
IPSJ Transactions on Mathematical Modeling and Its Applications Vol.7 No.2 36–44 (Nov. 2014)

Regular Paper

A GPU Implementation of a Bit-parallel Algorithm for
Computing the Longest Common Subsequence

Katsuya Kawanami1,a) Noriyuki Fujimoto1,b)

Received: February 3, 2014, Revised: March 24, 2014,
Accepted: April 18, 2014

Abstract: The longest common subsequence (LCS) for two given strings has various applications, such as for the
comparison of deoxyribonucleic acid (DNA). In this paper, we propose a graphics processing unit (GPU) algorithm
to accelerate Hirschberg’s LCS algorithm improved with Crochemore et al.’s bit-parallel algorithm. Crochemore et
al.’s algorithm includes bitwise logical operators, which can be computed easily in parallel because they have bitwise
parallelism. However, Crochemore et al.’s algorithm also includes an operator with less parallelism, i.e., an arithmetic
sum. In this paper, we focus on how to implement these operators efficiently in parallel and experimentally show the
following results. First, the proposed GPU algorithm with a 2.67 GHz Intel Core i7 920 CPU and GeForce GTX 580
GPU performs a maximum of 12.81 times faster than the bit-parallel CPU algorithm using a single-core 2.67 GHz
Intel Xeon X5550 CPU. Subsequently, the proposed GPU algorithm executes a maximum of 4.56 times faster than the
bit-parallel CPU algorithm using a four-core 2.67 GHz Intel Xeon X5550 CPU. Furthermore, the proposed algorithm
with GeForce 8800 GTX performs 10.9 to 18.1 times faster than Kloetzli et al.’s existing GPU algorithm with the same
GPU.

Keywords: longest common subsequence (LCS), bit-parallel algorithm, GPGPU

1. Introduction

There are various metrics for the similarity between two
strings, for example, the edit distance and the longest common
subsequence (LCS) [6]. LCS can be applied to various problems,
for example, comparison of deoxyribonucleic acid (DNA), in ex-
act string matching, and spell checking.

When the lengths of two given strings are m and n, one of
the LCSs can be computed by dynamic programming in O(mn)
time and O(mn) space [7]. However, m and n can be huge for
the comparison of DNA. For example, in Ref. [16], Webster et al.
compared genomic sequences of length 5.1 MB from humans and
chimpanzees. When m and n are 5.1 MB, algorithms with O(mn)
space require more than 26 TB of memory. Hence, O(mn) space is
not acceptable in such applications. An algorithm to compute one
of the LCSs of two given strings with much less space complex-
ity (and the same time complexity) was proposed by Hirschberg.
The algorithm computes an LCS recursively while computing the
length of the LCS (LLCS) between various substrings of the two
given strings. Hirschberg’s algorithm requires O(mn) time and
O(m + n) space. A method to compute the LLCS faster with bit-
parallelism is well-known. This method requires O(�m/w�n) time
and O(m + n) space [2], where w is the word size of a computer.
Using this method, Hirschberg’s LCS algorithm can be acceler-
ated. However, much faster algorithms are desirable for strings
of length of more than one million characters, which are common

1 Osaka Prefecture University, Sakai, Osaka 599–8531, Japan
a) mu301005@edu.osakafu-u.ac.jp
b) fujimoto@mi.s.osakafu-u.ac.jp

in the field of the comparison of DNA. Therefore, we consider
accelerating the bit-parallel algorithm with a graphics processing
unit (GPU). The bit-parallel algorithm includes bitwise logical
operations and arithmetic sums. Bitwise logical operations are
suitable for GPUs because they have bitwise parallelism. How-
ever, arithmetic sums have less parallelism. Therefore, we devise
a method to compute them efficiently in parallel.

To the best of our knowledge, with the exception of Refs. [3],
[4], [9], [11], [12], and [17], there are no existing studies for solv-
ing the LCS problem and/or the related problems using a GPU.
However, none of the studies mentioned, with the exception of
Ref. [9], address the LCS problem within O(m + n) space: in
Ref. [3], Deorowicz solved the LLCS problem only, and not the
LCS problem; in Refs. [4] and [17], Dhraief et al. and Yang et
al. solved the LCS problem, but their method required O(mn)
space; in Refs. [11] and [12], Ozsoy et al. solved the multiple
LCS (MLCS) problem (the one-to-many LCS matching prob-
lem), which cannot be used to lead to an efficient algorithm to
solve the LCS problem [17]; and in Ref. [9], Kloetzli et al. pro-
posed an LCS algorithm for a GPU with O(m+n) space. Thus, in
this paper, we compare our proposed algorithm only with Kloetzli
et al.’s algorithm.

Kloetzli et al.’s algorithm is a GPU implementation of
Chowdhury et al.’s algorithm [1] for CPUs. Kloetzli et al.’s algo-
rithm is based on dynamic programming without bit-parallelism.
Their algorithm divides an LCS problem into four subproblems.
The division is performed recursively until the size of a subprob-
lem becomes sufficiently small to be executed on a GPU. In the
algorithm, one thread block on a GPU executes one subproblem

c© 2014 Information Processing Society of Japan 36

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.7 No.2 36–44 (Nov. 2014)

and one thread on a GPU executes 4 × 4 cells of the table of dy-
namic programming.

