Fig. 2), or by using the
dialogs as shown in Figs. 3 and 4.
• The most low-intrusive is a “per-

thread break point” that is effective
only for the specified thread. The
command syntax for setting this is
“break file:line <thread number>”.
Nextly low-intrusive is a “common
break point” such that any thread
breaks that hits the break point (but
does not suspend other threads). The
command syntax is “commonBreak
file:line”. A “process break point” is
high-intrusive, which is set by “pro-
cessBreak file:lineno” command.

• Any instrumentation code (given as ex-
pression or string) can be added to
a break point, which we call “trace

point”. A trace point does not cause
the thread that hits it to be suspended,
unless the expression (string) causes
suspension, which allows very low-
intrusive investigation of thread behav-
ior. Trace points are either per-thread
or common to threads.

• A “temporary break point” is disabled
once hit. We realized this by attaching
a hit counter to a break point, where
“0” means permanent.

Break points can be “enabled” or “dis-
abled” or “deleted”.

Stepping: “step”, “next”, “return”, and
“continue” commands can be input by
icons. Their functinalities are the same as
those of traditional debuggers, except that
a thread number is attached, that is by de-
fault taken from the current thread context.

Stack investigation: “up”, “down” and
“where” commands are the same as those of
traditional debuggers, except for the thread
number attached, which is by default taken
from the current thread context. up and
down can be done by icons.

Value evaluation and setting: “print ex-
pression”, “display expression” and “exec
string” request the evaluation result of the
specified expression or string with the con-
text (i.e., active stack frame and its global
dictionary) of the specified thread, which
is identified by the current thread context.
Setting a value to a variable is done by
using these commands. At present, no
GUI commands are available for these com-
mands, but displaying the values in a vari-
able table is under study.

High-intrusive operations: “suspendPro-
cess” and “resumeProcess” require all the
threads in a process or grouped threads to
be suspended or resumed. At present no
GUI is available.

4. Implememtation

As shown in Fig. 1, we have split the debugger
into debug client and debug servers, and cou-
pled them asynchronously.

4.1 Debug Client
GUI tool kit: The debug client must con-

currently handle both GUI events caused
by user commands and debug events com-
ing from debug servers. As no “thread-
safe” GUI tool kit is available for Python,
we have to let one thread to handle both

2746 IPSJ Journal Dec. 2004

Fig. 5 Widget architecture.

types of event. PyQt☆1 12), which is
a Python wrapper of Qt 11) fullfills this
requirement. PyQt provides with non-
blocking API to incorporate TCP socket as
one of its widgets and to handle its incom-
ing messages as GUI events.

Context hierarchy and widgets: Con-
texts are heirarchical. Switching a pro-
cess context, the thread context is also
switched☆2, and vice versa. Each con-
text has a set of GUI widgets. As shown
in Fig. 5, a process node and a thread
node have a parent-child relationship. Each
thread context node retains its own view
sets, such as a source view and a command
view. The difference between selected and
not selected contexts is only that the former
contents are shown in the window while
the latter is not. The thread number at-
tached to the thread (process) operation
commands is obtained from the selected
thread (process) context, by default.
Figure 5 shows also an example of context
switch from hidden to current. In the de-
bugee view, when the “thread 2”node is
clicked, the “callback” function is invoked.
This function hides the view set of “thread
1”, and shows that of “thread 2”☆3.

4.2 Debug Server for Python
Figure 6 shows overall structure of the debug

server for Python. The debug server code con-
sists of three parts: trace-hook reinforcements,
a command listener, and callback functions.
The command listener is a dedicated thread for
receiving debug commands and sending back
debug events. For each debuggee thread, a “de-

☆1 http://www.riverbankcomputing.co.uk/pyqt/
☆2 Note that a process context has at least one thread

context ‘main’.
☆3 At this time, “status” command is sent to the server

side, and if necessary, update the status indication.

Fig. 6 Debug server architecture.

Fig. 7 Thread state table.

bug object” is created, which contains its in-
trinsic debug data. The debug data common
to all the threads are shared among the com-
mand listener and debuggee threads that exe-
cute callback functions, and are accessed in a
mutually exclusive way.

