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This paper is to efficiently use the multi-level memory system for stencil computation to enable Tera-Scale computation by 
single GPU. We build a performance model to explain the relationship between different memories and propose a new algorithm 
to reduce the communication cost between memories and efficiently use the capacity of memories. We evaluated 7 point stencil 
computation on the multi-level memory system which includes GPU memory, CPU memory and SSD. The evaluation on the real 
system shows that our algorithm enables the computation on the 23 times bigger domain than GPU memory capacity as well as 
achieves 5.5 times higher performance than other optimization methods. 

 
 

1. Introduction  

In many supercomputer systems, it uses multi-level 
memories to efficiently use the memory space to contain 
and compute big size simulations. For example, each node 
of TSUBAME2.5 has Graphic Processing Unit (GPU) 
memory, CPU memory and Solid State Disk (SSD) in 
TSUBAME2.5. In some nodes of TSUBAME2.5, the GPU 
memory size is 6GB, CPU memory size is 96GB and SSD 
size is 128GB [14]. GPU has been proved to achieve high 
performance in some applications like stencil computation. 
To get a high performance in GPU based supercomputers, 
common way sends data to GPU side to compute. GPU 
memory should contain the whole data during the 
computation which limits the size of applications that can 
be computed by GPU in common way case. As the 
capacity of CPU memory or SSD is much bigger than that 
of GPU memory, common way cannot efficiently use the 
memory space.  

This paper uses stencil computation as an application 
study case. Stencil computation is one of the base kernels 
in many scientific and engineering simulations [1]-[3]. 
When using stencil computation in those simulations, the 
computation of each point depends on the value of nearby 
points at each time step. Then, it updates the whole 
domain for multiple time steps. In some stencil based 
simulations, it needs to compute bigger domains. Bigger 
domain means bigger computational area or higher 
accuracy which is important to simulations like weather 
forecast.  

In 2-level memory system which includes GPU and 
CPU memory, there are many methods to efficiently use 
CPU and GPU memory to compute big domain of 
simulations. The first one is naive method [4]. It separates 
the domain into sub-domains. Then, it copies each of them 
to GPU side to compute and copy the result back to CPU 
side. In stencil case, the sub-domain that can be computed 
at next time step become smaller as there is data 
dependence between neighbor points. Because of the data 
dependence, naive method causes frequent communication 
problem if it wants to get correct result of each 
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sub-domain. So, Temporal blocking method [5]-[10] 
copies bigger initial which is bigger than the original 
sub-domain to GPU side. So, it can compute more time 
steps on the GPU side while getting the correct result of 
each sub-domain. As it needs to copy and compute bigger 
initial, it may cause redundant communication or 
computation cost. 

There is further optimization method for temporal 
blocking method which is called TBM method [11]-[12] in 
2-level memory system. It saves some result on the GPU 
side when computing current sub-domain. Then, it reuses 
that result when computing next sub-domain to solve 
redundancy problem of temporal blocking method.   

In this paper, we propose the optimization methods that 
efficiently use 3-level memory system to compute big 
domain while maintaining high performance in stencil 
case. We first evaluate our methods on single node of 
TSUBAME2.5. To compute bigger domains, we evaluate 
the optimization method on the other 3-level memory 
system which has bigger size SSD to evaluate performance 
in stencil case. The result shows that our optimization 
method can compute 23 times bigger domain than the 
GPU memory capacity, and achieve 5.5 times higher 
performance in 7 point case than other optimization 
methods. 

2. Background 
In this section, we introduce some backgrounds for 

further explanation.  

2.1 Stencil computation 
Stencil computation is widely applied in scientific and 

engineering simulations. When it computes each point of 
the domain, it needs the value of nearby points. We give 
7-point stencil example. When computing each point in 7 
point stencil case, it needs the value of itself and nearby 6 
points. Then, it updates each point of the domain to 
continue the computation. At next time step, each point of 
the domain also needs the value of itself and nearby 6 
points. If any of the 7 point has not been updated, it cannot 
compute the point for next time step.  
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Fig.1. 7 point stencil. 