Based on the method proposed in this paper, we implement
a bit-parallel LCS algorithm on CUDA [5], [8], [10], [13], and
conduct several experiments. In the experiments, our proposed
GPU algorithm with 2.67 GHz Intel Core i7 920 CPU and
NVIDIA GeForce GTX 580 GPU executes a maximum of 12.81
times faster than our bit-parallel CPU algorithm with a single-
core 2.67 GHz Intel Xeon X5550 CPU and a maximum of 4.56
times faster than our bit-parallel CPU algorithm with a four-core
2.67 GHz Intel Xeon X5550 CPU. Another experiment shows
that our algorithm is 10.9 to 18.1 times faster than Kloetzli et al.’s
GPU algorithm for the same GPU (GeForce 8800 GTX).

The remainder of this paper is organized as follows. In Sec-
tion 2, we briefly review the definition of LCS and the existing
algorithms for a CPU. In Section 3, we present our proposed
algorithm. In Section 4, we conduct several experiments to com-
pare our GPU algorithm with our bit-parallel CPU algorithms and
the existing GPU algorithm. In Section 5, we provide some con-
cluding remarks and propose future studies. However, owing to
limited space, we illustrate neither the architecture nor the pro-
gramming of GPUs. For readers unfamiliar with these, we rec-
ommend the book [8] and the studies [5], [10], and [13].

2. LCS

2.1 The Definition of the LCS
Let C and A be strings c1c2 · · · cp and a1a2 · · · am respectively.

In the following, we assume without loss of generality that char-
acters in the same string are different from each other. If there
exists a mapping from the indices of C to the indices of A subject
to the following conditions, C1 and C2, then C is called a subse-
quence of A.
C1: F(i) = k if and only if ci = ak.
C2: If i < j, then F(i) < F(j).
However, we define the null string, which is a string of length
zero, as a subsequence of any string. We define a string that
is a subsequence of both string A and string B as a common
subsequence between A and B. The LCS between A and B is
the longest of all the common subsequences between A and B.
The LCS is not always unique. For example, the LCS between
“abcdefghij” and “cfilorux” is “cfi.” LCSs between “abcde” and
“baexd” are “ad,” “ae,” “bd,” and “be.”

2.2 How to Compute the Length of the LCS
The LLCS can be computed using dynamic programming.

This algorithm stores the LLCS between A and B in L[m][n] if
we fill table L with (m + 1) × (n + 1) cells based on the following
rules, R1 to R3, where m is the length of A and n is the length of
B. To fill table L, this algorithm requires O(mn) time and O(mn)
space.
R1: If i = 0 or j = 0, then L[i][j] = 0.
R2: If A[i − 1] = B[j − 1], then L[i][j] = L[i − 1][j − 1] + 1.
R3: Otherwise, L[i][j] = max(L[i][j − 1], L[i − 1][j]).
The rules R2 and R3 imply that the ith row (1 ≤ i ≤ m) of L
can be computed only with the ith and (i − 1)th rows. This prop-
erty leads us to an algorithm that requires less memory, shown in

Listing 1 Hirschberg’s LLCS algorithm.

1 I n p u t : s t r i n g A of l e n g t h m, s t r i n g B of l e n g t h n
2 Outpu t : LLCS L [j] o f A and B [0 . . j −1]
3 f o r a l l j (0<= j<=n)
4 l l c s (A,m, B , n , L) {
5 f o r (j=0 t o n)
6 K[1] [j] = 0
7 f o r (i=1 t o m) {
8 f o r (j=0 t o n) K[0] [j] = K[1] [j]
9 f o r (j=1 t o n) {

10 i f (A[i −1] == B[j −1]) K[1] [j] = K[0] [j −1]+1
11 e l s e K[1] [j] = max (K[1] [j −1] , K[0] [j])
12 }
13 }
14 f o r (j=0 t o n)
15 L [j] = K[1] [j]
16 }

Fig. 1 An example of Hirschberg’s LLCS algorithm.

Listing 1 [7]. K is a temporary array of size 2× (n+ 1) cells. L is
an array for storing output of size 1 × (n + 1) cells. The tenth and
eleventh lines in Listing 1 correspond to rules R2 and R3.

Hirschberg’s LLCS algorithm shown in Listing 1 stores the
LLCS between string A and string B[0.. j − 1] (the substring of
B from the first character to the jth character. When j = 0, we
regard string B[0.. j − 1] as the null string) in L[j]. This im-
plementation reduces the required space to O(m + n) with the
same time complexity O(mn). In Fig. 1, we show an example
of Hirschberg’s LLCS algorithm when A is “BCAEDAC” and B
is “EABEDCBAAC.” The result shows that the LLCS between
A and B is five.

