IPSJ SIG Technical Report

Vol.2014-ARC-213 No.29
Vol.2014-HPC-147 No.29
2014/12/10

Performance Analysis of MapReduce Implementations for
High Performance Homology Search
(Unrefereed Workshop Manuscript)

CuaonE ZaaNG!"® KorcHr SHIRAHATA"

SarosHt MATSUOK A

2,b)

1,c) 2,d)

Suun Suzuki YUTAKA AKIYAMA'

1,2,e)

Abstract: Homology search to be used in emerging bioinformatics problems such as metagenomics is of increasing
importance and challenge as its application area grows more broadly while the computational complexity is increasing,
thus requiring massive parallel data processing. Earlier work by some of the authors have devised novel algorithms
such as GHOSTX, but the master-worker parallelization to enumerate and schedule for data processing was done
with a privately developed, MPI-based master-worker framework called GHOST-MP. An alternative is to utilize the
now-popular big data software substrates, such as MapReduce with abundant associated software tool-chains, but it is
not clear whether the massive resource required by metagenomic homology search would not overwhelm its known
limitations. By converting the GHOST-MP master-worker data processing pipeline to accommodate MapReduce,
and benchmarking them on a variety of high-performance MapReduce incarnations including Hadoop and Spark, we
attempt to characterize the appropriateness of MapReduce as a generic framework for metagenomics that embody
extremely resource consuming requirements for both compute and data.

1. Introduction

Homology search to be used in emerging bioinformatics prob-
lems such as metagenomics is of increasing importance and chal-
lenge as its application area grows more broadly while the com-
putational complexity is increasing. One way to cope with the
increasing complexity is to utilize massively parallel data pro-
cessing. Required dataset for metagenomic search consists of
queries and database, each of whose size will reach Gigabytes to
Terabytes, and total data size to compute will grow to product of
these two datasets (i.e. Exabytes to Zettabytes). BLAST [1], [2]
is proposed as a basis of homology search algorithms and there
have been a lot of efforts on improving the algorithm. Earlier
work by some of the authors have devised novel algorithms such
as GHOSTX [3] and extend the algorithm to distributed comput-
ing environments. Their work has demonstrated their implemen-
tation scales well on existing supercomputers including TSUB-
AME2.0 [4] and K computer [5], but the master-worker paral-
lelization to enumerate and schedule for data processing was done
with their privately developed MPI-based master-worker frame-
work called GHOST-MP.

An alternative to using GHOSTX is to utilize the now-popular

Tokyo Institute of Technology, Meguro, Tokyo 152-8552, Japan
> JST CREST

¥ zhang.c.am@m.titech.ac.jp

' koichi-s@matsulab.is.titech.ac.jp

9 suzuki@bi.cs.titech.ac.jp

9 akiyama@cs.titech.ac.jp

® matsu@is.titech.ac.jp

© 2014 Information Processing Society of Japan

big data software substrates, such as MapReduce with abundant
associated software tool-chains, but it is unclear how to apply
MapReduce to extremely large-scale homology search in an ef-
ficient way. Firstly, It is not obvious how to design and imple-
ment homology search algorithms onto the MapReduce model.
Specifically, how to handle two different dataset called queries
and database which homology search algorithms receive using
MapReduce is not straightforward. Secondly, performance char-
acteristics of MapReduce-based implementations of homology
search should be considered in order to achieve high performance
homology search.

By converting the GHOSTX master-worker data processing
pipeline to accommodate MapReduce, and benchmarking them
on a variety of high performance MapReduce incarnations in-
cluding Hadoop [6] and Spark [7], we attempt to characterize
the appropriateness of MapReduce as a generic framework for
metagenomics that embody extremely resource consuming re-
quirements for both compute and data. We consider two dif-
ferent MapReduce-based designs of homology search consider-
ing data allocation of queries and database. Then we implement
one of the designs onto Hadoop and Spark and conduct perfor-
mance analysis on real world metagenomic dataset. We also
compare our MapReduce-based implementations with GHOST-
MP, an existing distributed implementation of GHOSTX on MPI-
based master-worker framework.