Trace-hook reinforcements: Python de-
bug API offers a hook named “settrace”
that causes the specified Python function
to be invoked (i.e., piggybacked by the
traced thread) at each time of one line exe-
cution, or a function call, or a function re-
turn, or an exception raise. Two problems
were found and we solved them as follows:
(1) First, the hook can be set only for

“main thread”, not for other threads,
although the thread control blocks
are listed inside of Python inter-
preter as in Fig. 7. A method does
exist to get the list pointer, so we
have provided a new settrace inter-
face that accept a thread number.
We coded this part in C as an ex-
tension module we call “ttc (thread
trace control module)”, and made it
a dynamic link module☆4.

(2) Second, no callback event is pro-
vided for thread creation and termi-
nation. Python API for thread cre-
ation is “Thread” class and its “run”

☆4 Other parts are coded in Python itself.

Vol. 45 No. 12 Low-intrusion Debugger for Python and Ruby 2747

Fig. 8 Command dispatching.

method. We attached a “hook” here
to generate an event at the entry and
the exit of this method.
In scripting languages, having sym-
bol dictionaries at runtime, to plug-
in and out such hooks can be done
at runtime. The basic technique is
to replace methods at debug time☆.
This is also done for generating
“wait” and “lock” events for syn-
chronization objects.

Command listener: The debug server re-
ceives the incoming debug commands that
the debug client issues and informs to it
of the debug events such as break-hit and
step-hit reports. Unlike traditional debug-
gers, commands and reports must be han-
dled asynchronously. While executing a
command for one thread, other threads
must not be blocked. We need, therefore, a
dedicated thread to receive commands and
to send debug events, which we call “com-
mand listener”.
As shown in Fig. 8, the command listner
handles the received commands as follow-
ing:

Commands for setting a break point: A
break point object is created, and, is
registered, with the source code posi-
tion as key, in a break point dictionary
that resides either in the common de-
bug object, or in the debug object that
is intrinsic to the specified thread.

Command for suspending a thread: The
thread intrinsic debug object is flagged
so that the corresponding thread may

☆ For Python, “hook module” provided by Twist
(http://www.twistedmatrix.com) facilitates hook-
ing some code at the entry and return of a method.

Fig. 9 Call back by debuggee threads.

be suspended by the next execution
event of settrace.

Other commands: For each thread in the
debuggee a “producer-consumer FIFO
queue 9)” is provided. The commands
are “put” into this queue and the spec-
ified thread is notified to execute them.

Callback functions: The callback func-
tion specified to the “settrace” hook is in-
voked piggybacked by the debuggee threads
that are traced by the interpreter, and
thereby, we can detect debug events. Fig-
ure 9 shows the flow of starting analysis.
The callback function is passed the exe-
cution event (that is either “line”, “call”,
“return”, or “exception”) and the current
stack frame object (that contains the cur-
rent context), as paremeters from the in-
terpreter, and then, checks the needs for
suspension.
For example, when the event is line, the
analysis is as follows: It checks if a sus-
pension requirement is flagged, or, if the
current frame is the frame of suspension for
step, next, or return, or, if the line is a break
point, then, the thread suspends itself and
changes its status to break suspended.
Before suspension, an appropriate debug
event is generated and buffered. Then, as
shown in the right-hand side of Fig. 8, the
thread “gets” commands from its dedicated
producer-consumer FIFO queue, and per-
forms real operations, e.g., evaluates speci-
fied expression, until it gets resume or step
or next or continue or resume.

4.3 Debug Server for Ruby
We implemented the debug server for Ruby,

by rewriting that for Python. Two problems in
Ruby debug API were found for our purpose:
(1) Ruby provides with a debug API “set-

trace” similar to Python. But it causes
all the threads to be traced by the inter-
preter. It does not allow for “thread by
thread” tracing.

(2) The stack frame object passed to the

2748 IPSJ Journal Dec. 2004

callback function lacks in dynamic frame
link. Without this frame link, we can-
not support stack frame up and down,
unless the thread is traced from its start-
ing time. This is a much more serious
problem. The debuggee should always be
traced even after disconnection, in order
to be ready for reconnection.

The inside of Ruby interpreter however, can-
not be accessed by some other extension module
(hidden by using internal names) even if we use
C. We understand that “hiding the inside of the
interpreter” is the Ruby designer’s policy, and
expecting future extension, we used Ruby de-
bug trace API as is. The problems are not fatal
with functionality respect. The consequence,
however, is that we cannot recover the normal
execution speed of Ruby debuggees by discon-
nection.

4.4 Client Server Protocol
The infrastructure of debug client and de-

bug server communication is asynchronous.
We used non-blocking TCP socket, not the
query/response type RPC synchronization.
The command listener uses “select” system
call☆ for non-block sockets to wait for incom-
ing commands from the debug client, and at
the same time, to send debug events/data back
to it.