2.3 Hirschberg’s LCS Algorithm
Listing 2 shows the LCS algorithm proposed by Hirschberg [7]

where S[u..l] (u ≥ l) represents the reverse of the substring S[l..u]
of a string S. In the 15th and 16th lines, this algorithm invokes
Hirschberg’s LLCS algorithm shown in Listing 1. In the 19th and
20th lines, this algorithm invokes itself recursively. The algorithm
computes an LCS while computing the LLCS. The algorithm re-
quires O(mn) time and O(m + n) space. The dominant part of the
algorithm is Hirschberg’s LLCS algorithm llcs().

2.4 Computing the LLCS with Bit-parallelism
There exists an efficient LLCS algorithm with bit-parallelism.

The algorithm shown in Listing 3 is Crochemore et al.’s bit-
parallel LLCS algorithm [2], where V is a variable that stores a
bit-vector of length m. The notation & represents bitwise AND,
| represents bitwise OR,˜represents the bitwise complement, and

c© 2014 Information Processing Society of Japan 37

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.7 No.2 36–44 (Nov. 2014)

Listing 2 Hirschberg’s LCS algorithm.

1 I n p u t : s t r i n g A of l e n g t h m, s t r i n g B of l e n g t h n
2 Outpu t : LCS C of A and B
3 l c s (A,m, B , n , C) {
4 i f (n==0) C = ” ” (n u l l s t r i n g)
5 e l s e i f (m==1) {
6 f o r (j=1 t o n)
7 i f (A[0]==B[j −1]) {
8 C = A[0]
9 re turn

10 }
11 C = ” ”
12 }
13 e l s e {
14 i = m/2
15 l l c s (A [0 . . i −1] , i , B , n , L1)
16 l l c s (A[m− 1 . . i] ,m− i , B[n − 1 . . 0] , n , L2)
17 M = max { j : 0<= j<=n , L1 [j]+L2 [n− j] }
18 k = min { j : 0<= j<=n , L1 [j]+L2 [n− j] == M}
19 l c s (A [0 . . i −1] , i , B [0 . . k−1] , k , C1)
20 l c s (A[i . . m−1] ,m− i , B[k . . n−1] , n−k , C2)
21 C = s t r c a t (C1 , C2)
22 }
23 }

Listing 3 Crochemore et al.’s bit-parallel LLCS algorithm.

1 I n p u t : s t r i n g A of l e n g t h m, s t r i n g B of l e n g t h n
2 Outpu t : LLCS L [i] o f A [0 . . i −1] and B
3 f o r a l l i (0<= i<=m)
4 l l c s b p (A,m, B , n , L) {
5 f o r (c=0 t o 255) {
6 f o r (i=0 t o m−1)
7 i f (c==A[m− i −1]) PM[c] [i] = 1
8 e l s e PM[c] [i] = 0
9 }

10 f o r (i=0 t o m−1)
11 V[i] = 1
12 f o r (j=1 t o n)
13 V = (V + (V & PM[B[j]])) | (V & ˜ (PM[B[j − 1]]))
14 L [0] = 0
15 f o r (i=1 t o m)
16 L [i] = L [i −1]+(1−V[i −1])
17 }

+ represents the arithmetic sum. Note that, + regards V[0] as
the least significant bit. First, Crochemore et al.’s algorithm con-
structs a pattern match vector (PMV). PMV P of string S with
respect to c is the bit-vector of length m that satisfies following
conditions, C1 and C2.
C1: If S[i] = c, then P[i] = 1.
C2: Otherwise, P[i] = 0.
For example, the PMV of string “abbacbaacbac” with respect to
“a” is 100100110010. In the fifth to ninth lines of Listing 3, the
PMV of string A with respect to each character c is constructed.
Since we assume one byte character, 0 ≤ c ≤ 255. The reverse of
the PMV of string A with respect to c is stored in PM[c], where a
variable PM is a two-dimensional bit-array of size 256 × m.

This algorithm represents the table of dynamic programming
as a sequence of bit-vectors such that each bit-vector corresponds
to a column of the table. The ith bit of each bit-vector represents
the difference between the ith cell and the (i− 1)th cell of the cor-
responding column. Repeating bitwise operations, the algorithm
performs the computation, which is equal to computing table L
from left to right.

The last column of table L output by this algorithm is a bit-
vector. However, we can convert it easily into an ordinary array

of integers in O(m) time. The converting process is in the 14th to
16th lines in Listing 3. Crochemore et al.’s bit-parallel algorithm
requires O(�m/w�n) time and O(m+ n) space where w is the word
size of a computer.

3. The Proposed Algorithm

3.1 The CPU Algorithm Implemented on a GPU
As mentioned in Section 2.3, the dominant part of the LCS al-

gorithm shown in Listing 2 is the function llcs(), which computes
the LLCS. In this paper, we aim to accelerate the LCS algo-
rithm shown in Listing 2, improved with the bit-parallel LLCS
algorithm shown in Listing 3 (in other words, we replace the in-
vocation of llcs() in Listing 2 with llcs bp() in Listing 3). The
algorithm requires O(�m/w�n + m + n) time and O(m + n) space.
For this purpose, we propose a method to accelerate the LCS al-
gorithm with a GPU. Despite using 64-bit mode on a GPU, the
length of every integer register is still 32 bits. Thus, the word size
w is 32.