Our preliminary experiments reveal that Hadoop and Spark
perform comparable with original GHOSTX and GHOST-MP.
The results show even faster using MapReduce in the case of

IPSJ SIG Technical Report

large query size. Spark with YARN performs 7.80x faster than
the original GHOSTX and Hadoop is also 6.36x faster than the
original GHOSTX. We consider the performance improvement
of Hadoop and Spark comes from the difference of allocation of
input query data. We can assign and compute multiple query files
in parallel by splitting a query file into smaller splits for Hadoop
and Spark, while we use a single query file for GHOSTX.
Here we describe a summary of contributions of our work:
e We describe MapReduce-based designs of homology search
algorithms.
e We implement a homology search algorithm using multiple
widely used MapReduce implementations.
e We show comparative performance analysis on multiple
MapReduce implementations and a MPI-based homology
search implementation.

2. Background

We introduce overview of homology search and its existing al-
gorithms. We explain required dataset, computational workflow,
as well as fast algorithms of homology search. Then we also de-
scribe overview of MapReduce and its existing implementations.

2.1 Homology Search Algorithms

Homology search or alignment search is an approach to iden-
tify genes based upon homology with genes that are already pub-
licly available in sequence databases by using a search algorithm.
Homology search is used in the field of Metagenomics, the study
of genetic material recovered directly from environmental sam-
ples for advancing knowledge in a wide variety of application do-
mains, such as medicine, engineering, agriculture, ecology. Ho-
mology search algorithms are used as tools for life science re-
searchers to gain a set of high-scoring pairs from an exhaustive
list of protein coding sequences similar to a given query sequence,
such as the amino-acid sequence of different proteins or the nu-
cleotides of DNA sequences.

BLAST (Basic Local Alignment Search Tool) [1], [2] is pro-
posed as a fast homology search algorithm and its implementation
is widely used as a standard homology search tool. BLAST ap-
plies a heuristic algorithm much faster than previous approaches
such as a full alignment procedure using the Smith-Waterman al-
gorithm [8] or FASTA [9]. Fig.1 shows an overview of BLAST
workflow. Firstly, BLAST finds seeds that are substring of
database sequences similar to the substrings of a query sequence.
Then, BLAST makes alignments by extending those seeds with-
out gaps, and then similar, nearby seeds are brought together by
a chain filter. Finally, BLAST makes alignments from seeds with
gaps.

There have been a lot of efforts for improving BLAST [10],
[11]. These efforts achieve speedup from the BLAST algorithm
by improving search algorithms. Some of the authors also make
efforts on accelerating BLAST. GHOSTX [3] adopts the seed-
extend alignment algorithm used by BLAST. GHOSTX achieved
approximately 131-165 times faster than BLAST. GHOSTX finds
seed that are highly similar segments between database sequences
and the query sequence. Next, GHOSTX obtain alignments by
extending those seeds without gaps for larger similar regions. Fi-

© 2014 Information Processing Society of Japan

Vol.2014-ARC-213 No.29
Vol.2014-HPC-147 No.29
2014/12/10

Presearch

Query

Fig. 1 Workflow of homology search

nally, GHOSTX make alignments by extending the seeds with
gaps. In order to accelerate the seed search process, GHOSTX
constructs suffix array both for the query and the database before
the search. In addition, instead of fixing the length of a seed like
BLAST, GHOSTX extends it till the matching score exceeds a
given threshold to reduce the computation time for untapped ex-
tension while not losing the sensitivity.

There exists also an extension of GHOSTX for distributed
computing environments. GHOST-MP is built on GHOSTX with
MPI library for homology search on supercomputers like K com-
puter and TSUBAME, or general PC clusters. It achieves dis-
tributed paralleling search process through a master-worker style.
In GHOST-MP’s algorithm, it accomplishes I/O optimization for
paralleled file system by utilizing locality of database chunks to
achieve high speed processing.

2.2 MapReduce and Its Implementations

MapReduce is a programming model used for large data sets
effectively through distributed algorithm across a cluster. MapRe-
duce is composed of two major functions. The Map function
takes in the input and emits key-value pairs that represent use-
ful information from the input. These key-value pairs are later
passes to reduce function to process the final results. The Reduce
function produce zero or more outputs based on the values associ-
ated with each different key. An advantage of MapReduce is that
it can handle large-scale data even when the data is larger than
host memory capacity by handling memory overflow automati-
cally. Another characteristic is that MapReduce can also handle
compute node failures by applying techniques of fault tolerance.
MapReduce is suitable for large-scale data processing and its im-
plementations are widely used.

