
IPSJ SIG Technical Report

Error Correction Using Long Context Match for
Smartphone Speech Recognition

Yuan Liang1,a) Koji Iwano2 Koichi Shinoda1

Abstract: Correcting speech recognition errors on a smartphone is a challenging task that requires a lot of user effort.
To reduce this user effort, we previously proposed an error correction method based on Long Context Match (LCM)
with higher-order N-grams, which we combined with a simple gesture-based user interface. However, LCM was used
when there was only one substitution error exists in an utterance. In this paper, we extended LCM to be used when the
contexts of the error region contain errors. We examined the error regions which contain only one error and confirmed
the effectiveness of the extended LCM-based method.

Keywords: speech recognition, error correction interface, Web n-gram, candidate list, context

1. Introduction
In recent years, speech input interfaces have become popular

in smartphone applications (e.g.,[1]). In these interfaces, speech
recognition errors are unavoidable. When high quality transcrip-
tions are needed, such as in e-mail applications, users are required
to verify the ASR output and correct errors, this process is time-
consuming. Therefore, simpler user interface and more efficient
error correction methods have been strongly demanded.

Most error correction interfaces utilize a word confusion net-
work (WCN) [2] to provide a candidate list for an error word
[3], [4]. Some studies utilized a two pass approach where ex-
ternal resources, such as Web corpora, are used to increase the
hit rate in the candidate list, and demonstrated its effectiveness in
some search applications (e.g., [5]). Nevertheless, their perfor-
mance is still insufficient for our application, error correction for
dictation applications on smartphone.

One solution to solve this problem is to provide users a spe-
cific interface for error correction and to use the user validated
context which is generated during user system interaction in error
correction procedure. Rodriguez et.al. [6] proposed a computer-
assisted speech transcription system, in which every time a user
corrects a word, the correction is immediately taken into account
to re-evaluate the transcription of the succeeding words of the
corrected word. They assumed that, when a user corrects an error
word, all the preceding words and the corrected word are correct.
They called this information user validated prefix. In our previ-
ous work [7], we proposed an error correction method based on
Long Context Match (LCM). In LCM, we utilized not only user
validated prefix, but also user validated suffix. We also designed
a new simple gesture based interface to realize this method. But
it was evaluated only when one substitution error exist in an utter-

1 Tokyo Institute of Technology
2 Tokyo City University
a) yuan@ks.cs.titech.ac.jp

ance. In our previous work [8], we extended LCM based method
to be used in more general situations, when the preceding words
and the succeeding words contain errors. It corrects not only sub-
stitution errors, but also deletion errors and insertion errors.

Compared to our previous work [8], in this paper, we explain
the user system interaction procedure and theoretical basis more
in detail, and also add a detailed analysis of the performance of
our LCM based method in the situation when the preceding words
and the succeeding words do not contain errors.

2. Interface
For each user utterance our interface first displays the 1-best

hypothesis. We choose three simple one-stroke gestures in order
to minimize user effort. Finger gesture “underlines” are used to
mark substitution errors, “strikethroughs” are used to mark inser-
tion errors, and “vertical lines” are used to mark deletion errors
(Fig. 1). Fig. 2 shows, when an error region contains more than
one error word, we ask users to mark the errors using our pro-
posed three gestures based on the types of errors, so for each er-
ror region the number of correct words equals to the number of
“underlines” plus the number of “vertical lines”.

Fig. 3 shows an example of an error correction procedure. For
each error region, the system substitutes the misrecognized words
with top 1 candidate, and also shows a 5-best candidate list un-
der the error region. For the errors that cannot be automatically
corrected by top 1 candidate or cannot be corrected by choos-
ing from a candidate list, a user can push the “Switch” button
(Fig. 4) to edit them by virtual keyboard [3], [9], handwriting [9],
or autocomplete [3]. Insertion errors can be ignored in this study,
because we assume users could directly delete them by using ges-
ture “strikethrough”.

