
IPSJ Transactions on Advanced Computing Systems Vol.7 No.4 56–66 (Dec. 2014)

Regular Paper

Parallel Java Code Generation
for Layer-unified Coarse Grain Task Parallel Processing

Akimasa Yoshida1,a) Yuki Ochi2 Nagatsugu Yamanouchi2,b)

Received: March 31, 2014, Accepted: July 30, 2014

Abstract: Multicore processors are widely used for various types of computers. In order to achieve high-performance
on such multicore systems, it is necessary to extract coarse grain task parallelism from a target program in addition
to loop parallelism. Regarding the development of parallel programs, Java or a Java-extension language represents an
attractive choice recently, thanks to its performance improvement as well as its platform independence. Therefore, this
paper proposes a parallel Java code generation scheme that realizes coarse grain task parallel processing with layer-
unified execution control. In this parallel processing, coarse grain tasks of all layers are collectively managed through
a dynamic scheduler. In addition, we have developed a prototype parallelizing compiler for Java programs with direc-
tives. In performance evaluations, the compiler-generated parallel Java code was confirmed to attain high performance.
Concretely, we obtained 7.82 times faster speed-up for the Jacobi program, 7.38 times faster speed-up for the Turb3d
program, 6.54 times faster speed-up for the Crypt program, and 6.15 times faster speed-up for the MolDyn program
on eight cores of Xeon E5-2660.

Keywords: coarse grain parallelization, compiler, dynamic scheduling, Java, Multicore

1. Introduction

Recently, multicore processors are widely used for various
kinds of computers, such as supercomputers, PCs, tablet com-
puters, and embedded systems. To achieve high-performance on
multicore processors, in addition to loop parallelization [1], [2],
coarse grain task parallelization [3], [4], [5], [6] or multi-level
parallelization [7], [8] is indispensable.

In coarse grain task parallel processing [3], the parallelizing
compiler [9] extracts parallelism among coarse grain tasks (i.e.,
macrotasks), represents inter-macrotask parallelism as a hierar-
chical macrotask-graph (MTG), and generates a parallel code to
assign macrotasks to hierarchical core groups. Given that macro-
tasks within a certain layer in a target program are executed on a
corresponding layer of core groups, if the number of cores is not
sufficient to utilize parallelism of all layers, the use of parallelism
must be restricted.

To solve such a problem, the layer-unified execution control
scheme [10] for coarse grain task parallel processing, namely the
layer-unified coarse grain task parallel processing, was proposed.
This scheme extends the hierarchical MTG [3] by addition of the
layer-start macrotask that enables the uniform control of macro-
tasks of different layers.

In addition, although C and Fortran languages are convention-
ally used as target languages for parallel computing, the inter-
est in Java for high performance computing is recently increas-
ing [11]. This is because the performance gap between Java and

1 Meiji University, Nakano, Tokyo 164–8525, Japan
2 Toho University, Funabashi, Chiba 274–8510, Japan
a) akimasay@meiji.ac.jp
b) yamanouc@is.sci.toho-u.ac.jp

native languages such as C and Fortran has been narrowing for
the last few years, owing to the Just-In-Time compiler of the Java
Virtual Machine. Also, an extended-Java-based research such as
the Habanero extreme scale software research project is active for
scientific computing [12].

Therefore, this paper proposes a parallel Java code generation
scheme to realize layer-unified coarse grain task parallel process-
ing, and develops a parallelizing compiler to generate the parallel
Java code, which is platform-independent, from a Java program
with parallelization directives. Moreover the parallel Java code
that adopts the selective static data structure attains a higher per-
formance on multicore processors.

The rest of this paper is organized as follows. Section 2 de-
scribes layer-unified coarse grain task parallel processing in Java.
Section 3 describes a parallel Java code generation scheme for
layer-unified coarse grain task parallel processing. Section 4 de-
scribes a parallelizing compiler to generate a parallel Java code.
Section 5 evaluates the proposed scheme by using several scien-
tific programs on a multicore system. Section 6 describes related
works. Finally, section 7 presents our conclusions.

2. Layer-unified Coarse Grain Task Parallel
Processing in Java

This section describes the coarse grain task parallel processing
scheme with layer-unified execution control in Java. The par-
allel processing scheme is extended from its Fortran-based con-
cept [10]. The details are described below.

2.1 Layer-unified Execution Control
This subsection describes the layer-unified execution control

for coarse grain task parallel processing, and also shows the dif-

c© 2014 Information Processing Society of Japan 56



IPSJ Transactions on Advanced Computing Systems Vol.7 No.4 56–66 (Dec. 2014)

Fig. 1 Java program with parallelization directives.

Fig. 2 Hierarchical macrotask-graph (MTG).

ference from the hierarchical execution control.
A sample Java program as shown in Fig. 1 is composed of

three layers of macrotasks as follows: first-layer macrotasks such
as MT1-1, MT1-2 and MT1-3; second-layer macrotasks such as
MT2-1 and MT2-2 in the loop body of MT1-2; and third-layer
macrotasks such as MT3-1 and MT3-2 in the method invoked by
MT2-2. This program is also represented by a hierarchical MTG
in Fig. 2 where data-dependence edges among macrotasks are as-
sumed for explanation.

When we apply coarse grain task parallel processing with
layer-unified execution control to the program shown in Fig. 1,
the execution image on four cores without grouping is shown in
Fig. 3 (a), where macrotasks of all layers are scheduled to cores
uniformly by the dynamic scheduler. MT1-2S and MT2-2S repre-
sent the layer-start macrotask corresponding to MT1-2 and MT2-
2 respectively as described in Section 2.3. This scheme can use
parallelism across the layers of MT1-1, MT2-1, MT3-1 and MT3-
2, and can reduce the execution time remarkably.

For comparison, in the hierarchical execution control [3],
macrotasks of each layer are hierarchically assigned to a corre-
sponding layer of core groups. For example, the execution on
two core groups, each of which has two cores (four cores in to-

Fig. 3 Comparison of execution control for coarse grain task parallel pro-
cessing.

tal), is shown in Fig. 3 (b). In the first layer in Fig. 2, MT1-1
and MT1-2 are assigned to CoreGroup0 and CoreGroup1 respec-
tively, and then MT1-3 is assigned to CoreGroup0. In the second
layer within MT1-2, MT2-1 and MT2-2 are assigned to Core2
and Core3 within CoreGroup1 respectively. Therefore, in the
case of MT2-2 assigned to Core3, third-layer macrotasks namely
MT3-1 and MT3-2 need to be executed in serial.