Hadoop [6] is a now-popular open-source software framework
implemented in Java for storing and processing large data dis-
tributively on clusters. Hadoop is consisted of Hadoop Common,
Hadoop Distributed File System (HDFS), Hadoop YARN, and
Hadoop MapReduce. HDFS is a highly fault-tolerant distributed
system, designed for applications with large data sets. Hadoop
Yarn manages the compute resources in the file system and sched-
ule jobs.

IPSJ SIG Technical Report

HE B

l ! !

Vol.2014-ARC-213 No.29
Vol.2014-HPC-147 No.29
2014/12/10

\

N 1N

MAP 0 MAP 1 MAP N

“rolll - yl - v
—

Fig. 2 Design of homology search with replicated database

Spark [7] is a fast open-resource cluster computing framework
implemented in Scala, building on top of HDFS. Spark promises
performance up to 100 times faster than Hadoop MapReduce in
some certain applications. The main abstraction Spark provides
is a resilient distributed dataset (RDD), which is a collection of
elements that can be persistent in memory and operated in paral-
lel [12].

Some of the authors are also developing a MPI-based high per-
formance MapReduce implementation running on either CPUs or
GPUs [13], [14]. The implementation utilizes multiple GPUs on
a large number of nodes and has demonstrated its scalability on
the TSUBAME2.0 supercomputer. The implementation also han-
dles memory overflow from GPUs by introducing chunk-based
out-of-core GPU processing with overlapping of data transfers.

3. MapReduce-based Designs of Homology
Search

We describe how to design homology search on MapReduce.
Our main idea is to parallelize query data onto multiple Mappers.
We consider two different designs based on how to assign query
data and database onto worker nodes. On the two designs, query
data is distributed onto the worker nodes on both designs while
database allocation strategies are different. Note that we assume
computing environments equip local disk on each compute node.

3.1 MapReduce-based Design with Database Replication

We describe a design of homology search on MapReduce us-
ing database replication. Query data is distributed on worker
nodes while database is replicated among the worker nodes.
Fig. 2 describes how MapReduce works on the design. First, in-
put query data files are copied to a distributed file system (e.g.
HDFS) and the database file is replicated onto local disk on each
compute node. After putting query and database, a client sub-
mits a job with a MapReduce application binary. A homology
search application is called in map function of the MapReduce
application. After submitting the application, each Mapper runs
the homology search application with a split of query data and
whole database for each map function the Mapper calls. A Map-
per emits outputs of homology search for each query. Whole set
of results from map functions is simply the final result.

This database replication design is useful when the size of
database is small, since the result of each query is directly com-

© 2014 Information Processing Society of Japan

Mﬁ‘ 0 Mf’ 1 MAP N Mf' 0 Mf 1 MAP N
"GHosTx |1l "GHosTx N N GrosTx B GHosTX NI "GHOsTX NN GrosTx |
! ! } | } }

REDUCE 0 REDUCE 1

| |

= -

Fig. 3 Design of homology search with distributed database

puted using whole database for each query. When the whole
database can fit on local disk on each node, runtime can utilize lo-
cality of database. On the other hand, when the size of database is
large, not only it may not fit on local disks but also parallelization
efficiency may decrease because of the reduction in the locality
of the database.

3.2 MapReduce-based Design with Database Distribution

We consider another design that distributes database as well
as query data. Query data is distributed on worker nodes and
database is also distributed on the worker nodes. Fig. 3 describes
how the design works. First, input query data files are copied to
distributed file system in the same way as the database replication
design. Database is split to multiple chunks and each chunk is
distributed on each node. These chunks can be also replicated to
multiple nodes when the number of nodes is larger than the num-
ber of chunks. After putting query and database, a client submits
a job with a MapReduce application binary. While a homology
search application is called in each map function in similar way
as the database replication design, result of each map function is
different in that the result is a partial search result with a chunk of
database. The results of Mappers are passed to Reducers and the
Reducers merge the partial search results into a final search result
for each query.