In the 16th line of Listing 2, llcs() computes the LLCS between
the reverse of string A and the reverse of string B. However, if
we reverse A and B in every invocation of llcs(), the overhead of
reversing becomes significant. Thus, we construct a new func-
tion llcs’(), which traverses strings from tail to head. The func-
tion llcs’() is the same as llcs(), except the order that the string is
traversed. We also construct the bit-parallel algorithm llcs bp’()
corresponding to llcs’().

The output of Hirschberg’s LLCS algorithm shown in Listing 1
is the mth row of table L. However, Crochemore et al.’s algo-
rithm shown in Listing 3 represents a column of the table as a
bit-vector and computes the table from the zeroth column to the
nth column. Hence, Crochemore et al.’s algorithm outputs the
nth column. Therefore, we change the original row-wise LLCS
algorithm shown in Listing 1 into a column-wise algorithm. In
addition, we have to change the original LCS algorithm shown
in Listing 2 into another form corresponding to the column-wise
LLCS algorithm.

Since our algorithm embeds 32 characters into one variable of
an unsigned integer, we have to pad string A and ensure that its
length is a multiple of 32. For this padding, we can use char-
acters not included in either string A or B (for example, control
characters).

3.2 Outline of the Proposed Algorithm
The algorithm shown in Listing 2 has recursive calls of lcs() in

the 19th and 20th lines. However, GPUs support recursive calls
only within some levels. Hence, we executes only llcs() in the
15th and 16th lines of Listing 2 on a GPU. Other parts of List-
ing 2 are executed on a CPU.

The LLCS algorithm shown in Listing 3 includes bitwise log-
ical operators (&, |, ˜) and arithmetic sums (+) on bit-vectors of
length m. Bitwise logical operators are parallelized easily. How-
ever, an arithmetic sum has carries. Since carries propagate from
the least significant bit to the most significant bit in the worst
case, an arithmetic sum has less parallelism. Thus, we have to
devise a method in order to extract higher parallelism from the
computation of an arithmetic sum.

c© 2014 Information Processing Society of Japan 38

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.7 No.2 36–44 (Nov. 2014)

Fig. 2 Block-step partition in the case of m = 3,072 and n = 4,096.

We propose processing the bit-vectors of length m in parallel
by dividing them into sub-bit-vectors. On a GPU, each bit-vector
is represented as an array of unsigned integers of length �m/32�
where the word size is 32. The size of one variable of an un-
signed integer on a GPU is 32 bits. In CUDA architecture, 32
threads in the same warp are synchronized at the instruction level
(single instruction, multiple data (SIMD) execution). Thus, we
set the number of threads in one thread block at 32 so that threads
in one thread block can be synchronized with no cost. Since one
thread processes one unsigned integer (32 bits), one thread block
processes 1,024 bits of the bit-vector of length m.

During one invocation of the kernel function, our algorithm
performs only 1,024 iterations of n iterations. We refer to a group
of 1,024 iterations as one step. For example, the jth step repre-
sents 1,024 iterations from (1,024 × j) to (1,024 × (j + 1) − 1).
We set the number of bits processed in one thread block and the
number of iterations in one invocation to the same value so that
each thread can transfer carries by reading from or writing to only
one variable.

Figure 2 is an example of a block-step partition in the case of
m = 3,072 and n = 4,096. Each rectangle in the figure repre-
sents one step of one block. We refer to it as a computing block.
No computing block can be executed until its left and lower com-
puting blocks have been executed. Therefore, only the lowest
leftmost computing block can be executed in the first invocation
of the kernel function. The computing block is the zeroth step
of the block covering sub-bit-vector V[2,048..3,071]. In the sec-
ond invocation of the kernel function, both the first step of the
block covering V[2,048..3,071] and the zeroth step of the block
covering V[1,024..2,047] can be executed. In each invocation of
the kernel function, we execute all computing blocks we are able
to execute at that time. Subsequently, computing blocks with the
same number in Fig. 2 can be executed in parallel at the same time
(the numbers represent the execution order). Based on the above
ideas, we invoke the kernel function (�m/1,024� + �n/1,024� − 1)
times to obtain the LLCS (for example, we have to invoke the
kernel function six times in Fig. 2).

The black arrows in Fig. 2 indicate that the block covering sub-
bit-vector V[i..i+1,023] determines the value of V[i..i+1,023] to
the (j + 1)th step of itself at the end of the jth step. On the other
hand, the white arrows indicate that the block covering sub-bit-

vector V[i..i + 1,023] determines carries in each iteration to the
jth step of the block covering V[i−1,024..i−1]. Transfers of val-
ues from a computing block to another computing block, shown
as black or white arrows in Fig. 2, are performed out of the loop
processing the bitwise operations. When we store carries during
the loop, we write carries in an array on the shared memory. After
the loop, carries on the shared memory are copied into the global
memory. Reading occurs in a similar manner. Before the loop,
carries on the global memory are loaded into the shared memory.
During the loop, we use carries on the shared memory, not on the
global memory because the cost of transfer between registers and
the global memory on a GPU is larger than the cost of transfer
between registers and the shared memory on a GPU.