3. Overview of the user system interaction
Fig. 5 presents an overview of the user system interaction. The

system processes user’s speech and displays the text. If the user

c© 2014 Information Processing Society of Japan 1

Vol.2014-SLP-104 No.22
2014/12/16

IPSJ SIG Technical Report

User pushes the “Start”
button and speaks

User System

User marks the
error regions

Does user find errors?

Yes

User chooses correct words
from the candidate list or

pushes the “Switch” button,
and edits words by another

modality

User finishes operation

No

System processes user’s speech
and displays the text

System changes the
misrecognized words with top 1
candidate, and shows a 5-best

candidates list

For each error region the system
applies LCM based error

correction

User pushes the
“End” button

Fig. 5 Overview of the user system interaction.

Fig. 1 Gestures for correcting errors.

Fig. 2 When an error region contains multiple errors.

finds any errors, he/she starts marking and correcting them. After
marking all error regions, the user pushes the “End” button. For
each error region, the system extracts its prefix and suffix, and ap-
plies LCM based error correction. Then the system substitutes the
misrecognized words with the top 1 candidate, and shows a 5-best
candidate list. If the top 1 candidate is correct, the user does not
need to do anything. Otherwise the user either chooses the cor-
rect words from the candidate list or pushes the “Switch” button,
and edits the words by keyboard, handwriting, or autocomplete.
Section 3 and Section 4 explain the detail of LCM process.

Fig. 3 Error correctin procedure for correcting a deletion error, a substitu-
tion error and an insertion error.

S E Start End

Switch Undo

Fig. 4 Buttons.

4. LCM based error correction
We have already proposed an error correction method using

long context match (LCM) in [7]. The idea was to use not only
the user validated preceding words, but also the user validated
succeeding words, of the error region to generate the most prob-
able candidate We in the set of all candidate words WE for each
error region.

c© 2014 Information Processing Society of Japan 2

Vol.2014-SLP-104 No.22
2014/12/16

IPSJ SIG Technical Report

4.1 Theoretical basis
Let

W = w1, ..., w j−1︸ ︷︷ ︸
Wp

, w j, w j+1, ..., wk︸ ︷︷ ︸
We

, wk+1, ..., wT︸ ︷︷ ︸
Ws

,

where W means the set of all possible word sequences corre-
sponding to the sequence X of acoustic observations, and T
means the number of words in the word sequences. In our case,
W is divided into three fragments: a prefix Wp, an error region
We, and a suffix Ws. Wp contains user validated context Wcp, and
Ws contains user validated context Wcs. Wc is the user validated
preceeding and succeeding words, which is an integration of Wcp

and Wcs.
We search for the We which has the largest probability given

the acoustic features X and the user validated context Wc:

Ŵe = arg max
WE

P(We|X,Wc)

= arg max
WE

P(X|We,Wc)P(We|Wc)P(Wc). (1)

In order to solve Eq. (1), the signal X can be split into three
fragments Xp, Xe, Xs, considering the boundary of the fragment is
known. We rewrite equation (1) as:

Ŵe = arg max
WE

P(Xp, Xe, Xs|Wcp,We,Wcs)P(We|Wc)P(Wc)

= arg max
WE

P(Xp, Xe, Xs|Wcp,We,Wcs)P(We|Wc) (2)

We can make an assumption that the probability of Xp given
Wcp does not depend on the error region and suffix, the probabil-
ity of Xe given We does not depend on the prefix and suffix, and
the probability of Xs given Wcs does not depend on the prefix and
error region. We rewirte equation (2) as:

Ŵe = arg max
WE

P(Xp|Wcp)P(Xe|We)P(Xs|Wcs)P(We|Wc)

= arg max
WE

P(Xe|We)P(We|Wc)

= arg max
WE

P(Xe|We)P(We|Wc)α, (3)

where we introduce a language model (LM) weight α between the
acoustic model (AM) and the language model (LM).