An advantage of this database distribution design is that the
task granularity is smaller which can result in better paralleliza-
tion efficiency. The number of tasks (i.e. the number of map func-
tion calls) with this database distribution design is larger than the
database replication design since the database is divided to multi-
ple chunks and each chunk is assigned to a Mapper. Having large
number of tasks might not always be good; locality of database
may become worse since each map function requires a specific
chunk, which may result in multiple movements of chunks among
worker nodes.

4. Implementations of Homology Search on
MapReduce

We implement MapReduce-based homology search on exist-
ing multiple MapReduce implementations. We use GHOSTX as
a sequential implementation and extend it onto the MapReduce

IPSJ SIG Technical Report

hadoop pipes\
-D hadoop.pipes.java.recordreader=true\
-D hadoop.pipes.java.recordwriter=true\
-files [db_files]\
-input [input_dir]\
-output [output_dir]\
-inputformat WholeFileInputFormat\

-program ghostmr

Fig. 4 Calling GHOSTX from Hadoop Pipes. ghostmr is the compiled bi-
nary program incorporated original GHOSTX with a Hadoop Pipes
application.

model. We implement the database replication design described
in section 3.1 on Hadoop and Spark.

4.1 Implementation of Homology Search on Hadoop

In order to use GHOSTX on top of Hadoop, we need a way
to call C++ from Java since GHOSTX is written in C++ while
Hadoop is written in Java. There are several ways for call-
ing GHOSTX from Hadoop, including Hadoop Pipes, Hadoop
Streaming, and Java Native Interface. Hadoop Pipes is a library
that allows C++ source code to be used for Mapper and Reducer
code. Hadoop Pipes provides C++ API of map and reduce func-
tions and users write the functions in C++ according to input and
output formats provided by Hadoop. Hadoop Streaming is a more
generic API that allows programs written in any language to be
used as Mapper and Reducer implementations. While Hadoop
Pipes and Hadoop Streaming are similar in that they split the ap-
plication code into a separate process, they are different in that
Hadoop Pipes uses serialization to covert the types into bytes
that are sent to the process via socket, while Hadoop Streaming
uses Unix standard streams as the interface. Java Native Inter-
face (JNI) is a programming framework that enables Java code
running in Java Virtual Machine (JVM) to call native applica-
tions and libraries written in other language such as C++. We
select Hadoop Pipes since it provides closer interface with Java-
based Mapper and Reducer. We modify the interface of original
GHOSTX program so that Mapper can call GHOSTX program
and setting query and database files through HDFS.

In order to distribute query and database files, we use dif-
ferent approaches for each dataset. As for query files, we use
HDFS in a standard way for distributing multiple query files
onto local disks on each node. We distribute the query files
by the following command; hdfs dfs -put [query_files]
[input_dir]. On the other hand, we do not distribute but copy
the same database files onto each node since the database files
are identical among all the nodes. To do this, we use -files
option provided by Hadoop Pipes which copies specified files to
cluster. As for query files, we need to avoid splitting them since
the design of replicated database assigns one whole query file per
Mapper, and Hadoop splits input data into lines and assign each
line per map function by default. In order to disable splitting a
query file into multiple splits, we implement WholeFileInputFor-
mat for Hadoop Pipes based on [6]. We pass the customized input
format to Hadoop Pipes by using -inputformat option. We run
our GHOSTX on Hadoop by the following command described
in Fig. 4.

© 2014 Information Processing Society of Japan

Vol.2014-ARC-213 No.29
Vol.2014-HPC-147 No.29
2014/12/10

spark-submit\
--class "GhostMR"\
--master yarn-client\
--num-executors [num_nodes]\
--executor-cores [num_threads]\
--files [db_files]\
--jars lib/hadoop-mapreduce-client-core-[ver].jar\

ghostmr. jar

Fig. 5 Calling GHOSTX from Spark. ghostmr. jar is the compiled byte-
code incorporated original GHOSTX with a Spark application.