2.2 Hierarchical Macrotask
In coarse grain task parallel processing [3], [10], the entire pro-

gram is first decomposed into first-layer macrotasks. A macrotask
is classified into one of three types: a basic block, a repetition
block (e.g., a for-statement, a while-statement), and a subroutine
block (e.g., a class method, an instance method).

Next, when a first-layer macrotask contains several sub-
macrotasks, its sub-macrotasks are defined as second-layer
macrotasks. Furthermore, (L + 1)th-layer macrotasks are defined
in the Lth-layer macrotask. Note that when a repetition block is
a parallelizable loop or a reduction loop that requires a long pro-
cessing time, the loop is decomposed into several partial loops,
each of which is defined as a macrotask.

For example, in the Java program shown in Fig. 1, first-layer
macrotasks, second-layer macrotasks and third-layer macrotask
are defined hierarchically as shown in Fig. 2.

2.3 Layer-start Macrotask
In the layer-unified execution control [10], the layer-start

macrotask is introduced to uniformly control macrotasks of all
layers. The (L − 1)th-layer macrotask that surrounds Lth-layer
macrotasks is controlled by the layer-start macrotask of the Lth-
layer. Given that the finish of the layer-start macrotask ensures
that macrotasks of the layer are executable, macrotasks of all lay-
ers can be collectively controlled by the dynamic scheduler.

As shown in Fig. 2, in the case of the repetition block MT1-2
that contains MT2-1 and MT2-2, the macrotask MT1-2 is treated
as a layer-start macrotask. In the case of the method invocation
MT2-2 that contains MT3-1 and MT3-2, the macrotask MT2-2 is
treated as a layer-start macrotask.

2.4 Earliest Executable Condition
After generation of macrotasks, the compiler analyzes control

flow and data flow among macrotasks on each layer, and gener-
ates a hierarchical macro-flow graph [3]. Next, in order to extract

c© 2014 Information Processing Society of Japan 57



IPSJ Transactions on Advanced Computing Systems Vol.7 No.4 56–66 (Dec. 2014)

inter-macrotask parallelism taking into consideration control de-
pendence and data dependence, the compiler analyzes the earli-
est executable condition [3]. The earliest executable condition,
which represents parallelism among macrotasks, is reflected in
the dynamic scheduler to assign macrotasks. The dynamic sched-
uler can detect newly executable macrotasks by examining the
earliest executable condition, taking into consideration the finish
notification and the branch notification [13].

The earliest executable condition and the finish notification of
macrotasks in Fig. 2 are displayed in Table 1. In the earliest ex-
ecutable condition, the symbol i represents the finish of MTi; the
symbol (i) j represents the branch from MTi to MT j; and the sym-
bol i j represents both the branch from MTi to MT j and the fin-
ish of MTi. Moreover, dummy macrotasks such as EndMT (i.e.,
the finish processing of a program), CtrlMT (i.e., the repetition
control), RepMT (i.e., the renewal processing of repetition) and
ExitMT (i.e., the finish processing of a layer) are used in dynamic
scheduling.

For example, the earliest executable condition of MT1-3 shown
in Fig. 2 is expressed as the logical-expression 1-1∧1-2, which
means that MT1-3 is executable after MT1-1 and MT1-2 have
finished. Also, MT2-3(CtrlMT) controls the condition of repe-
tition. Concretely, MT2-3(CtrlMT) compares a loop induction
variable with the loop’s upper limit; it issues the branch notifi-
cation to MT2-4(RepMT) like 2-32-4 or the branch notification to
MT2-5(ExitMT) like 2-32-5; this branch notification can satisfy
the earliest executable condition MT2-4 or MT2-5; then MT2-4
or MT2-5 is executable. The earliest executable condition of the
macrotasks is also represented by a hierarchical MTG [3], where
dummy macrotasks are omitted, as shown in Fig. 2.

Next, considering the layer-start macrotask, the earliest exe-
cutable condition on each layer is extended for layer-unified exe-
cution control [10]. Specifically, when the earliest executable
condition of the Lth-layer macrotask is true, the condition is re-
placed with the finish of the layer-start macrotask MTi. The fin-
ish notification of the layer-start macrotask MTi, which is rep-
resented as the symbol iS, is issued by the layer-start macrotask
itself. The finish notification for the Lth-layer MTG within MTi,
which is represented as the symbol i, is issued by the ExitMT of
the Lth-layer.

Table 1 Earliest executable condition.

MTG MT Earliest Finish
number number executable notification

condition

1 MT1-1 true 1-1
1 MT1-2 † true 1-2S
1 MT1-3 1-1∧1-2 1-3
1 MT1-4(EndMT) 1-3 1-4

2 MT2-1 1-2S 2-1
2 MT2-2 †† 1-2S 2-2S
2 MT2-3(CtrlMT) 2-1∧2-2 2-3
2 MT2-4(RepMT) 2-32-4 2-4
2 MT2-5(ExitMT) 2-32-5 1-2
3 MT3-1 2-2S 3-1
3 MT3-2 2-2S 3-2
3 MT3-3(CtrlMT) 3-1∧3-2 3-3
3 MT3-4(ExitMT) 3-33-4 2-2

Notes: † layer-start MT of second layer MTG2.
†† layer-start MT of third layer MTG3.

In Table 1, the earliest executable conditions of MT2-1 and
MT2-2 are represented by 1-2S meaning the finish of the layer-
start macrotask MT1-2. The finish notification 1-2 represents
the finish of substantial MT1-2, and it is issued by the ExitMT
namely MT2-5 within MT1-2.

2.5 Macrotask Scheduling
In macrotask scheduling using the layer-unified execution con-

trol, each macrotask of all layers is added to a ready macrotask
queue when its earliest executable condition, as shown in Table 1,
is satisfied. After that, the dynamic scheduler retrieves a macro-
task from the ready macrotask queue in order of priority, namely
the critical path (CP) length, and assigns the macrotask to its own
core. Therefore, the layer-unified execution control can execute
macrotasks of all layers on cores without grouping as shown in
Fig. 3 (a).