To enable the debug client to communicate
with debug servers for different languages, we
need an interchangeable format among differ-
ent languages to send and receive debug com-
mands, debug events and data. As no exist-
ing XML based marshalling implementation is
common to different languages, we use YAML
(Yaml Ain’t Markup Language☆☆) that fulfills
this requirement. YAML is a human readable
document format for such data structures as
“lists (arrays)” and “dictionaries (hashes)” of
Python, Ruby, Perl and Java module, and mar-
shaling/unmarshalling libraries are available for
these languages. Figure 10 shows an example
of YAML format corresponding with a Python
dictionary, which is a command message for
Dionea.

5. Applications

We are implementing some testing programs
to evaluate the effectiveness of Dionea, catego-
rized as following.

☆ “asyncore” module 9) is used.
☆☆ http://yaml.org/

- - -
Type: break
ThreadNo: 1
FileName: testthread.py
LineNumber: 10

YAML document
↓ ↑

{’Type’: ’break’,
’ThreadNo’: 1,
’FileName’: ’testthread.py’
’LineNumber’: 10}

Python dictionary
Fig. 10 Message transformation example.

5.1 Multi-thread Programs
Dionea acts for single and multi-threaded

programs, since it has superset features of
traditional debuggers. In the following, we
present threading patterns 16) for which the
low-intrusion environment is effective.

Resource sharing pattern: By causing
perturbations in thread scheduling, mu-
tual exclusion errors can easily be detected.
For example, in the well-known “dining
philosopher problem”, even if we deliber-
ately write an error such that the left-hand
side and right-hand side forks are acquired
separately, dead lock state does not occur
in a short time in normal scheduling. How-
ever, by simply stepping one philosopher
thread letting others run, a dead lock ap-
pears immediately. When a philosopher ac-
quires its right-hand side fork and stops
by stepping, its right-hand side philoso-
pher suspends its execution holding its
right-hand side fork trying to acquire the
other, etc., and eventually, every philoso-
pher thread suspends forever holding its
right-hand side fork. By giving schedul-
ing perturbations to a great extent, we may
very often detect hidden bugs caused by re-
source sharing errors.

Producer-consumer and worker-thread
patterns: Low-intrusion environment en-
ables to debug a consumer (worker thread),
while letting the producer get input from
outside of the process. With stop-the-world
environment, the input is also stopped
while debugging the consumer. Thanks to
the hook attached to mutual exclusion and
conditional variables, the status change
of the involved threads are made visible

Vol. 45 No. 12 Low-intrusion Debugger for Python and Ruby 2749

through the debuggee view. To know which
thread is locked on which variable is easily
known by switching the thread context and
looking into the highlighted source code.

Thread-per-message pattern: This pat-
tern is similar to the producer-consumer
pattern, except that the worker thread is
created per message. In this case, the new
thread must be suspended at the same time
as its creation. No thread identifier for such
a thread is available. Dionea provides with
disturb mode, which causes a newly created
thread to be traced and suspended. The
disturb mode can be enabled and disabled
by an icon in the tool bar. This one click
feature is similar to the temporary break
point but easier for the user to handle.

5.2 Distributed Objects
The debug client manages connected pro-

cesses and all the threads inside of them.
With user’s knowledge in the source code, this
facilitates the debugging of distributed and
multi-threaded programs. While processes run
asynchronously, however, in some applications,
thread pairs may be coupled by CORBA type
query/answer RPC (Remote Procedure Call) as
if “one virtual thread”. It would be useful to
enable the tracing of virtual threads across pro-
cesses. “Pyro” 10) for Python and “dRuby” 15)

for Ruby are such platforms. The debug server
could, like other hooks, add/remove some ap-
propriate hooks to Pyro and dRuby at debug
time. This will be a big work and is left for
future study.

5.3 Server-side Web Programming
Being single or multi-threaded, CGI is one

of the major application areas of Python and
Ruby. Interactive debuggers are hardly us-
able to debug CGI (Common Gateway Inter-
face) programs, due to the complexity of giv-
ing its running environment☆. We can let the
“mod python” for Apache☆☆, where Python in-
terpreter is embedded, run the Dionea debug
server for Python☆☆☆. To do this, we only
have to write a configuration file of Apache
in our private directories. Using well-known
browsers and connecting Dionea “debug client”,
it proved that we can interactively debug CGI

☆ Many environment variables must be set to run CGI
for debugging.