4.2 Implementation of Homology Search on Spark

As with the case of Hadoop, we need a way for calling C++
from Scala since GHOSTX is written in C++ while Spark is writ-
ten in Scala. Spark provides resilient distributed dataset (RDD)
pipe () operation, which pipes each partition of RDD through a
shell command in the same way as Unix pipe operation. RDD
pipe() operation receives RDD input and sends output through
Unix standard input and output. We apply GHOSTX to the
pipe() operation, by simply executing GHOSTX binary pro-
gram in pipe(Q).

In order to pass input files to Spark, we assign query files
through HDFS and assign database files by copying to local disks
on each node. In order to assign query files through HDFS to
Spark, we put the query files to HDFS before running the ap-
plication. We need to avoid splitting them since the Map-only
design assigns one whole query file per Mapper as with the case
of Hadoop described in section 4.1. In order to disable splitting a
query file into multiple splits, we apply WholeFileInputFormat
for Spark. We pass the customized input format to Spark by
using -jars option with the jar file including WholeFilelnput-
Format. During running the application, it reads the query files
from HDFS using SparkContext.textFile() method onto a
RDD, then the RDD passes the query files to pipe(). As for
database files, we copy them using --files option provided by
Spark similar to Hadoop. Fig.5 describes the actual command
for submitting GHOSTX on Spark.

5. Preliminary Experiments

In order to understand performance characteristics of MapRe-
duce implementations, we conduct comparative performance ex-
periments. We compare the elapsed time of homology search
using existing MapReduce implementations as well as a MPI-
based master worker implementation in order to investigate ef-
fectiveness of MapReduce-based implementation. We conduct
data size scaling using different datasets as well as scaling of
using multiple compute nodes. We use 1.1GB of query data
named SRS014107 obtained from Data Analysis and Coordi-
nation Center for Human Microbiome Project website (http:
//www.hmpdacc.org/) [15]. We use 49MB of FASTA database
named pdbaa obtained on November 4th, 2014 from The Na-
tional Center for Biotechnology Information website (http://
www.ncbi.nlm.nih.gov/) [16]. Note that we split input query
files into 10MB of smaller files before putting them to HDFS for
Hadoop and Spark, since we use WholeFileInputFormat as we
described in section 4. Note that we do not include the elapsed
time of database construction nor the time of data placement to

IPSJ SIG Technical Report

10000

5
~
-]
o
s ~~GHOSTX
s 100 ~#-GHOST-MP
c
E Hadoop
£ 10 —*Spark w/ YARN
&

1

1 10 100 1000
Query Size [MB]
Fig. 6 Performance of data size scaling on single node
10000

E 1000
Q
£ ~-GHOSTX
E
5 100 ~#-GHOST-MP
E‘ ' Hadoop
. 10 —Spark w/ YARN

1

1 10 100 1000
Query Size [MB]
Fig. 7 Elapsed time of data size scaling on single node
local disk or HDFS.

We use our multiple compute nodes cluster, in which a machine
equips one Intel(R) Core(TM) 17-3930K 3.20GHz (6 cores) CPU
running in hyper-threading mode, 48GB of main memory, 102GB
of a local SSD, and running Scientific Linux release 6.1. We
use GCC 4.4.5 for the implementations. We use Hadoop version
2.4.1, Spark version 1.1.0, GHOSTX version 1.3.4, and GHOST-
MP version 1.2.1. We use YARN scheduler on Hadoop, and use
YARN and standalone schedulers on Spark. We use OpenMP for
GHOSTX and GHOST-MP using 12 threads per node and use
SSDs for placing query data and database as well as for writ-
ing output results. We build GHOST-MP with original config-
uration, without defining CHUNK and IOMASTER parameters.
We use one worker process per node for GHOSTMP and set op-
tional parameters to be equal to that of GHOSTX. We do not ap-
ply OpenMP parallelization for Hadoop and Spark.

5.1 Data Size Scaling

First we conduct data size scaling using single node with dif-
ferent datasets. We fix the size of database to 49MB, and use dif-
ferent sizes of query data. Fig.6 shows the performance results
of data size scaling. X-axis indicates query data size and y-axis
indicates thousands of query reads per hour. Fig. 7 also shows the
elapsed time of data size scaling. X-axis indicates query data size
and y-axis indicates elapsed time of homology search. Note that
we do not show the results of Spark with standalone scheduler
since it performs similar to with YARN.