As to the deployment of the dynamic scheduling code, the dis-
tributed scheduling policy is adopted, where each core executes
a thread code including both a scheduling processing part and
a macrotask processing part. The dynamic scheduler within the
thread code works on a core as follows:
(i) Add macrotasks that satisfy their earliest executable condi-

tions to a ready macrotask queue;
(ii) Retrieve a macrotask with the longest CP length from the

ready macrotask queue and assign the macrotask to its own
core;

(iii) Execute the macrotask on its own core;
(iv) Return to (i) and repeat this process until EndMT finishes.

3. Parallel Java Code Generation

To realize the layer-unified coarse grain task parallel process-
ing on a multicore processor, thus far, we need to write a parallel
code with the dynamic scheduling code manually. This is a diffi-
cult and error-prone work for a user.

Therefore, this paper focuses on the platform-independent Java
language and proposes a generation scheme of parallel code writ-
ten in Java. The parallel Java code is generated from a Java pro-
gram annotated with parallelization directives by the newly de-
veloped parallelizing compiler automatically. According to this
approach, layer-unified coarse grain task parallel processing can
be realized on various parallel platforms easily. This section de-
scribes the structure of parallel Java code and its data structure.

3.1 Structure of Parallel Java Code
This subsection explains the structure of a parallel Java code by

using a sample Java program shown in Fig. 1, which corresponds
to the hierarchical MTG shown in Fig. 2. In this case, a proposed
parallel Java code for layer-unified coarse grain task parallel pro-
cessing is expressed as shown in Fig. 4.

In Fig. 4, the parallel Java code consists of four parts as fol-
lows: (1) the variable management classes such as VARmanagei
to manage shared variables within MTGi, (2) the macrotask man-
agement classes such as MTqueue, MTtable and MTmanage to
manage macrotasks in dynamic scheduling, (3) the user-defined
class such as Other, and (4) the Mainp class that includes the
Scheduler class and the main() method.

c© 2014 Information Processing Society of Japan 58



IPSJ Transactions on Advanced Computing Systems Vol.7 No.4 56–66 (Dec. 2014)

Fig. 4 Structure of parallel Java code.

Each macrotask processing code is implemented as a class
method within the Mainp class, such as mt1_1(). On the other
hand, a macrotask processing code within the class defined by
a user is implemented as a class method within the user-defined
class, such as mt3_1() within the Other class. Several user-
defined classes may exist in a target Java program.

3.2 Dynamic Scheduling Code
In this scheme, to enhance the core utilization factor, the dy-

namic scheduler with layer-unified execution control is imple-
mented in a distributed scheduler manner. Each core executes a
thread code composed of both a scheduling processing part and a

macrotask processing part. The multi-threaded codes are written
by the Runnable interface in the Java language.

If the ready macrotask queue for dynamic scheduling is empty
at scheduling time, the dynamic scheduler enters into the wait
set. Conversely, if a new executable macrotask is appended to
the ready macrotask queue by the finish of a data dependence
predecessor macrotask, a thread within the wait set turns to the
execution state.

In Fig. 4, the dynamic scheduling code is composed of sev-
eral parts as follows: the MTqueue class at lines 12–14, the
MTtable class at lines 15–19, the MTmanage class at lines 20–24,
the variable mtqueue at line 37, the variable mtm at line 38, the
Scheduler class at lines 39–43, the eeccheck()method at lines
44–46 which performs the earliest executable condition check as
mentioned in Section 2.4, and the scheduler() method at lines
47–54 which performs the scheduling processing as mentioned in
Section 2.5.

In the main() method at line 63 in Fig. 4, a thread per core is
created by using the constructor Scheduler() once at start time.
After that, the thread performs the scheduling processing and the
macrotask processing with a low overhead. In each thread, when
the execution of a macrotask has finished on a core binding to the
thread, the core performs scheduling by using the scheduling pro-
cessing code and executes a newly assigned macrotask. To access
the ready macrotask queue, mutual exclusion using the synchro-
nized block from the Java language is performed.

3.3 Dynamic Data Structure
For shared variables within a MTG and macrotask’s execution

control data, the parallel Java code adopts two kinds of manage-
ment methods selectively. One is the dynamic data structure pol-
icy and the other is the static data structure policy. The former
is described in this subsection and the latter is described in Sec-
tion 3.4.

First, variables within a MTG are categorized as shared vari-
ables, argument variables or a return variable. A set of these vari-
ables is treated as VARmanagei class that corresponds to MTGi as
shown at lines 1–11 in Fig. 4. In the case of MTG1 in Fig. 2, the
corresponding VARmanage1 class is defined at lines 1–3 in Fig. 4
and its instance variable is declared as varm1 at lines 32–33.

Basically, if a MTG is executed only once, an instance of VAR-
manage corresponding to the MTG needs to be created. Con-
versely, if a MTG that corresponds to a method body could be in-
voked simultaneously by several method invocations on different
threads, several instances of VARmanage must be created. Thus,
as shown at lines 32–33, instances of VARmanage are managed
by an ArrayList-type variable. For example, when a macrotask
invokes a method to be parallelizaed, the macrotask is treated as
a layer-start macrotask mentioned in Section 2.3 and it creates an
instance of VARmanagei that corresponds to the method. The cre-
ated instance is appended to the ArrayList-type variable varmi.
In this paper, such an implementation is called the dynamic data
structure policy.

Note that apart from shared variables within a MTG, there are
global variables (static variables within user-defined class) and lo-
cal variables within a macrotask. In the parallel Java code, global

c© 2014 Information Processing Society of Japan 59



IPSJ Transactions on Advanced Computing Systems Vol.7 No.4 56–66 (Dec. 2014)

Fig. 5 Java program with two method invocations.

variables are implemented in the same way as the original source
program.

Secondly, as to the management of the macrotask’s execution
control data, the parallel Java code adopts the MTmanage class
including instances of the MTtable class as shown at lines 15–
24 in Fig. 4. Instances of the MTmanage are declared as an array
that has elements equivalent to the number of MTGs at line 38 in
Fig. 4.