4.2 Algorithms
We used high-order n-grams; the largest n is 7. Our target is

to find word sequences which match to the search queries with
candidate words, except the error word itself. Search queries are
made up by user validated prefix and suffix. The number of pre-
ceding and succeeding words of the error region determines the
longest length of queries, and also determines the number of pos-
sible queries we could use in each n-gram. A backoff search al-
gorithm starts from the longest query with length “n” until length
“2”. We search the n-length word sequences which match to all
the possible queries in n-grams. If we can’t find any candidate,
we search again using (n-1)-length queries in (n-1)-grams. We
continue this process until we find at least one candidate in the
current n-gram.

When we get at least one candidate word from n-grams in a
certain n, we stop search. If there is only one candidate, the sys-
tem directly outputs it. Otherwise, the system calculates the LM
and AM score of each candidate word as follows.

The LM score of candidates can be estimated from their counts
in the n-grams, which is equal to the counts of that word sequence
divided by the total number of counts of all the matched word se-
quences. For candidates we get from different queries, we set
them equal weight. Let We be any candidate word or candidate
sequence obtained from the n-grams data, Wc be the context of
the error region, Count(Wc, We) be the number of occurrences
of (Wc, We) in the n-grams data, Count(Wc) be the total number
of occurrences of all the matched word sequences, and M be the
number of candidates obtained from the n-grams data.

Count(Wc) =

M∑
e=1

Count(Wc,We). (4)

We can estimate the LM probability of each candidate as:

P(We|Wc) =
Count(Wc,We)

Count(Wc)
. (5)

We also calculate the AM probability of each candidate word,
P(Xe|We), by using the speech features of the error region to de-
code only on the error region whose time boundary information
has already given. Finally, we calculate the weighted sum of LM
and AM scores for each candidate word, and rank all the candi-
date words based on their combined LM and AM scores.

5. Generalized LCM based error correction
In our paper [7], the LCM based method was evaluated only in

the ideal situation, where there is only one substitution error ex-
ist in each test utterance. In our previous study [8], we extended
the LCM based method to a more general situation, where the
preceding words or the succeeding words contain multiple errors,
and each error region may contain more than one error words.
Also, the extended method [8] can deal with not only substitu-
tion but also deletion errors by implementing the following “Error
type dependent error correction method”.

5.1 Make search queries in general situation
The difference of the general situation from the ideal situation

is that the words around the error region contain at least one er-
ror. By using regular expressions, a wildcard word “.*” is used
to represent any word. If one ASR output utterance contains 9
words, the number 2, 3, 5, 6 word corresponds to four substitu-
tion errors. Number 2 and 3 errors are in one error region (Region
1), number 5 and 6 errors are in one error region (Region 2). For
Region 2, the longest length of queries is 7, the shortest length of
queries is 3, and the possible queries we could use in each n-gram
as shown in Table 1. Here “w∗” is any candidate word, and “wn”
is the number n word in this utterance.

5.2 Error type dependent error correction
Fig. 6 shows the outline of the error type dependent LCM based

error correction method.
For both substitution errors and deletion errors, the ways of

c© 2014 Information Processing Society of Japan 3

Vol.2014-SLP-104 No.22
2014/12/16

IPSJ SIG Technical Report

For each candidate word,
calculate AM and LM scores

Rank candidates

Output the
predefined word as

top 1 candidate

Yes

No Make search queries and do
backoff search

Check is it only
one candidate?

No

Output candidates

Check whether the
context of the error

region matches rules

Yes

Check the error type
based on user’s

gesture

Substitution Deletion

Extract prefix and suffix of an error region

Fig. 6 The outline of the error type dependent error correction for one error region.