In the case of small query size, the results exhibit that the orig-
inal GHOSTX performs the fastest. GHOSTX performs 6.11x
faster than Hadoop and 3.45x faster than Spark with YARN using

© 2014 Information Processing Society of Japan

Vol.2014-ARC-213 No.29
Vol.2014-HPC-147 No.29

2014/12/10

18
_16
5
2 14
<
o 12
]
s 10 -8 GHOST-MP
E 8 < Hadoop
E 6 —*-Spark w/ YARN
2 Spark Standalone
£ 4 P
3 /

2

0

0 2 4 6 8 10

Number of Nodes

Fig.8 Peformance of weak scaling with 13MB of query per node

120

~#-GHOST-MP
Hadoop

—Spark w/ YARN
Spark Standalone

N
o

Performance [M read / hour]
B [o] 8
o o o o

o
o
N

4 6 8 10
Number of Nodes

Fig.9 Peformance of weak scaling with 130MB of query per node

1.4MB of query. We consider this performance difference derives
from the overhead of MapReduce operations such as task invoca-
tion, task allocation, and redundant I/O operations. On the other
hand, in the case of 1.1GB of query, Spark with YARN performs
the fastest, 7.80x faster than the original GHOSTX. Hadoop is
also 6.36x faster than the original GHOSTX. We consider a pos-
sibility of the faster performance on Hadoop and Spark comes
from the difference of allocation of input query data. We use a
single query file for GHOSTX, while we split the query file into
smaller splits and place them on HDFS beforehand. By splitting
the query file, we can assign and compute multiple query files
in parallel. Although GHOSTX also computes in parallel by us-
ing OpenMP, we consider the reason of performance degradation
derives from read and write operations are not parallelized. We
will further investigate the cause of the performance difference as
future work.

5.2 Weak Scaling

We also conduct weak scaling experiments using up to 8 nodes.
We fix the size of database to 49MB. Fig. 8 and Fig. 9 shows the
results of weak scaling using 13MB and 130MB of query size per
node each other. X-axis indicates the number of nodes and y-axis
indicates millions of query reads per hour.

The results indicate that all the implementations exhibit good
scalability. We consider the results comes from the facts that ho-
mology search mainly consists of computational and I/O oper-
ations as well as the application includes little communication
since computation of each query is independent of other queries.
Another possible reason is that the implementations have little
possibility to suffer load imbalance since workload we use is well

IPSJ SIG Technical Report

balanced. The results also show that MapReduce-based imple-
mentations perform faster than GHOST-MP. Hadoop performs
2.18x and 15.0x faster and Spark performs 2.36x and 17.5x faster
compared with GHOST-MP on 8 nodes using 13MB and 130MB
of query each other. We consider the speedup derives from the
performance degradation using large query size on GHOST-MP
as shown in Fig. 6.

6. Related Work

MapReduce-based bioinformatics implementations have been
studied [17], [18], [19], [20], [21], [22], [23], [24]. Their work
indicate a wide range of applications using MapReduce related
to bioinformatics as well as show high scalability on clusters
and clouds using existing MapReduce implementations such as
Hadoop. Their work focus on introducing algorithms or demon-
strating scalability on relatively small number of nodes. How-
ever, our work focus on high performance and scalable homology
search using MapReduce on large-scale computing environment
such as supercomputers and analyze high performance MapRe-
duce implementations.

K MapReduce (KMR) [25] is a MPI-based MapReduce im-
plementation for large-scale supercomputers such as K com-
puter. KMR optimizes shuffle operation by collective commu-
nication utilizing interconnect on K computer. Their work also
conducted experiments using GHOST-MP by replacing master-
worker tasking library in GHOST-MP with KMR. Although their
work achieved high communication and I/O performance on K
computer, they did not compare with other existing MapReduce
implementation. We compare multiple MapReduce implemen-
tations and investigate high performance MapReduce-based ho-
mology search.