In the MTmanage class, an ArrayList-type variable
dynamicfield is used at lines 21–22 in Fig. 4. An instance of
MTtable corresponding to a MTG is dynamically appended to
dynamicfield by the layer-start macrotask corresponding to
the MTG.

As an example of method invocations, we show a sample Java
program in Fig. 5. In Fig. 5, we assume Other.method(0) and
Other.method(1) within the main() method are invoked in
parallel. This sample Java program is compiled into a parallel
Java code with a dynamic data structure by our compiler as shown
in Fig. 6. Several shared variables among macrotasks within
Other.method() in Fig. 5 are defined as the VARmanage1 class
in Fig. 6. At runtime, when mt2_1() including Other.m1(0)
was executed, Other.m1() method (the layer-start macrotask)
adds an instance of VARmanage1 to the ArrayList-type vari-
able varm1. On the other hand, when mt2_2() including
Other.m1(1) was executed, Other.m1() method (the layer-
start macrotask) adds another instance of VARmanage1 to the
ArrayList-type variable varm1. This is why these instances are
managed by ArrayList-type where the identifier __ec for the in-
stance is introduced. By using this identifier __ec, macrotasks
such as mt1_1(), mt1_2() and mt1_3() can access to variables
within the appropriate instance.

3.4 Selective Static Data Structure
In the parallel Java code, as mentioned in Section 3.3, the dy-

namic data structure policy is used by default. However, the ac-
cess cost to an instance pointed by an element of ArrayList-type
variable is larger than the access cost to an instance pointed by a
scalar variable.

To reduce such access cost via ArrayList-type, this paper

Fig. 6 Parallel Java code with dynamic data structure.

Fig. 7 Parallel Java code with static data structure.

adopts the static data structure policy selectively unless macro-
tasks within a MTG are executed in parallel simultaneously on
different threads. The static data structure is applied to the MTGs
annotated by the parallelization directive /*mt stmt*/ as de-
scribed in Section 4.2. Namely, the user can select the target
MTG to be implemented by means of the static data structure.

Regarding a management of shared variables within a MTG
based on the static data structure policy, the scalar variable varmi
at line 34 in Fig. 4 is used instead of the ArrayList-type variable
varmi at lines 32–33. Regarding a management of macrotask’s
execution control data, a scalar variable staticfield at line 23
is used instead of the ArrayList-type variable dynamicfield at
line 21-22.

In Fig. 5 mentioned above, even if Other.method(0) and
Other.method(1) are executed in serial, our compiler can gen-
erate the parallel Java code using static data structure as shown

c© 2014 Information Processing Society of Japan 60



IPSJ Transactions on Advanced Computing Systems Vol.7 No.4 56–66 (Dec. 2014)

in Fig. 7. In this case, only one instance of VARmanage1 is cre-
ated as a scalar variable varm1 and macrotasks such as mt1_1(),
mt1_2() and mt1_3() can access to variables within the in-
stance.

4. Parallelizing Compiler

This section describes the newly developed parallelizing com-
piler for layer-unified coarse grain task parallel processing.

4.1 Specification of Parallelizing Compiler
The layer-unified coarse grain task parallel processing is ad-

vantageous in terms of the use of parallelism. However, it is not
easy for a user to generate the above-mentioned parallel Java code
manually. Therefore, we have developed a parallelizing compiler
as a prototype.

The parallelizing compiler reads a Java program with paral-
lelization directives as mentioned in Section 4.2 as a source file,
and generates a parallel Java code to perform layer-unified coarse
grain task parallel processing. When a Java program with paral-
lelization directives is composed of several files, their files need to
be concatenated into one file. However, source files without par-
allelization directives and class files can be treated as independent
files.

The target source program for this compiler needs to be written
in the JDK1.2 grammar because of its front-end implementation.
Also, the exception code such as the try-catch block is executed
in serial. However, such constraints are not a major problem in
parallel processing of general scientific computing programs.

4.2 Parallelization Directives
To perform layer-unified coarse grain task parallel processing,

it is necessary to insert the parallelization directives listed in Ta-
ble 2 into a target Java program. Then the proposed parallelizing
compiler generates a parallel Java code.

For example, the program shown in Fig. 1, whose MTG corre-
sponds to Fig. 2, is a source program with parallelization direc-
tives. To define a macrotask as mentioned in Section 2.2, the par-
allelization directive /*mt*/ is used. The only directive /*mt*/
is indispensable for parallelization. Macrotasks can be defined
hierarchically by nesting /*mt*/ within a repetition block (e.g.,
a for-statement, a while-statement) or within a class method.
Non-parallelizable regions such as preprocessing and postpro-
cessing should be denoted by parallelization directives such as
/*premt*/ and /*postmt*/.

Optionally, several parallelization directives to en-
hance performance are prepared as follows. The directive
/*mt decomp=value*/ specifies the number of decomposition
of a parallelizable loop. The directive /*mt stmn*/ applies the
selective static data structure management to a MTG including its
macrotask. The directive /*mt cp=value*/ indicates the critical
path (CP) length of a macrotask. The directive /*mt logical-

expression*/ indicates the earliest executable condition of a
macrotask, where the logical-expression is written by the MTG
number, the macrotask number, the symbol ‘&’ meaning AND,
the symbol ‘|’ meaning OR and the symbol ‘*’ meaning branch.
Note that such an earliest executable condition can by analyzed

Table 2 Parallelization directives.

Denotation Definition

/*mt*/ a macrotask
/*premt*/ a preprocessing part
/*postmt*/ a postprocessing part
/*mt decomp=value*/ the number of loop decomposition
/*mt stmn*/ the static data structure management
/*mt cp=value*/ the critical path length
/*mt logical-expression*/ the earliest executable condition

Fig. 8 Overview of parallelizing compiler.

within a method automatically, but its directive is effective for
exploiting parallelism among methods.

4.3 Implementation of Parallelizing Compiler
This subsection describes an implementation of the paralleliz-

ing compiler to generate a parallel Java code. The structure of the
compiler is shown in Fig. 8. The compiler is developed by using
the Java language, whose lexical analysis and syntax analysis are
implemented by the Jay/JFlex parser generator that deals with the
LALR(1) grammar.