Table 1 All the possible search queries in each n-gram.

w1, w2, w3, w4,

Region 2︷︸︸︷
w5, w6 , w7, w8, w9

7-gram w1, .∗, .∗, w4,w∗, w∗, w7
.∗, .∗, w4,w∗, w∗, w7, w8
.∗, w4,w∗, w∗, w7, w8, w9

6-gram w1, .∗, .∗, w4,w∗, w∗
.∗, .∗, w4,w∗, w∗, w7
.∗, w4,w∗, w∗, w7, w8
w4,w∗, w∗, w7, w8, w9

5-gram .∗, .∗, w4,w∗, w∗
.∗, w4,w∗, w∗, w7
w4,w∗, w∗, w7, w8

w∗, w∗, w7, w8, w9

4-gram .∗, w4,w∗, w∗
w4,w∗, w∗, w7

w∗, w∗, w7, w8

3-gram w4,w∗, w∗
w∗, w∗, w7

calculating LM scores are the same. We use the method as in 5.1
to make queries. The backoff search and LM score calculation is
the same procedure as in Section 4.2.

For substitution errors, we follow the same procedure as in Sec-
tion 4.2 to calculate AM scores. For deletion errors, since the
time boundary information for the speech features of the deleted
words is not given, we utilize the time boundary information of
one preceding word and one succeeding word of the error region.
We decode for three words, a preceding word, a candidate of the
deleted word and a following word. Then we get the AM score
of each candidate word.

We investigated the relation between the deleted words and the
surrounding words in our preliminary experiments. We analyzed
three features: word, phoneme, and part-of-speech. We found the
relation between some deleted words and the last phoneme (and
part-of speech) of a preceding word or the first phoneme (and
part-of speech) of a succeeding word is relatively strong. For ex-
ample, if the last phoneme of the preceding word is “o” or “o:”,

and the part-of-speech of that word is a noun, 75% the deleted
word is a postpositional particle ”を /wo/”. Based on these find-
ings, we propose a language-dependent rule-based method for the
deletion error case. If there is a deletion error, the system will
firstly check the phonemes and part-of-speech of the preceding
word or the succeeding word. If this information matches our pre-
determined rules, the system will directly predict a deleted word
as top 1 candidate. At the same time, the system will also use our
LCM based method to generate a 5-best candidate list under the
error region.

6. Experiments
6.1 Experimental setup

We are working on Japanese speech recognition. We evalu-
ated the proposed method using speech data from academic and
extemporaneous lectures in the Corpus of Spontaneous Japanese
(CSJ) [10]. The number of lectures is 2701, and the total length
of the data is 530 hours. We evaluated our method by cross-
validation. We randomly divided this corpus into two sets: one
set contains 1350 lectures, and the other set contains 1351 lec-
tures. The triphone acoustic model and the trigram language
model were constructed. The T 3 decoder [11] was used for recog-
nition. The average word recognition accuracy is 65.2%. For
these two sets there are in total 1,026,543 error regions. 31.7%
error regions contain only one substitution error, 10.4% error re-
gions contain only one deletion error, 3.0% error regions contain
only one insertion error.

Among speech utterances which include more than one error
region, we randomly chose 5000 utterances which include error
regions with one substitution error, and 5000 utterances which
include error regions with one deletion error.

We used Google Japanese Web n-grams [12]. It consists of
Japanese word n-grams and their observed frequency counts gen-

c© 2014 Information Processing Society of Japan 4

Vol.2014-SLP-104 No.22
2014/12/16

IPSJ SIG Technical Report

erated from over 255 billion tokens of text. The n-grams were
extracted from publicly accessible web pages that were crawled
by Google in July 2007. This data set contains only n-grams
that appear at least 20 times in the processed utterances. Web
n-grams doesn’t provide the pronunciation for each word. For
obtaining the phone sequence of each candidate word W, we uti-
lize grapheme-to-phoneme conversion tool Chasen Morphologi-
cal Analyzer [13] to convert from Japanese characters to mono-
phones. For “In-domain” LCM, we used CSJ text data to generate
the word n-grams and their observed frequency counts. We also
evaluate the performance when using a word confusion network
(WCN) based error correction method. WCN [2] is a compact
representation of multiple aligned ASR hypotheses. It is obtained
by converting a word lattice. Each competing word in an aligned
segment has a posterior probability, which can be used as a confi-
dence score of that word, and the scores of all words in an aligned
segment are summed into one. The LCM based method utilizes
the user validated context while WCN based method doesn’t.
This fact suggests that the WCN based method and LCM based
method are complementary to each other. Motivated by this, we
combine these two methods by linear interpolation of their scores.
In order to generate the WCN based candidate list, we employed
the SRILM toolkit [14].