3.3 The Kernel Function
This section describes the kernel function llcs kernel() that per-

forms one step and the host function llcs gpu(), which invokes
llcs kernel(). Listing 4 is a pseudo code of llcs kernel() and
llcs gpu(), where llcs gpu() is a GPU implementation of llcs bp()
as shown in Listing 3. In addition to these functions, we construct
llcs kernel’() and llcs gpu’(), which are GPU implementations of
llcs bp’(); however, they are considerably similar to llcs kernel()
and llcs gpu(). Thus, we do not explain them.

First, we explain the kernel function llcs kernel(). Argument
m and argument n represent the length of string A and string B,
respectively; dstr2 represents the copy of string B on the global
memory. g V is an array to store the bit-vector V. g PMV is a
two-dimensional array to store the PMV of string A with respect
to each character c (0 ≤ c ≤ 255). g PMV[c] is the PMV of string
A with respect to c. g Carry is an array to store carries. When we
use g Carry, we regard it as a two-dimensional array and perform
double buffering. Argument num represents the number of invo-
cations of llcs kernel(). num is used to compute which step the
block should process in llcs kernel(). The for-loop in the ninth
to thirteenth lines represents the process of one step. The sev-
enth and fourteenth lines are transfers of values, shown as black
arrows in Fig. 2. The eighth and fifteenth lines are transfers of
values, shown as white arrows in Fig. 2.

Next, we explain the function llcs gpu(). llcs gpu() invokes
the kernel function llcs kernel() (num x + num y − 1) times in
the for-loop of the 29th and 30th lines. The 22nd to 28th lines
are pre-processing. The string A is padded in the 22nd line. The
number num x of blocks and the number num y of steps are com-
puted in the 24th and 25th lines. In the 26th and 27th lines, all
bits of the bit-vector V are initialized to one. The 31st and 32nd
lines are post-processing, where the bit-vector V is converted into
an ordinary array and written in the output array finalOutput.

3.4 Parallelization of an Arithmetic Sum
As we state in Section 3.2, + has less parallelism because it has

carries. To parallelize +, we applied Sklansky’s method to par-
allelize the full adder, known as conditional-sum addition [14].
Sklansky’s method uses the fact that every carry is either zero or
one. To compute the addition of n-bit-numbers, each half adder
computes a sum and a carry to the upper bit in both cases in ad-
vance. Then, carries are propagated in parallel. See Ref. [15] for

c© 2014 Information Processing Society of Japan 39

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.7 No.2 36–44 (Nov. 2014)

Listing 4 A pseudo code of llcs kernel() and llcs gpu().

1 g l o b a l vo id l l c s k e r n e l (
2 i n t m, n , c h a r ∗ d s t r 2 , num ,
3 unsigned i n t ∗g V , ∗g PMV , ∗ g C a r r y) {
4 i n d e x = g l o b a l t h r e a d ID ;
5 c o u n t = s t e p number o f t h i s b l o c k ;
6 c u r s o r = 1024 ∗ c o u n t ;
7 V = g V [i n d e x] ;
8 Load c a r r i e s from g C a r r y on g l o b a l memory ;
9 f o r (j=0 t o 1023) {

10 i f (c u r s o r+ j >= n) r e t u r n ;
11 PMV = g PMV [d s t r 2 [c u r s o r+ j]] [i n d e x] ;
12 V = (V & (˜PMV)) | (V + (V & PMV)) ;
13 }
14 g V [i n d e x] = V;
15 Save c a r r i e s t o g C a r r y on g l o b a l memory ;
16 }
17
18 void l l c s g p u (
19 c h a r ∗A, ∗B , ∗ d s t r 1 , ∗ d s t r 2 ,
20 i n t m, n , ∗ f i n a l O u t p u t ,
21 unsigned i n t ∗g V , ∗ g Car ry , ∗g PMV) {
22 d s t r 1 = padded copy of A;
23 d s t r 2 = B ;
24 num x = (m+1 0 2 3) /1 0 2 4 ;
25 num y = (n+1 0 2 3) /1 0 2 4 ;
26 f o r (i=0 t o ((m+31) /32) −1)
27 g V [i] = 0xFFFFFFFF ;
28 C o n s t r u c t p a t t e r n match v e c t o r s ;
29 f o r (i=1 t o num x+num y−1)
30 l l c s k e r n e l () i n P a r a l l e l on a GPU(gridDim=num x , blockDim =3 2) ;
31 f o r (i=0 t o m)
32 f i n a l O u t p u t [i] = t h e amount o f z e r o s from z e r o t h b i t t o i t h b i t i n g V ;
33 }

details. In our algorithm, we use 32-bit width half adders rather
than one-bit width half adders.