The compiler recognizes macrotasks denoted by the paral-
lelization directives in Table 2, analyzes data dependence and
control dependence, analyzes the earliest executable condition
as shown in Table 1, and generates a parallel Java code (e.g.,
Mainp.java) including a dynamic scheduler that reflects the ear-
liest executable condition.

In this prototype compiler, the data dependence related to the
primitive type can be analyzed automatically, but the data de-
pendence related to the reference type is preserved in consider-
ation of the alias problem. The earliest executable condition of
macrotasks within a method can be generated automatically, but
a strong inter-procedural analysis is not implemented. Thus, to
effectively extract inter-method parallelism, a user can partially
denote the earliest executable condition as a parallelization direc-
tive.

5. Performance Evaluation on a Multicore
System

This section demonstrates the performance evaluation using
compiler-generated parallel Java codes on the multicore system
DELL PowerEdge R620.

5.1 Environment of Performance Evaluation
In the evaluation on the DELL PowerEdge R620, Intel Xeon

E5-2660, namely eight cores of 2.20 GHz, is used. The speci-

c© 2014 Information Processing Society of Japan 61



IPSJ Transactions on Advanced Computing Systems Vol.7 No.4 56–66 (Dec. 2014)

Table 3 Performance evaluation programs.

Property Jacobi Integral Turb3d Crypt MolDyn

Code length 99 27 2,290 300 557
Number of inserted parallelization directives 9 2 68 4 24
Maximum depth of MTG’s layer 4 1 7 1 4
Number of MTGs 5 1 21 1 4
Number of macrotasks after loop decomposition 143 36 470 35 266
Number of executed macrotasks 1,382 43 3,009 35 12,903
Sequential execution time on Xeon E5-2660 without Hotspot optimization 43.255 s 4.167 s 195.722 s — —
Sequential execution time on Xeon E5-2660 with Hotspot optimization 5.522 s 1.020 s 10.165 s 2.809 s 27.600 s

Table 4 Access to variables shared among macrotasks.

Property Jacobi Integral Crypt MolDyn

Number of accesses to global variables 2.50 × 109 5.00 × 107 8.50 × 108 1.55 × 1010

Number of accesses to shared variables (dynamic or static) 20 1.50 × 108 0 6.50 × 103

Ratio of shared var. to both shared var. and global var. less than 1% 75% 0% less than 1%

fication is as follows: 64 GB of memory; 32 KB/core of L1 in-
struction cache; 32 KB/core of L1 data cache; 512 KB/core of L2
cache; 20 MB of L3 cache; the operating system (OS) is
CentOS6.5; and the Java system is JDK1.7.

In the performance evaluation, five programs are used as shown
in Table 3. This table also indicates the programs’ properties,
such as the code length, the number of inserted parallelization
directives, the maximum depth of MTG’s layer, the number of
MTGs, the number of macrotasks after loop decomposition, the
number of executed macrotasks, the sequential execution time on
JVM of Xeon E5-2660 without/with Hotspot (i.e., Just-In-Time
compilation) optimization. Sequential execution means the ex-
ecution of an original Java program without our parallelization
directives on one core. The execution time presented in this pa-
per is expressed as an average of the middle three data within five
measurements.

5.2 Evaluation of the Parallel Java Code with Selective
Static Data Structure

In this subsection, by using two scientific computing programs
written in Java, we evaluate the performance of a parallel Java
code with selective static data structure.

The parallel processing scheme is based on layer-unified coarse
grain task parallel processing (namely layer-unified paralleliza-
tion), and our compiler generates two types of parallel Java codes
having different data structures, as follows: (1) ordinary dynamic
data structure, (2) selective static data structure. Each paralleliz-
able loop is decomposed into 40 partial loops by the paralleliza-
tion directive. The compiler-generated parallel Java code is com-
piled into the Java bytecode by the Java compiler (javac), and the
Java bytecode is executed on JVM of Xeon E5-2660.

First, the Jacobi program to solve the system of linear equa-
tions has properties as shown in Table 3. The code length is 99
lines, and a main convergent loop includes three method invo-
cations each of which is composed of for-statements. The size
of the matrix is 10,000*10,000. Figure 9 and Fig. 10 show the
speed-up ratio relative to one thread execution on JVM of Xeon
E5-2660 without/with Hotspot optimization respectively.

As shown in Fig. 9, in ordinary layer-unified coarse grain task
parallel processing with dynamic data structure on eight threads
(eight cores), the execution time is 7.53 times faster than ordinary

Fig. 9 Jacobi program in layer-unified coarse grain task parallel processing
on Xeon E5-2660 without Hotspot optimization.

Fig. 10 Jacobi program in layer-unified coarse grain task parallel process-
ing on Xeon E5-2660 with Hotspot optimization.

one thread execution with dynamic data structure. Additionally,
when the selective static data structure is applied, the execution
time is 7.82 times faster than one thread execution (i.e., 7.74 times
faster than sequential execution). The selective static data struc-
ture reduced the parallel processing time by 3.7%. As the Jacobi
program originally declares the matrix as global variable (static
variable within the user-defined class), the number of accesses to
shared variables to be subjected to static data structure is small
as shown in Table 4. On the contrary, as the number of executed
macrotasks is 1,382 in Table 3, the dynamic scheduling overhead
is reduced by static data structure. In the case of JVM execu-
tion with Hotspot optimization in Fig. 10, the speed-up ratio of
the proposed parallel Java code on eight threads can achieve 5.99
times versus one thread execution (i.e., 5.48 times speed-up ver-

c© 2014 Information Processing Society of Japan 62



IPSJ Transactions on Advanced Computing Systems Vol.7 No.4 56–66 (Dec. 2014)

Fig. 11 Integral program in layer-unified coarse grain task parallel process-
ing on Xeon E5-2660 without Hotspot optimization.