6.2 Experimental results
Table 2 shows the results for correcting substitution errors

when their contexts contain errors. As we can see in Table 2,
the “Web-scale LCM” got a little bit worse result than WCN.
We found the combined WCN and LCM still got better results.
We used two-fold cross-validation to estimate the interpolation
weights; 0.4 for the WCN and 0.6 for the LCM. For correcting
substitution errors we also observed the importance of the acous-
tic information of the error region, not only for out-domain data
(Web data) but also for in-domain data. So in the substitution
case among all the individual LCM based methods, “Web-scale
LCM” got best results.

Table 3 shows the results for correcting deletion errors when
their contexts contain errors. We found “In-domain LCM” ob-
tained better results than “Web-scale LCM”, and “In-domain
LCM (w/o AM)” got better results than “In-domain LCM”. Com-
pared to the substitution errors, the length of the deleted words is
relatively short, the quality of speech features of the deleted word
is relatively low, and the deleted words are more common in In-
domain data. This may be the reason why in-domain n-grams
are more efficient for our LCM based method. We also proved
the effectiveness of the rule-based method for correcting deletion
errors. By using “In-domain LCM (w/o AM) + Rule”, the error
correction rate increased to 37.7. So in the deletion case among
all the individual LCM based methods, “In-domain LCM (w/o
AM) + Rule” got best results.

Based on the results we obtained from Table 2 and Table 3, we
realized that the best method for substitution errors was “Web-
scale LCM”, and the best method for deletion errors was “In-
domain LCM (w/o AM) + Rule”. By using the combination of
the best methods, we make an error correction method based on
the “Web-scale LCM for Sub” + “In-domain LCM (w/o AM) +

Table 2 For correcting substitution errors, % occurrence of the correct word
in the N-best candidate list.

N 1 5 10
WCN 20.7 34.7 38.0
In-domain LCM (w/o AM) 8.3 18.2 21.1
In-domain LCM 16.9 22.2 23.1
Web-scale LCM (w/o AM) 8.7 18.9 23.7
Web-scale LCM 19.7 25.9 27.8
WCN + In-domain LCM 20.1 42.7 47.9
WCN + Web-scale LCM 22.8 45.5 50.8

Table 3 For correcting deletion errors, % occurrence of the correct word in
the N-best candidate list.

N 1 5 10
WCN 23.1 48.4 53.2
In-domain LCM (w/o AM) 31.9 49.0 53.4
In-domain LCM 26.0 42.1 47.8
Web-scale LCM (w/o AM) 26.6 44.4 50.0
Web-scale LCM 24.7 40.9 46.8
In-domain LCM (w/o AM) + Rule 37.7 52.7 56.4
Web-scale LCM (w/o AM) + Rule 31.6 47.1 51.8
WCN + In-domain LCM (w/o AM) 37.4 64.0 70.9
WCN + Web-scale LCM (w/o AM) 36.2 62.1 69.3
WCN + In-domain LCM (w/o AM)+ Rule 41.5 65.5 71.6
WCN + Web-scale LCM (w/o AM) + Rule 39.7 63.2 69.8

Table 4 % occurrence of the correct word in the N-best candidate list.