Using the example in Fig. 3, we explain the method to par-
allelize the n-bit full adder. Figure 3 shows a 32-bit addition
performed by four full adders of 8-bit width. Note that Fig. 3
is illustrative and our actual implementation uses 1,024-bit full
adders realized by 32 full adders of 32-bit width. In Fig. 3, we
compute the sum of U, V, and l carry (l carry represents a carry
from the lower sub-bit-vector. Obviously, l carry is zero or one).
In addition, we also compute a carry to the upper sub-bit-vector.
To compute U+V+l carry, first, we compute sums and carries for
every byte. S0(0) represents sums and carries for every byte when
a carry from the lower byte is zero. S0(1) represents them when
a carry from the lower byte is one. Next, we consider computing
sums and carries for every two bytes (we denote them as S1(0)
and S1(1)) from S0(0) and S0(1). To compute S1(0) and S1(1),
we focus on a carry of the fourth byte of S0(1). Since the carry
is zero, the third byte of S1(1) must be “0D” (“0D” is the third
byte of S0(0)). Therefore, in the case, we copy the third byte of
S0(0) into the third byte of S0(1). In the same manner, we focus
on carries of the fourth byte of S0(0), the second byte of S0(0),
and the second byte of S0(1). When a carry of the (2 × k)th byte
of S0(0) is one (k ∈ N), we copy the (2 × k − 1)th byte of S0(1)
into S0(0). When a carry of the (2× k)th byte of S0(1) is zero, we
copy the (2× k−1)th byte of S0(0) into S0(1). As a result, we can
determine S1(0) and S1(1). Similarly, we determine the sums and
carries for every four bytes from S1(0) and S1(1). The results are
S2(0) and S2(1). S2(0) is U+V (the sums and carry when a carry
from the lower sub-bit-vector is zero). S2(1) is U+V+1 (the sums
and carry when a carry from the lower sub-bit-vector is one). The

Fig. 3 Parallelization of an n-bit full adder (in the case of n = 32).

most important advantage of this method is the ability to exe-
cute the computation of St(0) and St(1) from St−1(0) and St−1(1)

c© 2014 Information Processing Society of Japan 40

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.7 No.2 36–44 (Nov. 2014)

with 2t-bytewise parallelism. When the number of elements in
U and V is l, we repeat this process (log2l) times to determine
U+V+l carry.

The implementation is based on the above methods. The inputs
are two arrays of unsigned integers, which store sub-bit-vectors
of length 1,024, and a carry from the lower sub-bit-vector. The
outputs are two arrays of unsigned integers and a carry to the up-
per sub-bit-vector. The number of elements in one array is 32. In
addition, we construct a bool array to store carries to the upper
element on the shared memory. First, we compute sums and car-
ries for every 32 bits from two arrays of unsigned integers. When
a sum is smaller than two operands, we set a carry to the upper
element at one. Next, we obtain sums and carries for every 64 bits
from the neighboring two sums and carries for every 32 bits. This
process can be performed with one comparison and two substitu-
tions. We use the same method to determine sums and carries for
every 128 bits, 256 bits, 512 bits, and finally 1,024 bits. “A carry
to the upper element” of the most significant element is “a carry
to the upper sub-bit-vector.” Thus, we store the carry in the global
memory.

3.5 Other Notes
cudaMemcpy() between the host and device and cudaMalloc()

of each array are performed before the recursive calls in Listing 2
because the overhead is extremely heavy when cudaMemcpy()
and cudaMalloc() are performed in the recursive calls.

When we pad the string A on the device, we need the orig-
inal A on the host. However, host-to-device transfer is much
slower than device-to-device transfer or host-to-host transfer. To
reduce the number of host-to-device transfers, we perform host-
to-device transfer only once to reproduce a copy of the original A
on the global memory. In llcs gpu() or llcs gpu’(), while using a
string, it is copied into the working memories on the device and
is padded on the device.

If the lengths of given strings are shorter than some constant
value, the cost of host-to-device transfers becomes larger than the
cost to compute the LLCS on a CPU. In such a case, the execu-
tion speed becomes slower when we use a GPU. Therefore, we
check the lengths of strings before invoking llcs gpu(). If the sum
of the length of string A and B is at least 2,048, we compute the
LLCS on a GPU. Otherwise, we compute the LLCS on a CPU. If
the length of A is less than 96 or the length of B is less than 256,
we compute the LLCS with dynamic programming on a CPU.
Otherwise, we compute the LLCS with bit-parallel algorithm on
a CPU.

4. Experiments

In this section, we compare the execution times of the proposed
algorithm on a GPU with the execution times of our bit-parallel
CPU algorithm and Kloetzli et al.’s GPU algorithm. We also
break down execution time into three categories: CPU compu-
tation, GPU computation, and data transfer between a CPU and a
GPU. We execute our GPU program on a 2.67 GHz Intel Core i7
920 CPU, an NVIDIA GeForce GTX 580 GPU, and Windows 7
Professional 64-bit operating system. We compile our GPU pro-
gram with CUDA 5.0 and Visual Studio 2008 Professional. We

execute the CPU programs on a 2.67 GHz Intel Xeon X5550 CPU
and Linux 2.6.27.29 (Fedora10 x86 64) operating system. We
compile the CPU programs with an Intel C++ compiler 14.0.1
without SSE instructions.