To efficiently compute the domain on GPU side, it uses 
double buffering method [2] to read initial and save result 
of the domain. 

 

Fig.2. Double buffering method 

It allocates two grids on the GPU side. One grid read 
initial of the domain while the other one save the result of 
the domain. Then, it swaps the two grids to continue the 
computation. As double buffering method uses two grids, 
it consumes two times space on GPU side. To simplify the 
explanation, we will not identify which grid contains the 
domain. If the domain is divided into sub-domains, each 
point of the boundary needs adjacent points which may 
belong to the other sub-domains. We call these adjacent 
points on the other sub-domains as ghost boundary [11].  

2.2 GPU and CUDA program model 
Graphics Processing Units for general-purpose 

computation (GPGPU) is proved to be a high-performance 
computing device to accelerate a wide variety of scientific 
and engineering applications [4], [6], [11], [17]-[18]. In 
November 2006, NVIDIA introduced CUDA ™ [13], a 
general purpose parallel computing architecture – with a 
new parallel programming model and instruction set 
architecture – that leverages the parallel compute engine in 
NVIDIA GPUs to solve many complex computational 
problems in a more efficient way than on a CPU [13]. 
CUDA comes with a software environment that allows 
developers to use C as a high-level programming language. 
Other languages or application programming interfaces are 
supported, such as CUDA FORTRAN, OpenCL, and 
DirectCompute. 

2D spatial blocking [2], [11] is an efficient way to 
perform stencil computation by GPU kernel. Since the 
computation involves a large number of memory accesses, 
it should reduce access to the global memory. Thus, it 
should efficiently reuse the data on registers. Moreover, it 
should invoke sufficiently larger number of threads than 
that of physical CUDA cores in order to hide latency of 
memory accesses. 

 

Fig.3. 2D spatial blocking method by GPU kernel 

To fulfill those requirements, it designed a kernel 
function that calculates the points of a computational 
domain (Dx, Dy, Dz) for a single time step. The kernel 
function is invoked on a GPU with (Dx/Bx, Dy/By) blocks, 
each of which has (Bx, By) threads. Bx×By should no 
more than the number of threads that a single block can 
contain. It is better to set Bx more than By to improve data 
locality. It divides the given domain into pieces of size of 
(Bx, By, Dz) as shown in the Figure 3.  

2.3 Multi-level memory system 
In this section we introduce two systems which have 

multi-level memories. Both of them are consist of GPU 
memory, CPU memory and SSD. 

SSD HP 572071-B21*2 
(partly HP 572073-B21*2) 

Capacity 120GB(partly 240GB) 
RAID RAID 0 

Read Speed 230 MB/s, 460MB/s  
(RAID 0) 

Write Speed 180 MB/s, 
360MB/s (RAID 0) 

Table1:  SSD specification in TSUBAME thin node 

TSUBAME supercomputer [14] is developed by Global 
Scientific Information and Computing Center (GSIC) at 
Tokyo Institute of Technology.  It consists of thin, 
medium and fat computing nodes which have different 
system specifications. There are 1408 thin nodes, 24 
medium nodes and 10 fat nodes. The nodes mainly consist 
of two Intel Xeon Westreme-EP 2.9 GHz CPUs and three 
NVIDIA K20 GPUs. Each GPU of TSUBAME2.5 has 
6GB device memory. The CPU side and GPU side are 
connected by PCI-Express which bandwidth is 8GB/s. 
Table shows the SSD detail in TSUBAME thin node [14], . 
SATA is used to connect CPU and SSD in TSUBAME 
thin node. The bandwidth between CPU side and flash 
SSD is about 3GB/s, however the actual speed is limited 
by SSD, the I/O bandwidth of TSUBAME Thin node SSD 
is around 0.4GB/s,  
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Fig.4. TSUBAME2.5 architecture 

The second system also uses K20 GPU and memory 
size is 6GB. The CPU memory size is 64GB. The size of 
SSD is 1.2TB. It uses PCI-Express 2.0 x4 electrical x8 
physical to connect CPU side and GPU side, bandwidth is 
read 1.5 GB/s, write 1.3GB/s. 