There have been efforts on MPI-based parallelization of bioin-
formatics applications. mpiBLAST [26] is a MPI-based paral-
lelization of BLAST that achieves high scalability by optimizing
allocation of database. mpiBLAST applys database segmentation
which distributes a chunk of database to each node and let each
node searches a unique portion of database. While mpiBLAST
is high optimized for BLAST, our work focus on MapReduce-
based high performance homology search since MapReduce is
more widely used framework and can handle memory overflow
and compute node failures.

7. Conclusion

In order to understand performance characteristics of MapRe-
duce implementations, we present MapReduce-based designs and
implementations of a homology search algorithm. We con-
duct comparative performance analysis of existing widely used
MapReduce implementations as well as comparison with an ex-
isting MPI-based master-worker implementation of a homology
search algorithm. Preliminary experiments reveal that Hadoop
and Spark perform comparable with original GHOSTX and
GHOST-MP, and even perform faster with large dataset.

Future work includes implementing other MapReduce-based
homology search designs such as database distribution design
as well as homology search on other MapReduce implementa-
tions such as our MPI-based MapReduce implementation. We

© 2014 Information Processing Society of Japan

Vol.2014-ARC-213 No.29
Vol.2014-HPC-147 No.29
2014/12/10

also consider conducting further detailed performance analysis
including using larger dataset on large-scale computing environ-
ments such as TSUBAME?2.5.

Acknowledgments This research was supported by JST,
CREST (Research Area: Advanced Core Technologies for Big
Data Integration).

References

[1] Altschul, S. F, Gish, W., Miller, W., Myers, E. W. and Lipman,
D. J.: Basic local alignment search tool, Journal of molecular biol-
ogy, Vol. 215, No. 3, pp. 403-410 (1990).

[2] Altschul, S. F., Madden, T. L., Schiffer, A. A., Zhang, J., Zhang, Z.,
Miller, W. and Lipman, D. J.: Gapped BLAST and PSI-BLAST: a
new generation of protein database search programs, Nucleic acids re-
search, Vol. 25, No. 17, pp. 3389-3402 (1997).

[3] Suzuki, S., Kakuta, M., Ishida, T. and Akiyama, Y.: GHOSTX: An
improved sequence homology search algorithm using a query suffix
array and a database suffix array, PloS one, Vol. 9, No. 8, p. e103833
(2014).

[4] Matsuoka, S., Endo, T., Maruyama, N., Sato, H. and Takizawa, S.: The
Total Picture of TSUBAME2.0, Tsubame e-Science Journal, Vol. 1,
pp- 2 -4 (2010).

[5] Yamamoto, K., Uno, A., Murai, H., Tsukamoto, T., Shoji, F., Matsui,
S., Sekizawa, R., Sueyasu, F., Uchiyama, H., Okamoto, M. et al.: The
K computer Operations: Experiences and Statistics, Procedia Com-
puter Science, Vol. 29, pp. 576-585 (2014).

[6] White, T.. Hadoop: the definitive guide: the definitive guide,
O’Reilly Media, Inc.” (2009).

[7] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S. and Stoica,
I.: Spark: cluster computing with working sets, Proceedings of the
2nd USENIX conference on Hot topics in cloud computing, pp. 10-10
(2010).

[8] Smith, T. and Waterman, M.: Identification of common molecular sub-
sequences, Journal of Molecular Biology, Vol. 147, No. 1, pp. 195
— 197 (online), DOI: http://dx.doi.org/10.1016/0022-2836(81)90087-
5(1981).

9] Lipman, D. J. and Pearson, W. R.: Rapid and sensitive protein simi-
larity searches, Science, Vol. 227, No. 4693, pp. 1435-1441 (1985).

[10] Kent, W. J.: BLAT—the BLAST-like alignment tool, Genome re-
search, Vol. 12, No. 4, pp. 656—664 (2002).

[11] Ma, B., Tromp, J. and Li, M.: PatternHunter: faster and more sensitive
homology search, Bioinformatics, Vol. 18, No. 3, pp. 440-445 (2002).

[12] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley,
M., Franklin, M. J., Shenker, S. and Stoica, I.: Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster comput-
ing, Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation, USENIX Association, pp. 2-2 (2012).