☆☆ Apache version 2, which support multi-threading.
☆☆☆ Precisely, we added a few lines of “contents handler”

code in the debug server, where the standard input
and output is directed to Apache, not to Dionea.

code, even while Apache with mod python is in
real operation. The same will be easy for the
“debug server for Ruby” and “mod ruby”. Our
next future support will be Perl that has much
larger user population particularly in this area.

6. Discussions and Eveluation

6.1 Intrusiveness in Terms of Suspen-
sion Time

Dionea is designed so that the execution of
debuggee threads may never be suspended un-
less the user explicitly uses high-intrusion com-
mands. However, as Dionea uses line-by-line
callback, the overhead to trace a thread is not
small. Using a small fraction of loop coded in
Python, we observe slower speed by two orders
of magnitude compared with the normal inter-
pretation of “virtual instructions”. Considering
the execution of native modules and network la-
tency, and the fact that multi-thread programs
by nature are bound to input and output, this
will be much less, say, by one order magni-
tude less, depending upon CPU performance.
We observe no significant influence to thread
scheduling under Linux on today’s personal and
note computers.

In contrast, we regard such process suspen-
sion as to allow human to input commands
or to synchronize processes via network for
command interpretation as “intrusion”, which
causes three orders of magnitude latency (from
several tens of mill-seconds to seconds). In the
sense that it does not cause this kind of suspen-
sion, Dionea is low-intrusive.

6.2 Intrusiveness in Terms of the
Number of Threads

Dionea causes no overhead to non-traced
threads. This is completely true for Python
threads. Ruby threads cause all the threads
the callback overhead, but still Dionea does not
cause suspension. By step, break, and suspen-
sion, however, Dionea causes individual threads
high-intrusion, which may not always be desir-
able. When the thread is time critical or when
threads are tightly coupled, one thread suspen-
sion may cause the suspension of many other
threads.

We therefore provide with trace points, which
cause some instrumentation code (expression or
string) to be evaluated with some overhead but
without causing significant disturbance to its
execution. The resulting values are buffered be-
ing sent back to the debug client unless spilt
from buffering capacity.

2750 IPSJ Journal Dec. 2004

6.3 High-intrusion vs. Low-intrusion
Considering the debugging or monitoring

while the debuggee is running, the low intrusion
is effective. However, in some critical situation
where freezing global variables is needed, high-
intrusion environment will be required. There-
fore, Dionea combines both environments by
providing with process level breaks and suspen-
sion.

7. Conclusion

We have proposed an interactive debug-
ger that uses asynchronous one-to-many cou-
pling of debug client and debug server ar-
chitecture. This architecture enables low-
intrusiveness, multiple processes debugging,
and multiple language support. We have shown
that its application area is wide: single and
multi-threading, concurrent servers, distributed
objects, and web programming. Our develop-
ment so far is for Python and Ruby that are
major advanced scripting languages suitable for
these applications, and Dionea itself is one of
them. Dionea by now runs on Linux, Free BSD
and Mac-OS X.

While Dionea is a debugger for scripting lan-
guages, this architecture will in theory be im-
plementable for native code debuggers. The na-
tive code debuggers today are high-intrusive,
because they operate debuggee processes from
outside. For example, UNIX debug API is
“ptrace” or “/proc”☆. The debugger process
(such as GDB) traps a modified machine in-
struction via signal☆☆ or receives callbacks☆☆☆
from outside of the debuggee process. However,
if we could embed their debug operation code
in the debuggee (as a dynamic link library), the
low-intrusion features would be hopeful. Un-
fortunately, in reality, the feasibility is highly
dependent on operating system and thread li-
brary supports, which are different from system
to system or sometimes even insufficient.

We have implemented Dionea by making the
most of the high productivity and the flexi-
bility of Python and Ruby. The productivity
means their high level nature and their many
supportive modules. The flexibility means the
runtime nature that allows for plug-in and out
hooks at debug time, and the direct evalua-

☆ Memory mapped files, whose structures are different
from UNIX to UNIX.

☆☆ SIGTRAP
☆☆☆ “libthread db.so” for Solaris, which is not well doc-

umented.

tion/execution of symbolic code. The trace
points can be managed in symbolic forms, e.g.,
regular expression form. Though we have not
yet done, we can insert any instrumentation
code at the entry and exit of a group of meth-
ods. This will allow for AOP (Aspect Oriented
Programming)-like features.