 
Fig.5. Bigger SSD system 

2.4 Page Cache and Page Writeback 
Page cache is a mechanism of cache recent disk file in 

memory. The disk access is extremely lower compared to 
today’s CPU speed, even the SSD. Page cache enables 
kernel to fulfill the subsequent read request on the same 
data from memory, without repeated access to disk.  

Today’s Linux kernel supports page cache mechanism 
to burst read performance. Linux page cache is dynamic in 
size, grows larger and larger as more and more I/O 
requests are issued, consuming any free memory.  So 
more free memory means more data can be buffered and 
can achieve higher read performance. I/O operation like 
POSIX read, and read operation in mmap use page cache 
by default. 

Linux kernel has another mechanism called page 
writeback, to burst write performance. When processes 
issue a write request, kernel copies data into a buffer, and 
processes can return to computation without waiting data 
be finally write back to disk. Subsequent write will update 
the buffer, read will read from the buffer, to ensure data 
consistency. I/O operations like POSIX write and write 
operation in mmap use page writeback by default. 

3. Related works 
In this section, we introduce some related works. To 

enable computation, it initializes the domain on the bigger 
memory (like CPU memory). Then, it separates the 
domain to sub-domains and sends each sub-domain to 
smaller memory (like GPU memory) side to compute. 
Temporal blocking method is to reduce the 
communication cost between the memories (like CPU and 
GPU).  
3.1 Temporal blocking method in 2-level memory system 

Leonardo Mattes [5-6] introduces temporal blocking 
method to enable big domain computation while reducing 
the communication cost in 2-level memory system that 
includes CPU and GPU memory. His solution is to divide 
the domain into small sub-domains. Then, it copies the 
initial that is bigger than the sub-domain to GPU side. On 
the GPU side, it can compute more time steps to reduce 
the communication times between CPU and GPU. 

 
Fig.6. Temporal blocking method to reduce communication cost 

His work can avoid communication cost between CPU 
and GPU. But, his method has to send a bigger initial of 
sub-domain which causes more communication and 
computation. It is important to solve this redundancy 
problem to improve the performance. 

In Midorikawa’s work [15], he also applies temporal 
blocking method to efficiently use the CPU memory and 
SSD to enable big domain computation while reducing the 
communication cost between CPU and SSD.    

 

Fig.7. Temporal blocking method between CPU and SSD 

In his work, he uses two buffers on SSD side and 
assigns them to two block buffers on CPU side. He uses 
tree kinds of methods to enable the computation on big 
domains that are bigger than memory capacity of CPU. 
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The first method is called as swap method which allocates 
swap space to contain some part of the big domain on the 
SSD side. The second method is mmap method which 
maps sub-domain to CPU side. The third one is aio 
method which can parallel communication with 
computation. We select mmap method to implement 
optimization methods in this paper as it is easier to 
implement. 

3.2 Optimization methods in 2-level memory system 
To solve the redundancy problem of temporal blocking 

method, Jin [11-12] proposes optimization methods for 
temporal blocking method. The main idea of this method 
is to save some XY-planes of current sub-domain and 
reuse the XY-planes when computing next sub-domain. To 
simplify the explanation, it abstracts each XY-plane of the 
domain as a square in Figure 8. 

 

Fig.8. 1D-TBM method 

It uses 1D decomposition method to separates the 
domain to sub-domains. In his work, 1D-TBM method 
saves the reused XY-planes on the GPU side.  

 

Fig.9. 1D-C-ETBM method 

1D-C-ETBM method saves the reused part on the CPU 
side as Figure 9 shows. Then, it overlaps the 
communication of reused XY-planes with the computation 
of the sub-domain. It also allocates additional sub-domains 
on the GPU side to enable more temporal blocking times. 