[13] Shirahata, K., Sato, H., Suzumura, T. and Matsuoka, S.: A Scalable
Implementation of a MapReduce-based Graph Processing Algorithm
for Large-scale Heterogeneous Supercomputers, Proceedings of the
2013 IEEE/ACM 13th International Symposium on Cluster, Cloud and
Grid Computing, CCGrid *13, IEEE, pp. 277-284 (2013).

[14] Shirahata, K., Sato, H. and Matsuoka, S.: Out-of-core GPU Mem-
ory Management for MapReduce-based Large-scale Graph Process-
ing, Proceedings of the IEEE Cluster 2014, IEEE, pp. 277-284 (2013).

[15] Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C., Knight,
R. and Gordon, J. I.: The human microbiome project: exploring the
microbial part of ourselves in a changing world, Nature, Vol. 449,
No. 7164, p. 804 (2007).

[16] Wheeler, D. L., Barrett, T., Benson, D. A., Bryant, S. H., Canese, K.,
Chetvernin, V., Church, D. M., DiCuccio, M., Edgar, R., Federhen, S.
et al.: Database resources of the national center for biotechnology in-
formation, Nucleic acids research, Vol. 35, No. suppl 1, pp. D5-D12
(2007).

[17] Taylor, R. C.: An overview of the Hadoop/MapReduce/HBase frame-
work and its current applications in bioinformatics, BMC bioinformat-
ics, Vol. 11, No. Suppl 12, p. S1 (2010).

[18] Gaggero, M., Leo, S., Manca, S., Santoni, F., Schiaratura, O., Zanetti,
G., CRS, E. and Ricerche, S.: Parallelizing bioinformatics applica-
tions with MapReduce, Cloud Computing and Its Applications, pp.
22-23 (2008).

[19] Matsunaga, A., Tsugawa, M. and Fortes, J.: Cloudblast: Combining
mapreduce and virtualization on distributed resources for bioinformat-
ics applications, eScience, 2008. eScience’08. IEEE Fourth Interna-
tional Conference on, IEEE, pp. 222-229 (2008).

[20] Meng, Z., Li, J., Zhou, Y., Liu, Q., Liu, Y. and Cao, W.: bCloud-
BLAST: An efficient mapreduce program for bioinformatics applica-

i Vol.2014-ARC-213 No.29
IPSJ SIG Technical Report VL2014 FPC-147 No 29

2014/12/10

tions, Biomedical Engineering and Informatics (BMEI), 2011 4th In-
ternational Conference on, Vol. 4, IEEE, pp. 2072-2076 (2011).

[21] Yang, X.-1, Liu, Y.-1., Yuan, C.-f. and Huang, Y.-h.: Parallelization
of BLAST with MapReduce for long sequence alignment, Parallel
Architectures, Algorithms and Programming (PAAP), 2011 Fourth In-
ternational Symposium on, IEEE, pp. 241-246 (2011).

[22] Sunarso, F., Venugopal, S. and Lauro, F.: Scalable Protein Sequence
Similarity Search using Locality-Sensitive Hashing and MapReduce,
arXiv preprint arXiv:1310.0883 (2013).

[23] Leo, S., Santoni, F. and Zanetti, G.: Biodoop: bioinformatics on
hadoop, Parallel Processing Workshops, 2009. ICPPW’09. Interna-
tional Conference on, IEEE, pp. 415-422 (2009).

[24] Sun, M., Zhou, X., Yang, F,, Lu, K. and Dai, D.: Bwasw-Cloud: Ef-
ficient sequence alignment algorithm for two big data with MapRe-
duce, Applications of Digital Information and Web Technologies
(ICADIWT), 2014 Fifth International Conference on the, IEEE, pp.
213-218 (2014).

[25] Matsuda, M., Maruyama, N. and Takizawa, S.: K MapReduce: A
scalable tool for data-processing and search/ensemble applications
on large-scale supercomputers, Cluster Computing (CLUSTER), 2013
IEEFE International Conference on, IEEE, pp. 1-8 (2013).

[26] Darling, A., Carey, L. and Feng, W.-c.: The design, implementation,
and evaluation of mpiBLAST, Proceedings of ClusterWorld, Vol. 2003
(2003).

© 2014 Information Processing Society of Japan 7