Fig. 12 Integral program in layer-unified coarse grain task parallel process-
ing on Xeon E5-2660 with Hotspot optimization.

sus sequential execution).
Next, the Integral program with trapezoidal rule that solves Pi

is categorized in Table 3. The length of the source code is 27
lines, and this program computes the definite integral of the func-
tion 4/(1 + x2) from x = 0 to 1. The number of divisions of the
integration interval is 50 million. The parallel execution results
on JVM of Xeon E5-2660 are shown in Fig. 11 and Fig. 12.

As can be seen from Fig. 11, layer-unified coarse grain task
parallel processing on eight threads can achieve 7.88 times faster
speed-up versus one thread execution. Moreover, when the selec-
tive static data structure is applied, we achieved 54.21 times faster
speed-up versus one thread execution (i.e., 4.24 times speed-up
versus sequential execution). Namely, the selective static data
structure reduced execution time by 85.5% compared to ordinary
layer-unified coarse grain task parallel processing. This extreme
performance improvement mainly results from the static data
structure for shared variables among macrotasks. In this case,
the ratio of access to shared variables against all variables except
local variables is 75% as shown in Table 4 and all shared vari-
ables are managed as the static data structure. In the case of JVM
execution with Hotspot optimization in Fig. 12, the proposed par-
allel Java code can achieve 7.43 times faster speed-up versus one
thread execution (i.e., 5.86 times speed-up versus sequential exe-
cution). Since the code length of this program is short, the over-
head due to Just-In-Time compilation is small.

As a result, the parallel Java code with the selective static data
structure was confirmed to achieve good performance in the en-
vironment both without/with Hotspot optimization.

Table 5 Comparison of execution scheme for Turb3d program on Xeon E5-
2660 without Hotspot optimization.

Execution scheme 1 thread 2 threads 4 threads 8 threads

Sequential execution 195.722s — — —
Pseudo loop para. 250.360 s 142.770 s 78.939 s 45.926 s
Layer-unified para. 249.277 s 136.046 s 73.573 s 39.202 s
Improvement by — 4.94% 7.29% 17.2%

layer-unified para.

5.3 Evaluation of the Parallel Java Code to Extract Coarse
Grain Task Parallelism

This subsection presents the parallel execution results obtained
by using the Turb3d program from the SPECfp95 benchmark
suite. The original program, written in Fortran, simulates turbu-
lence by solving the Navier-Stokes equation. The program con-
sists of 21 subroutines and one main routine. The main routine is
composed of iterative loops that call appropriate subroutines by
inner conditional branches. In such a program, it is difficult for
conventional loop parallelization to utilize parallelism effectively
because this program does not have sufficient loop parallelism
(inter-iteration parallelism). In other words, such a program is
expected to improve the performance by coarse grain task paral-
lelization.

We prepared a Java-converted Turb3d program in advance by
means of f2j tool [14]. The f2j tool converts a subroutine in For-
tran to a class including a method in Java. We concatenate a set of
separate Java files into one file and append the Complex class to
it, because the f2j cannot generate a Java class that corresponds
to the Fortran COMPLEX type. After that, for a Java program
with a code length of 2,290 lines, we annotate 68 parallelization
directives and then our parallelizing compiler generates a parallel
Java code. A parallelizable loop with the parallelization directive
is decomposed into 32 partial loops, each of which is defined as
a macrotask. The code is compiled by javac and it is executed on
JVM of Xeon E5-2660.

First, we compare ordinary layer-unified coarse grain task par-
allel processing and pseudo loop parallelization in terms of par-
allel execution time. Pseudo loop parallelization is the restricted
execution mode that exploits only loop parallelism in the envi-
ronment of layer-unified coarse grain task parallel processing. As
shown in Table 5, layer-unified coarse grain task parallel process-
ing could exploit inter-macrotask parallelism in addition to loop
parallelism. Thus, it could reduce the parallel execution time
against pseudo loop parallelization by 17.2% on eight threads
(eight cores). This result indicates that layer-unified coarse grain
task parallel processing is superior to loop parallelization. Ta-
ble 5 also represents the sequential execution time without layer-
unified coarse grain task parallel processing.

Secondly, according to the increase of the number of cores, the
speed-up ratio due to layer-unified coarse grain task parallel pro-
cessing on JVM of Xeon E5-2660 is shown in Fig. 13. In the
execution on eight threads (eight cores), ordinary layer-unified
coarse grain task parallel processing with dynamic data structure
resulted in 6.36 times faster speed-up versus one thread execu-
tion. Furthermore, layer-unified coarse grain task parallel pro-
cessing with selective static data structure resulted in 7.38 times
faster speed-up versus one thread execution (i.e., 5.80 times faster

c© 2014 Information Processing Society of Japan 63



IPSJ Transactions on Advanced Computing Systems Vol.7 No.4 56–66 (Dec. 2014)

Fig. 13 Turb3d program in layer-unified coarse grain task parallel process-
ing on Xeon E5-2660 without Hotspot optimization.

Fig. 14 Turb3d program in layer-unified coarse grain task parallel process-
ing on Xeon E5-2660 with Hotspot optimization.

speed-up versus sequential execution). This execution can reduce
the parallel execution time by 13.9% compared to ordinary layer-
unified coarse grain task parallel processing.

Thirdly, in the case of JVM execution with Hotspot optimiza-
tion as shown in Fig. 14, the proposed scheme on eight threads
achieved 6.49 times faster speed-up versus one thread execu-
tion (i.e., 3.21 times faster speed-up versus sequential execution).
Note that the sequential execution time is listed in Table 3. Al-
though this speed-up ratio is suppressed by the Just-In-Time com-
pilation overhead owing to the long code of Turb3d program, the
layer-unified coarse grain task parallel processing gave us such a
speed-up.

Finally, we show the execution trace of layer-unified coarse
grain task parallel processing with selective static data structure
on eight threads (eight cores) without Hotspot optimization as
Fig. 15. The trace represents the execution of macrotasks within
the first iteration of an outermost loop whose execution time is
3.193 [s]. Here, the horizontal axis means the elapsed time; a
white part represents execution of a macrotask; a black part rep-
resents idle state of the core; the idle state of the core results
from either the synchronization wait due to inter-macrotask de-
pendence or the processing of dynamic scheduling. As you can
see from this trace, inter-macrotask parallelism is exploited suf-
ficiently and the overhead is small. Note that this trace includes
to a small degree the overhead to measure the start time and the
finish time of each macrotask.