N 1 5 10
WCN 21.9 41.6 45.6
“Web-scale LCM for Sub” + 28.7 39.3 42.1
“In-domain LCM (w/o AM) + Rule for Del”
WCN + 32.2 55.5 61.2
“Web-scale LCM for Sub” +

“In-domain LCM (w/o AM) + Rule for Del”

Rule for Del”. The system judges the error types depending on
the user’s gestures, and chooses either “Web-scale LCM” or “In-
domain LCM (w/o AM) + Rule” according to the error types.
Table 4 shows the results of correcting not only substitution er-
rors but also deletion errors. The results in Table 4 proved the ef-
fectiveness of our error type dependent error correction method:
“Web-scale LCM for Sub” + “In-domain LCM (w/o AM) + Rule
for Del”. 28.7% of the error words were recovered by using the
top 1 candidate. We also found the combined WCN and “Web-
scale LCM for Sub” + “In-domain LCM (w/o AM) + Rule for
Del” got the best result not only in top 1 result, but also in top 5
and top 10 result.

6.3 Analysis of LCM results
In order to analyze the effect of the recognition error contained

in the context of the error region on the performance, we inves-
tigated the performance of our methods in the situation when the
context of the error region does not contain any errors. Table 5
shows the results of correcting not only substitution errors, but
also deletion errors in the situation when the context of the error
region does not contain errors.

Comparing Tables 4 and 5, we can conclude that the recog-
nition errors in the context significantly make the performance
worse; 3∼6% of performance degradation is confirmed. Thus,
we consider that it is important to propose some techniques for
avoiding this influence.

c© 2014 Information Processing Society of Japan 5

Vol.2014-SLP-104 No.22
2014/12/16

IPSJ SIG Technical Report

Table 5 In the situation when the context of the error region does not con-
tain errors, % occurrence of the correct word in the N-best candi-
date list.

N 1 5 10
WCN 26.0 47.1 51.8
“Web-scale LCM for Sub” + 33.5 42.9 45.1
“In-domain LCM (w/o AM) + Rule for Del”
WCN + 37.9 61.0 66.3
“Web-scale LCM for Sub” +

“In-domain LCM (w/o AM) + Rule for Del”

Table 6 The number of strokes users need to correct 100 error words in
different user interfaces.

Operations Conventional Our interface
interface

Mark errors 100 100
Correct Type 1 errors - 0
Correct Type 2 errors 42 25
Correct Type 3 errors ≥ 116 ≥ 86
Push the “End“ button - 1
Total ≥ 258 ≥ 212

6.4 User load analsis
We compared user load using our proposed interface based on

WCN + “Web-scale LCM for Sub” + “In-domain LCM (w/o
AM) + Rule for Del” with the conventional interface based on
WCN. Considering the small size of smartphone displays, we
limited the length of the candidate list to 5.

We divided the errors into three types: Type 1 error, which can
be automatically corrected by the top 1 candidate word; Type 2
error, which can be corrected by choosing from a 5-best candi-
date list; Type 3 error, which can be corrected through other input
modalities.

In the conventional WCN based interface, after a user marks an
error region, the system immediately provides the user a 5-best
candidate list which includes top 1 to top 5 candidates. There are
only two error types, Type 2 and Type 3. The number of opera-
tions a user needs to correct these 2 type errors are: (1) operation
for correcting one Type 2 Error; (≥ 2) operations for correcting
one Type 3 Error.

In our WCN + “Web-scale LCM for Sub” + “In-domain LCM
(w/o AM) + Rule for Del” based interface: the 5-best candidate
list includes from top 2 to top 6 candidates. The number of opera-
tions a user needs to correct these 3 type errors are: (0) operation
for correcting one Type 1 Error; (1) operation for correcting one
Type 2 Error; (≥ 2) operations for correcting one Type 3 Error.

Table 6 shows the analysis of user load (the number of
strokes/touches) for correcting 100 error words. We used the
recognition results of all the test utterances to collect the statis-
tics, not only used the test utterances which have one one error
region but also used the test utterances which have more than one
error region. In our method, we assume after a user marks 100
error words, he/she pushes the “End” button.

On average we saved users’ effort by 17.8% from the conven-
tional user interface as shown in Table 6.