Both of the optimization methods do not degrade 
computation accuracy as it stores some result of current 
sub-domain and reuse it when computing next sub-domain 
to solve redundancy problem. Therefore, other stencil 
forms can adopt this method. It only copies un-overlapped 
XY-planes to reduce communication cost and computes 
only un-overlapped XY-planes with reused XY-planes to 
reduce computation cost. 1D-TBM consumes more space 
on GPU side and 1D-C-ETBM methods consumes more 
space on CPU side. 

4. Supporting large domain for 3-level 
memories 

In this chapter, we introduce how to enable big domain 
computation on 3-level memory system for stencil 
computation, and we introduce our implementation of 
proposal system. 

4.1 Decomposition methods 
To enable bigger domain computation in 3-level 

memory system than in 2-level memory system, we 
initialize the domain on the SSD which has biggest 
capacity in 3-level memory system. We use two methods 
to implement the big domain decomposition. Both of the 
methods use 1D decomposition to separate domain or 
sub-domain. 

The first decomposition method separates domain to 
sub-domains. Then, it copies sub-domain to CPU side. So, 
the CPU memory should contain the sub-domain. On the 
CPU side, it also separates sub-domain to parts and send 
each part to GPU side compute. So, the GPU memory 
should contain each part. We call this method as double 
decomposition method.  

 

Fig.10. Double decomposition method 

The second implementation method separates domain to 
sub-domains. Then, it sends each sub-domain to CPU side. 
Different from double decomposition method, we set 
sub-domain and part size are the same. So, sub-domain 
should also be contained by the GPU memory. We call 
this implementation method as single decomposition 
method.  

 

Fig.11. Single decompostion method 

We combine these 2 decomposition methods with 
1D-C-ETBM method that has been introduced in section 
3.2. We set temporal blocking times between SSD and 
CPU equals to that between CPU and GPU. We call 
1D-C-ETBM method with single or double decomposition 
methods as 1D-SC-ETBM or 1D-DC-ETBM method. 
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4.2 Performance model 
In this section, we analyze the performance model of the 

optimization methods in 3-level memory system. We set 
TBS as the temporal blocking times. By the introduction 
of section 4.1, we can get the communication of the 
optimization methods at each TBS time steps. 

 

Fig.12. Communication of the optimization methods 

We set TTBS as the execution time of TBS time steps. 
TC2G + G2C is the communication time between GPU and 
CPU. TC2S + S2C is the communication time between CPU 
and SSD. TComputation is the computation time on GPU side. 
For memory capacity, we have the formulae for 
1D-SC-ETBM and 1D-DC-ETBM as below: 

Sizeof (Domain)×2 <= SSD capacity,  
Sizeof (Sub-domain)×2 + Sizeof(Buffer) 

<= CPU memory capacity, 
Sizeof (Part)×2 <= GPU memory capacity,        (1) 

For the execution time, we can get below formula: 
TTBS = TC2S + S2C(Sub-domains)+ TC2G + G2C(Parts)  

+ Max(TComputation (Parts), TC2G + G2C(Buffer) )      (2) 

For the performance we can get below formula: 
  Performance=Computation (Parts)/TTBS            (3) 

The TC2S + S2C(Sub-domains) and TC2G + G2C(Parts) only 
depends on the size of Sub-domains and Parts. Both of 
them can be reduced as the TBS is increased. The 
communication cost between buffer and GPU depends on 
the size of reusing XY-planes at each time step. In the case 
that the computation cost of sub-domain is bigger than the 
communication cost of reusing XY-planes, the overhead 
cost of reusing XY-planes can be covered. 