As a result, layer-unified coarse grain task parallel process-
ing using the proposed compiler-generated parallel Java code can
utilize enough coarse grain parallelism in addition to loop paral-

Fig. 15 Partial execution trace of Turb3d program with selective static data
structure by eight threads on Xeon E5-2660 without Hotspot opti-
mization.

Fig. 16 Crypt program in layer-unified coarse grain task parallel processing
on Xeon E5-2660 with Hotspot optimization.

lelism. Furthermore, the adoption of selective static data structure
could reduce data access overhead remarkably. Therefore, the ef-
fectiveness of the proposed scheme was confirmed.

5.4 Evaluation Using Java Grande Forum Benchmark
This section presents the parallel execution results obtained by

using the Crypt program and the MolDyn program from the Java
grande forum benchmark suite version 2.0 [15] as shown in Ta-
ble 3.

First, the Crypt program performs IDEA (International Data
Encryption Algorithm) encryption and decryption on an array of
N bytes. In this evaluation, we use the class C (large data set,
N = 50,000,000). For this program, we apply program restruc-
turing methods [1] such as the inline expansion and the constant
propagation; we merged several program files into a Java file.
After that, we inserted four parallelization directives, where the
number of loop decomposition is 16.

As shown in Fig. 16, in ordinary layer-unified coarse grain task
parallel processing with dynamic data structure on eight threads
(eight cores) with Hotspot optimization, the execution time is
6.52 times faster than ordinary one thread execution with dy-
namic data structure. Additionally, when the selective static data
structure is applied, the execution time is 6.54 times faster than
one thread execution (i.e., 5.18 times faster than sequential exe-
cution). The effect of the selective static data structure is small.
This slight improvement is performed by the reduction of the dy-
namic scheduling overhead due to static data structure, because

c© 2014 Information Processing Society of Japan 64



IPSJ Transactions on Advanced Computing Systems Vol.7 No.4 56–66 (Dec. 2014)

Fig. 17 MolDyn program in layer-unified coarse grain task parallel process-
ing on Xeon E5-2660 with Hotspot optimization.

this program has no access to shared variables as shown in Ta-
ble 4.

Secondly, the MolDyn program is an N-body code modeling
particles interacting under a Lennard-Jones potential in a cubic
spatial volume with periodic boundary conditions. The number
of particles is given by N. In this evaluation, we use the class
B (large data set, N = 8,788). For this program, we apply pro-
gram restructuring methods such as the node splitting, the scalar
expansion, the loop distribution and the constant propagation; we
merged several program files into a Java file. After that, we in-
serted four parallelization directives, where the number of loop
decomposition is 26.

As shown in Fig. 17, in ordinary layer-unified coarse grain task
parallel processing with dynamic data structure on eight threads
(eight cores) with Hotspot optimization, the execution time is
5.89 times faster than ordinary one thread execution with dy-
namic data structure. Additionally, when the selective static data
structure is applied, the execution time is 6.15 times faster than
one thread execution (i.e., 6.00 times faster than sequential execu-
tion). The improvement due to the selective static data structure
is performed by the reduction of dynamic scheduling overhead
whose target macrotask’s number is shown in Table 3, because
this program has little access to shared variables as shown in Ta-
ble 4.

6. Related works

With respect to parallelization for Java programs, several re-
searchers have proposed various ideas. Javar [16] is a restruc-
turing compiler for loops and multi-way recursive methods. A
transformation technique to eliminate data dependence caused by
the container is proposed for general-purpose Java programs [17].
Jrpm [18] uses parallelism among threads by means of run-time
support. zJava [19] combines compile time analysis with run time
support to extract parallelism among methods. Parallel Java [20]
provides the same capabilities as OpenMP/MPI in a pure Java
API. HPJava [21] uses an array distribution such as High Per-
formance Fortran (HPF). MPJ Express [22] implements Message
Passing Interface (MPI)-like bindings for Java languages.

Habanero-Java [12] is an extension such as complex-number-
type to the original Java-based definition of the X10 language for
scientific computing. The X10 language focuses on PGAS (Par-
titioned Global Address Space) with asynchrony and introduces

places corresponding to processors [23]. In the description of
a parallel program, the map function for arrays and the async
statement to manage activities like threads are used. In such de-
notations, it is difficult to express inter-task parallelism among
program’s layers (e.g., nested levels, method invocation levels).
On the other hand, our approach can easily extract inter-task par-
allelism among program’s layers by putting the parallelization di-
rective /*mt*/ into a program and generating the parallel Java
code automatically.

7. Conclusions

This paper has proposed a scheme of parallel Java code gen-
eration to realize layer-unified coarse grain task parallel process-
ing. Additionally, the selective static data structure was adopted
into the parallel Java code. The proposed scheme has been im-
plemented as a prototype parallelizing compiler. This compiler
could treat a Java program with parallelization directives as a
source program and could generate a platform-independent par-
allel Java code automatically.

According to performance evaluation on eight cores of Xeon
E5-2660, the parallel Java code could perform layer-unified
coarse grain task parallel processing effectively. The parallel Java
code for the Jacobi program achieved 7.82 times faster speed-up
versus one thread execution. In the case of Java grande forum
benchmark, the Crypt program achieved 6.54 times faster speed-
up and the MolDyn program achieved 6.15 times faster speed-up.
Therefore, the effectiveness of parallel Java code generation for
layer-unified coarse grain task parallel processing was confirmed.

Acknowledgments The authors would like to express their
gratitude to Prof. Hironori Kasahara of Waseda University for
his valuable advice to this paper.

References

[1] Wolfe, M.: High performance compilers for parallel computing,
Addison-Wesley Publishing Company (1996).

[2] Eigenmann, R., Hoeflinger, J. and Padua, D.: On the automatic par-
allelization of the Perfect benchmarks, IEEE Trans. Parallel and Dis-
tributed System, Vol.9, No.1, pp.5–23 (1998).

[3] Kasahara, H., Obata, M. and Ishizaka, K.: Automatic coarse grain
task parallel processing on SMP using OpenMP, Proc. 13th Interna-
tional Workshop on Languages and Compilers for Parallel Computing
(2000).