7. Conclusion and future work
We have proposed a simple gesture-based error correction in-

terface based on LCM, where users mark the error word once,
and then the word will be replaced by another candidate. We

used user validated information to search n-grams for long word
sequences. The acoustic features of the error region are also uti-
lized to re-rank the candidate words for the substitution case. For
recovering deletion errors, it predicts a deleted word based on the
phonemes and the part-of-speech tags of its surrounding words.
The results proved the effectiveness of our method. The combi-
nation of WCN and LCM obtained the best results. 32.2% error
words were recovered by using top 1 result. 17.8% of user effort
was saved by using our interface rather the conventional user in-
terfaces. Based on our analysis of LCM results we found that the
recognition errors in the context significantly make the perfor-
mance worse; 3∼6% of performance degradation is confirmed.
Thus, we consider that it is important to propose some techniques
for avoiding this influence.

In the future work, we will examine the usefulness of our er-
ror correction method based on LCM in more general situations,
when the error region contains more than one error.

References
[1] Vertanen, K. and Kristensson, P. O.: Parakeet: a continuous speech

recognition system for mobile touch-screen devices, Proc. IUI, pp.
237–246 (2009).

[2] Mangu, L., Brill, E. and Stolcke, A.: Finding consensus in speech
recognition: word error minimization and other applications of con-
fusion networks, Computer Speech & Language, Vol. 14, No. 4, pp.
373–400 (2000).

[3] Sturm, J. and Boves, L.: Effective error recovery strategies for mul-
timodal form-filling applications, Speech Communication, Vol. 45,
No. 3, pp. 289–303 (2005).

[4] Ogata, J. and Goto, M.: Speech repair: quick error correction just by
using selection operation for speech input interfaces., Proc. INTER-
SPEECH, pp. 133–136 (2005).

[5] Nishizaki, H. and Sekiguchi, Y.: Word error correction of continu-
ous speech recognition using WEB documents for spoken document
indexing, Computer Processing of Oriental Languages. Beyond the
Orient: The Research Challenges Ahead, pp. 213–221 (2006).

[6] Rodrı́guez, L., Casacuberta, F. and Vidal, E.: Computer assisted tran-
scription of speech, Pattern Recognition and Image Analysis, pp. 241–
248 (2007).

[7] Liang, Y., Iwano, K. and Shinoda, K.: Simple Gesture-based Error
Correction Interface for Smartphone Speech Recognition, Proc. IN-
TERSPEECH, pp. 1194–1198 (2014).

[8] Liang, Y., Iwano, K. and Shinoda, K.: An Efficient Error Correction
Interface for Speech Recognition on Mobile Touchscreen Devices.,
Proc. SLT (2014).

[9] Shinoda, K., Watanabe, Y., Iwata, K., Liang, Y., Nakagawa, R. and
Furui, S.: Semi-synchronous speech and pen input for mobile user in-
terfaces, Speech Communication, Vol. 53, No. 3, pp. 283–291 (2011).

[10] Maekawa, K., Koiso, H., Furui, S. and Isahara, H.: Spontaneous
speech corpus of Japanese, Proc. LREC2000, Vol. 2, pp. 947–952
(2000).

[11] Dixon, P. R., Caseiro, D. A., Oonishi, T. and Furui, S.: The TITECH
large vocabulary WFST speech recognition system, Proc. ASRU, pp.
443–448 (2007).

[12] Kudo, T. and Kazawa, H.: Japanese Web N-gram Version 1, Linguistic
Data Consortium, Philadelphia (2009).

[13] Matsumoto, Y., Kitauchi, A., Yamashita, T., Hirano, Y., Matsuda, H.,
Takaoka, K. and Asahara, M.: ChaSen morphological analyzer ver-
sion 2.4.0 user’s manual. Nara Institute of Science and Technology
(2007).

[14] Stolcke, A., Zheng, J., Wang, W. and Abrash, V.: SRILM at sixteen:
Update and outlook, Proc. ASRU, p. 5 (2011).

c© 2014 Information Processing Society of Japan 6

Vol.2014-SLP-104 No.22
2014/12/16