4.3 Implementation 
In this section, we analyze the implementation of 

communication between SSD and GPU. As the section 4.2 
introduced, the communication time between CPU and 
GPU can be presented as TC2S + S2C(Sub-domains)+ TC2G + 

G2C(Parts). In mmap method case, we separate the whole 
domain to sub-domains and map each sub-domain to index 
on CPU side in floating computation case as below 
function shows. 

subdomain = reinterpret_cast<float*>(mmap(NULL, 
Size*sizeof(float), PROT_READ | PROT_WRITE, 
MAP_SHARED, File0, offset0)); 
Then, we send the initial from SSD to GPU and send 

result from GPU to SSD by the function of CUDA 
function as below. 

cudaMemcpy(&subdomain[…],&part[…],…); 

cudaMemcpy(&part[…],&subdomain[…],…); 

So, there is no actual code for sending data from SSD to 
CPU or from CPU to SSD. As the process of mmap 
method, as we introduced in Section 2, In Linux system, 
the file cache accelerates many accesses to files on non 
volatile storage, Read and write data can be cached in free 
memory by Linux kernel, kernel can fulfill data access 
request on these data from memory, and thus hide the low 
bandwidth of disk(Section 2.4). 

Such cache may cause data consistency problem while 
multiple machines access to a same shared storage. 
However, as our optimization methods only reads and 
writes un-overlapped sequential sub-domains on a single 
machine, there is no reading or writing of same data 
concurrently from other machines. So, there is no need to 
worry about data consistency, and reading from or writing 
to cache is correct in our optimization methods case. 

 

Fig.13. The process of the Linux cache 

The communication between GPU memory and SSD 
can partially accelerated by the cache. So, the data access 
between GPU memory and SSD only happens when the 
required data is not in the cache. So, the single 
decomposition method and double decomposition method 
have same communication cost. As it easier to implement 
single decomposition method, we choose single 
decomposition method to implement optimization methods. 
For the execution time, we can get below formula: 

TTBS = TS2G + G2S(Parts) 
+ Max(TComputation (Parts), TC2G + G2C(Buffer) )      (4) 

We can get TS2G + G2S(Parts) < TS2C+C2G+G2C+C2S(Parts) by the 
effect of page cache. As our experiment, it can speed up 2
∼ 3 times in sequential reading or writing in stencil case in 
real systems. As we introduced, there is no same reading 
or writing from different requirement at the same time. So, 
the data on the cache correctly presents the data on the 
SSD.  

5. Evaluation 

5.1 Evaluation on single node of TSUBAME2.5 
We evaluate the optimization methods on single node of 

TSUBAME2.5. The GPU memory size is 6GB; CPU 
memory size is 96GB; SSD size is 128GB. 
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Fig.14. 7-point stencil, optimization method vs existing methods 

As we can see in Figure 14, our optimization method 
has 2.2 times better performance than the existing methods. 
The optimization methods can compute 23 times bigger 
domain than the GPU memory capacity while maintaining 
high performance. 

5.2 Evaluation on bigger SSD system 
We evaluate the optimization methods on the system 

that has bigger SSD capacity. The GPU memory size is 
6GB; CPU memory size is 64GB; SSD size is 1.2TB. 

 

Fig.15. 19 point stencil, 2D-1D-TBMR vs others 

As we can see in Figure 15, our optimization method 
has 5.5 times better performance than the existing methods. 
The optimization methods can compute 186 times bigger 
domain than the GPU memory capacity and 15.6 times 
bigger domain than the CPU memory capacity while 
maintaining high performance. The performance falls as 
the domain continues to grow. As it reusing 2 XY-planes 
in 7-point stencil case, the reusing part becomes bigger as 
the domain grows. So, the overhead by the communication 
grows which cannot be covered by the computation cost. 

6. Conclusion 
In this paper, we proposed a series of new optimization 

methods which enable the computations on the domain 

that is bigger than the memory capacity of GPU and CPU 
while maintaining high performance on different GPU 
cluster. The result shows that our optimization method 
achieves 5.5 times higher performance in 7 point case than 
other optimization methods. We also confirmed the 
decomposition methods in the case of using multi-level 
memory system and introduced the implement details. 

As a future work, we will try to utilize our methods on 
multiple nodes of GPU cluster. Further research will focus 
on full utilization multi-level memory of GPU cluster and 
try to lower programming difficulty by using tools like 
Physis [16].  
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