[4] Mase, M., Onozaki, Y., Kimura, K. and Kasahara, H.: Parallelizable C
and Its Performance on Low Power High Performance Multicore Pro-
cessors, Proc. 15th Workshop on Compilers for Parallel Computing
(2010).

[5] Yoshida, A.: An Overlapping Task Assignment Scheme for Hierarchi-
cal Coarse Grain Task Parallel Processing, Journal Concurrency and
Computation: Practice and Experience, Vol.18, No.11, pp.1335–1351
(2006).

[6] Thies, W., Chandrasekhar, V. and Amarasinghe, S.: A Practical
Approach to Exploiting Coarse-Grained Pipeline Parallelism in C
Programs, Proc. IEEE/ACM Int. Symposium on Microarchitecture,
pp.356–368 (2007).

[7] Martorell, X., Ayguade, E., Navarro, N., Corbalan, J., Gonzalez, M.
and Labarta, J.: Thread Fork/Join techniques for multi-level paral-
lelism exploitation in NUMA multi-processors, Proc. Int. Conference
on Supercomputing, pp.294–301 (1999).

[8] Brownhill, C.J., Nicolau, A., Novack, S. and Polychronopoulos, C.D.:
Achieving multi-level parallellization, Proc. ISHPC’97, pp.183–194
(1997).

[9] Hayashi, A., Shimaoka, M., Mikami, H., Mase, M., Wada, Y., Shirako,
J., Kimura, K. and Kasahara, H.: OSCAR Parallelizing Compiler and
API for Real-time Low Power Heterogeneous Multicores, Proc. 16th
Workshop on Compilers for Parallel Computing (CPC 2012) (2012).

[10] Yoshida, A.: Layer-unified Execution Control Scheme for Coarse

c© 2014 Information Processing Society of Japan 65



IPSJ Transactions on Advanced Computing Systems Vol.7 No.4 56–66 (Dec. 2014)

Grain Task Parallel Processing, IPSJ Journal, Vol.45, No.12,
pp.2732–2740 (2004).

[11] Taboada, G.L., Ramos, S., Expósito, R.R., Touriño, J. and Doallo, R.:
Java in the HIgh Performance Computing Arena: Research, Practice
and Experience, Science of Computer Programming, Vol.78, No.5,
pp.425–444 (2011).

[12] Cave, V., Zhao, J., Shirako, J. and Sarkar, V.: Habanero-Java: The
New Adventures of Old X10, Proc. Int. Conference on the Principles
and Practice of Programming in Java (2011).

[13] Kasahara, H., Obata, M. and Ishizaka, K.: Coarse Grain Task Parallel
Processing on a Shared Memory Multiprocessor System, IPSJ Jour-
nal, Vol.42, No.4, pp.910–920 (2001).

[14] Seymour, K. and Dongarra, J.: User’s Guide to f2j Version 0.8 (2007),
Innovative Computing Lab., Dept. Computer Science, Univ. Ten-
nessee.

[15] EPCC: The Java Grande Forum Benchmark Suite (2014), available
from 〈http://www2.epcc.ed.ac.uk/computing/research activities/
java grande/〉.

[16] Bik, A.J.C. and Gannon, D.B.: Javar a prototype Java restructur-
ing compiler, Concurrency: Practice and Experience, Vol.9, No.11,
pp.1181–1191 (1997).

[17] Wu, P. and Padua, D.: Container on the Parallelization of General-
Purpose Java Programs, Int. J. Parallel Programming, Vol.28, No.6,
pp.589–605 (2000).

[18] Chen, M.K. and Olukotun, K.: The Jrpm System for Dynamically Par-
allelizing Java Programs, Proc. ISCA-30, pp.434–446 (2003).

[19] Chan, B. and Abdelrahman, T.S.: Run-Time Support for the Auto-
matic Parallelization of Java Programs, J. Supercomputing, Vol.28,
pp.91–117 (2004).

[20] Kaminsky, A.: Parallel Java: A Unified API for Shared Memory and
Cluster Parallel Programming in 100% Java, Proc. IEEE Int. Parallel
and Distributed Processing Symposium (2007).

[21] Lim, S.B., Lee, H., Carpenter, B. and Fox, G.: Runtime support for
scalable programming in Java, J. Supercomputing, Vol.43, pp.165–182
(2008).

[22] Shafi, A., Manzoor, J., Carpenter, B. and Baker, M.: Multicore-
enabling the MPJ EXpress Messaging Library, Proc. Int. Conference
on the Principles and Practice of Programming in Java (2010).

[23] Saraswat, V., Bloom, B., Peshansky, I., Tardieu, O. and Grove,
D.: X10 Language Specification Version 2.4 (2014), available from
〈http://x10.sourceforge.net/documentation/languagespec/
x10-243.pdf〉.

Akimasa Yoshida received his B.E.,
M.E. and Dr. Eng. degrees from Waseda
University in 1991, 1993 and 1996, re-
spectively. He became a JSPS research
fellow (DC1) in 1993, a research associate
at Waseda University in 1995, an assistant
professor at Toho University in 1997, and
an associate professor at Toho University

in 2004. He has been engaged as an associate professor at
Meiji University since 2013. He joined the green computing
system research organization as a visiting associate professor
at Waseda University in 2014. His research interests include
parallel computing, parallelizing compiler and parallelization of
application. He is a member of IEICE, IEEJ, IEEE and ACM.

Yuki Ochi received his B.S. and M.S. de-
grees from Toho University in 2012 and
2014, respectively. His research interest
is parallel computing on multicore proces-
sors.

Nagatsugu Yamanouchi received his
B.E. and M.E. degrees from the Uni-
versity of Tokyo in 1975 and 1977,
respectively. He attended the Graduate
School of Stanford University from 1978
to 1984. He joined IBM Tokyo Research
Laboratory in 1984. He received Dr. Eng.
degree from the University of Tokyo. He

moved to Toho University in 2000 as an associate professor,
and has been a professor since 2004. His research interests
include parallel and distributed computing, computer network,
and application of information processing. He is a member of
ACM, IEEE, and JSSST.

c© 2014 Information Processing Society of Japan 66