The performance decrease in Ruby programs
debugged by Dionea disappears with the provi-
sion of per-thread tracing and dynamic link of
frames, and therefore, is not an intrinsic prob-
lem.

Acknowledgments This paper is based
upon our presentations in SIG Programming
of IPSJ, in March 2003 and March 2004. We
appreciate active discussions and suggestions
there. We thank Mr. Trond Borsting and Mr.
Harald Botnevik for discussions, comments and
suggestions to improve the draft of this paper
before submission.

References

1) Donat, M. and Chalk, S.: Debugging in Asyn-
choronous World, Vol.1, No.6, pp.23-30, ACM
Queue (Sept. 2003).

2) Rosenberg, J.B.: How Debuggers Work, Wiley
Computer Publishing (1997).

3) Stallman, R.M., Pesch, R.H. and Shebs, S.:
Debugging With Gdb: The GNU Source-Level
Debugger, GNU Press (2002).

4) Butenhof, D.P.: Programming with POSIX
Threads, Addison-Wesley (1998).

5) Lewis, B. and Berg, D.J.: Multithreaded Pro-
gramming With Pthreads, Prentice Hall (1997).

6) Lutz, M.: Programming Python (2nd ed.),
O’Reilly & Associates (2001).

7) Acher, D. and Lutz, M.: Learning Python, Ad-
dison Wesley (1993).

8) Martelli, A. and Ascher, D. (Eds.): Python
Cookbook, O’Reilly & Associates (July 2002).

9) David, M., Beazley, F. and Samarin, A.:
Python Essential Reference, 2nd ed., New Rid-
ers (2001).

10) de Jong, I.: Pyro Manual.version 2.1 (Oct. 3,
2001).

11) Dalheimer, M.K.: Programming Qt (2nd ed.),
Oreilly & Associates (2002).

12) Rempt, B.: Gui Programming With Python:
Using the Qt Toolkit, Commandprompt (2002).

13) Matsumoto, Y., Thomas, D. and Hunt, A.:
Programming Ruby: The Pragmatic Program-
mer’s Guide, Addison Wesley (2000).

14) Maeda, S., Matsumoto, Y., Yamada, A. and
Nagai, H.: Ruby Application Programming
(written in Japanese), Ohmsha (2002)

15) Seki, M.: Distributed Object Programming by

Vol. 45 No. 12 Low-intrusion Debugger for Python and Ruby 2751

dRuby (written in Japanese), ASCII (2001),
http://www2.biglobe.ne.jp/˜seki/index.html.

16) Lea, D.: Concurrent Programming in Java,
(2nd ed.): Design Principles and Patterns,
Addison-Wesley (2000).

(Received March 29, 2004)
(Accepted September 3, 2004)

Norio Sato was graduated
from Department of Mathemat-
ical Engineering and Informa-
tion Physics, the Univeristy of
Tokyo in 1972, worked for NTT
Telecommunication Laboraories
1972–1998, and for Lucent Tech-

nologies Japan 1998–1999. He received Dr.
Eng. from Ritsumeikan Univeristy for his the-
sis “A Study on Compiler and Testing Environ-
ment for Large Real-Time Telecommunications
Software” 1999. Since 1999, he is a professor of
Information and Computer Science, Graduated
School, KIT (Kanazawa Institute of Technol-
ogy). One of his hobbies is learning European
languages, and recently Chinese. An outcome
is “Learning Chinese Sounds through Three Di-
mensional Computer Graphics”. He is a mem-
ber of IEICE, IPSJ, and ACM.

Kazuhiro Nagai has M.Eng.
from Department of Information
and Computer Science, Gradu-
ate School, KIT, 2004 and now
is working for NS Computer Ser-
vices, Ltd. He got Excellent Stu-
dent Prize from Hokuriku Affili-

ate of IPSJ, 2003. His interests are Linux, pro-
gramming languages, compilers, tools and net-
work software technologies.

Yasushi Itoh has M.Eng.
from Department of Information
and Computer Science, Grad-
uate School of KIT, 2004 and
now is working for Fuji Zerox,
Ltd. He got Excellent Student
Prize from Hokuriku Affiliate of

IPSJ, 2004. His interests are Linux, FreeBSD,
OS-X, and programming languages particulary
SCHEME.

Masamitsu Ogura entered
Department of Information and
Computer Science, Graduate
School of KIT in 2004. His in-
terests are Linux and language
processing technologies.

Keisuke Kosuga entered
Department of Information and
Computer Science, Graduate
School of KIT in 2004. His in-
terests are Linux and language
processing technologies.

