TR AL B2 58 73 [l 2 E R

1H-3

Speeding Processor up by Employing Instruction Register

Mochamad ASRI

Takayuki MATSUMURA !

Kenji KISE

Undergraduate School of Computer Science , Tokyo Institute of Technology]L

Graduate School of Information Science and Engineering, Tokyo Institute of Technologyi

1 Introduction

Many embedded system have substantially different
design constraint than desktop computing applications.
Those constraints are space, power, and performance
which often have conflicting design requirement. It
is well-known that engineers face formidable problems
to improve one constraint without negatively affecting
others when designing processors.

In order to address each design issue, identification
of inefficiencies in some parts of program execution is
needed. Considering that I-Fetch logic consumes ap-
proximately 36 O of total processor power, optimizing
I-Fetch mechanism is one of the natural target for em-
bedded processors[1].

Instruction Register (IR) was proposed in order to
improve I-Fetch mechanism [2]. By integrating IR
into the architecture, Hines et al deliberately succeed
in reducing power consumption as well as code size.
However, the speed issue is still beyond the discus-
sion scope. In this paper, we try to search possibilities
on the existing proposed method further out to aim
more efficient I-Fetch mechanism that leads to proces-
sor speed up.

2 Instruction Register

Current I-Fetch mechanism is inefficient at least in
two aspects : All instructions have usually the same
length even though most instructions use only a frac-
tion of available length; Almost all references are ac-
cessed from the same storage(IC hit or ROM access)
even though only a small subset of instructions account
for the majority of the reference[2].

Integration of IR into architecture was originally
proposed by Hines et al. The idea is, by storing fre-
quently referenced instructions into small size of IR, the
conventional power-consuming IC/Memory-based in-
structions reference could be avoided. Thus, power re-
quirements consumed for referencing frequent instruc-
tions are possible to be reduced.

1-55

IF Stage First Half of ID Stage

IFID j—L

o psicton || || nstucton [_nsicion__
Cache (I0) u Register (IR)|———————— " Buffer

Figure 1. IR Integrated on I-Fetch Mechanism

Figure 1 shows how Hines et all integrated 32-entry
IR into the corresponding architecture. If the instruc-
tion fetched from the IC is a packed instruction, in-
struction index fields select from one to five IR entries
to write to the instruction buffer. Based on experiment
by using MiBench as a benchmark, on average, about
66.51 O of all instructions executed can be stored in
a 32-entry IR, assuming it can be loaded with the 32
most common instructions at the start of execution[2].

3 Expanding Instruction Register En-
try

To seek the possibility of processor’s speed up by
using IR, we try to scrutinize how the percentage of all
instructions executed that can be stored in IR goes if
the number of IR entries are expanded further out.

We use SimMips|[3], a MIPS system processor simu-
lator, to conduct the investigation. We regard distinct
instruction as 32-bit union. In other words, even so
there are two same kind of ADDI instructions, for in-
stance ADDI R2, R3, 5and ADDI R2, R3, 8, we treat
them as distinct instruction since the 32-bit binaries
of both instructions are different. We adopt SPEC-
CINT2006 as a benchmark for the simulation.

Figure 2 shows the relationship between the number
of IR entry and the percentage of all instructions ex-
ecuted that can be stored in IR. From the figure, the
percentage of instruction fetches to the most common
instructions significantly grows as the number of entry
increases. Moreover, when IR entry’s number is set to
2048, in most of applications except gcc, the percentage

Copyright ©2011 Information Processing Society of Japan.
All Rights Reserved.

TR AL B2 58 73 [l 2 E R

O256-Entry 051 2—Entry @1 024-Entry @Z20458-Entry

100%
o0%
60%
40%
20%

0% s s s s
bzipt Jeule] mcf

omnetpp average

Figure 2. IR Entry Size and Its Coverage Percentage

Table 1. Comparison of IR and IC Hit Rate

Size IR | 1-way IC | 2-way IC
1KB | 83% 82% 84%
2KB | 90% 86% 88%
4KB | 96% 91% 93%
8KB | 97% 96% 97%

shares above 97% of total program instructions. Com-
plex instructions used in gcc could be considered as a
factor that led IR to only have 93% of percentage when
its entry’s number is set to 2048.

Based on the result, since on average IR shares high
percentage of total program, we are pondering that in-
stead of combining IC and IR, we can take off IC and
simply employ 1024 or 2048-entry IR into the archi-
tecture. One advantage that can be exploited is con-
ventional 32-bit used for referencing instruction will be
reduced to only 11 or 12-bit (Figure 3), in case we apply
1024-entry or 2048-entry of IR.

Furthermore, if the percentage of all program in-
struction in IR is not lower than the IC hit rate, we can
simply disintegrate IC from the architecture so that the
memory hierarchy turns to be simpler and hardware
cost, could possibly be diminished.

We inspect further to compare the percentage of all
program instructions in IR and IC hit rate. Table 1
shows the comparison (average value of 4 benchmark
applications : bzip2, gee, mcf, omnetpp). From the ta-
ble, we can conclude that the percentage of all program
instructions in IR on 1024 or 2048-entry is not lower
than 1-way and 2-way IC hit rate.

Although it will become much more complicated
with binaries since we change the architectural re-
sources, we can unravel it by using binary translation.
The binary is first altered, afterwards we sign a flag to
instructions that refer to IR (Figure 4). By storing be-
forehand the most frequent instructions in IR, we can
implement IR in the architecture without using IC.

1-56

Flag _ Coce It (flag) refer to IR
0| 0001010000)
10 kit 32 hit
1| 0000011014 R Instruction
1| oootoooooq [1024 Ertries | * Buffer
‘ 10 hit
Translated

If (Mlag) refer to Memoary
Instruction Binary

Figure 3. Referencing Mechanism of IR

Instruction Code

Flag code
0007010000101 01000001 10000010010 0 | Do01040000
0101010000101 01000001 10111110010 :> 1 | 0000011041
1111010000101 01000001 10000010010 - 1 10-hit
1010010000101 0101 1001 10000010010 Binary
T2-hit Translation

Figure 4. 32-bit to 11-bit Binary Translation

4 Conclusion

We investigated the possibility of speeding processor
up by using Instruction Register. By expanding the
number of IR entry, we found that when the number
of entry is set to 1024 or 2048, on average it covers
96-97% of all program instructions.

Moreover, we found that the percentage of all pro-
gram instruction in IR is higher than 1-way and 2-way
IC hit rate, especially in case of 1024 and 2048-entry. It
means it is quite possible replacing IC by IR to get sim-
pler memory hierarchy, lesser hardware cost and lesser
power consumption .

Yet, there are many areas of future works to pro-
vide comprehensive discussion on accomplishing speed
up fruition. It will include branch predictor implemen-
tation, speed up technique and evaluation.

References

[1] Montanaro, J et al: A 160-mhz, 32-b, 0.5-W CMOS
RISC Microprocessor. Digital Tech. J., 9(1):49-62,
1997

[2] Hines, S. and Green, J. and Tyson, G. and Whal-
ley, D: Improving Program Efficiency by Packing
Instructions into Registers. Proceedings of the 32th

Annual International Symposium on Computer Ar-
chitecture (ISCA) 2005.

[3] Naoki, F. and Miyoshi, T. and Kenji, K: SimMips :
A MIPS System Simulator. Workshop on Computer
Architecture Education(WCAE) held in conjunc-
tion with MICRO-42 , pp. 32-39 (December 2009).

Copyright ©2011 Information Processing Society of Japan.
All Rights Reserved.