4.1 A Comparison with the Existing CPU Algorithms
We show the results of comparison between the proposed algo-

rithm on a GPU and our bit-parallel algorithm on a CPU in Fig. 4,
Fig. 5, Fig. 6, and Fig. 7. We execute the bit-parallel algorithm on
a CPU with a single core and four cores. To create a multi-core
version of the bit-parallel algorithm, we use task parallelism in
OpenMP. In Listing 2, we execute the 15th, 16th, 19th, and 20th
lines with task parallelism in OpenMP. In OpenMP 3.0 or later,
we can use task parallelism with the notation omp task. Then, the
function llcs() in 15th and 16th lines and lcs() in 19th and 20th
lines are executed respectively in parallel. Thus, only two cores
are used to execute llcs() in the first invocation of lcs(). In the
second or later invocation of lcs(), all of four cores are used.

In Figs. 4 to 7, the green lines show the execution times on a
GPU. The red and blue lines show the execution times on a CPU
with a single core and four cores, respectively. All of the execu-
tion times on the graphs are measured in seconds and shown on
the primary y-axis. The orange and purple lines show the speedup
ratio of the proposed algorithm on a GPU to the single-core and
multi-core version on a CPU, respectively. The speedup ratio is
shown on the secondary y-axis. In the four graphs, the lengths of
string A are five million, ten million, 15 million, and 20 million,
respectively. In the four graphs, the length of string B shown on
the x-axis increases from 100 thousand to ten million.

First, we compare the proposed algorithm on a GPU with the
bit-parallel algorithm on a CPU with a single core. Figures 4 to 7
show that the proposed algorithm is a maximum of 11.15, 12.81,
12.51, and 12.35 times faster than the bit-parallel algorithm with
a single core, respectively. The results show that the speedup ra-
tio is more than ten when lengths of given strings are sufficiently
long. In addition, the speedup ratio is more than one when the
length of string B is more than 100 thousand in the four graphs.

Next, we compare the proposed algorithm on a GPU with the
bit-parallel algorithm on a CPU with four cores. Figures 4 to 7
show that the proposed algorithm is a maximum of 4.02, 4.14,
4.56, and 4.09 times faster than the bit-parallel algorithm with
four cores, respectively. The results show that the proposed algo-
rithm on a GPU is a maximum of 4.56 times faster than the multi-
core version on a CPU. In addition, the speedup ratio is more than
one when the length of string B is more than 700 thousand in the
four graphs. This fact implies that the proposed algorithm on a
GPU is faster than the single-core version and the multi-core ver-
sion when lengths of the given strings are sufficiently long.

4.2 A Comparison with the Existing GPU Algorithm
We compared the proposed algorithm on a GPU with Kloetzli

et al.’s GPU algorithm. Kloetzli et al. used an AMD Athlon 64
CPU and GeForce 8800 GTX GPU. In order to compare the algo-
rithms over the same GPU, we used a GeForce 8800 GTX GPU.
In the experiment, we used a 2.93 GHz Intel Core i3 530 CPU,
which is faster than Kloetzli et al.’s CPU. Thus, our environment

c© 2014 Information Processing Society of Japan 41

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.7 No.2 36–44 (Nov. 2014)

Fig. 4 Execution times for string A of length five million.

Fig. 5 Execution times for string A of length ten million.

Fig. 6 Execution times for string A of length 15 million.

Fig. 7 Execution times for string A of length 20 million.

is not completely similar to that of Kloetzli et al.’s. However, as
the CPU offers little contribution to the speed of the algorithms,
we can expect the result is not highly affected.

Figure 8 shows the result. The x-axis shows the length of
strings A and B measured in millions. The y-axis shows the exe-
cution times measured in minutes. In Fig. 8, the blue bars repre-
sent the execution times of Kloetzli et al.’s algorithm on a GPU.
The red bars represent the execution times of our proposed algo-
rithm on a GPU.

In the shortest case (0.27 million and 1.80 million), the speedup
ratio is 12.0. In the longest case (1.51 million and 1.80 million),

Fig. 8 A comparison with Kloetzli et al.’s GPU algorithm.

the speedup ratio is 17.6. The speedup ratio ranges from 10.9
(0.41 million and 1.80 million) to 18.1 (1.49 million and 1.50
million).

4.3 Breakdown of the Execution Time of the Proposed Al-
gorithm

Table 1 shows breakdown of the execution time of the pro-
posed algorithm for two given strings A and B in the case that
the length of string A increases from five million to 20 million by
five million and the length of string B increases from one million
to ten million by one million. The lengths of given strings are
shown in the two leftmost columns in Table 1. Table 1 includes
both the execution time and its ratio to the total execution time.
The column “GPU” represents the execution time of the GPU ker-
nel functions. The column “transfer” represents the data transfer
time between the CPU and the GPU. The column “CPU” repre-
sents the execution time of the other part. All of the execution
times are measured in seconds.

In Table 1, the execution time of GPU computation accounts
for 95.67% to 98.81% of the total execution time. The execu-
tion time of CPU computation accounts for 1.05% to 3.63% of
the total execution time. The execution time of the data transfer
accounts for 0.14% to 0.70% of the total execution time. The
execution time of GPU computation shows linear growth in the
lengths of given strings. On the other hand, the execution time of
CPU computation shows logarithmic growth.

These results imply that GPU computation occupies most of
the total execution time. In addition, the longer the lengths of
given strings are, the larger the ratio of GPU computation is.
Since the proposed algorithm executes GPU computation and
CPU computation in serial, parallelizing GPU computation and
CPU computation shortens the execution time. However, Table 1
implies that the effect is small because the execution time of CPU
computation is at most 3.63%. Even if GPU computation and
CPU computation are embarrassingly parallelized, the total ex-
ecution time is only minorly reduced to 96.37% of the current
version.

5. Conclusions

In this paper, we have presented a method to implement the
bit-parallel LCS algorithm on a GPU and have conducted several
experiments using our program based on the method. As a re-
sult, the proposed algorithm performs a maximum of 12.81 times
faster than the single-core version of the bit-parallel algorithm
on a CPU and a maximum of 4.56 times faster than the multi-

c© 2014 Information Processing Society of Japan 42

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.7 No.2 36–44 (Nov. 2014)

Table 1 Breakdown of the execution time of the proposed algorithm.

Length of Length of Time Time Time Time Ratio Ratio Ratio
string A string B (Total) (CPU) (GPU) (transfer) (CPU) (GPU) (transfer)
5,000,000 1,000,000 335.10 12.15 320.60 2.35 3.63% 95.67% 0.70%
5,000,000 2,000,000 515.95 17.99 495.51 2.45 3.49% 96.04% 0.47%
5,000,000 3,000,000 697.56 20.25 674.77 2.54 2.91% 96.73% 0.36%
5,000,000 4,000,000 866.04 23.99 839.47 2.58 2.77% 96.93% 0.30%
5,000,000 5,000,000 1,050.03 25.38 1,021.86 2.79 2.41% 97.32% 0.27%
5,000,000 6,000,000 1,251.85 27.64 1,220.62 3.59 2.21% 97.50% 0.29%
5,000,000 7,000,000 1,453.22 29.77 1,419.09 4.36 2.05% 97.65% 0.30%
5,000,000 8,000,000 1,652.43 32.33 1,615.45 4.65 1.96% 97.76% 0.28%
5,000,000 9,000,000 1,850.64 35.38 1,810.26 5.00 1.91% 97.82% 0.27%
5,000,000 10,000,000 2,046.29 38.22 2,003.62 4.45 1.87% 97.91% 0.22%

10,000,000 1,000,000 647.21 13.68 629.01 4.52 2.11% 97.19% 0.70%
10,000,000 2,000,000 998.79 24.33 969.70 4.76 2.43% 97.09% 0.48%
10,000,000 3,000,000 1,354.90 28.19 1,321.85 4.86 2.08% 97.56% 0.36%
10,000,000 4,000,000 1,680.16 35.79 1,639.50 4.87 2.13% 97.58% 0.29%
10,000,000 5,000,000 2,047.44 38.50 2,003.96 4.98 1.88% 97.88% 0.24%
10,000,000 6,000,000 2,341.78 40.64 2,296.13 5.01 1.74% 98.05% 0.21%
10,000,000 7,000,000 2,679.54 46.62 2,627.82 5.10 1.74% 98.07% 0.19%
10,000,000 8,000,000 2,991.43 48.18 2,938.10 5.15 1.61% 98.22% 0.17%
10,000,000 9,000,000 3,357.05 49.75 3,301.87 5.43 1.48% 98.36% 0.16%
10,000,000 10,000,000 3,667.39 51.54 3,610.33 5.52 1.41% 98.44% 0.15%
15,000,000 1,000,000 954.44 16.23 932.39 5.82 1.70% 97.69% 0.61%
15,000,000 2,000,000 1,472.40 27.64 1,438.78 5.98 1.87% 97.72% 0.41%
15,000,000 3,000,000 2,002.67 32.97 1,963.42 6.28 1.65% 98.04% 0.31%
15,000,000 4,000,000 2,485.72 43.44 2,435.76 6.52 1.75% 97.99% 0.26%
15,000,000 5,000,000 3,039.24 45.93 2,986.43 6.88 1.51% 98.26% 0.23%
15,000,000 6,000,000 3,472.54 48.35 3,417.00 7.19 1.39% 98.40% 0.21%
15,000,000 7,000,000 3,980.38 57.51 3,915.33 7.54 1.44% 98.37% 0.19%
15,000,000 8,000,000 4,441.27 58.67 4,374.90 7.70 1.32% 98.51% 0.17%
15,000,000 9,000,000 5,005.08 60.41 4,936.03 8.64 1.21% 98.62% 0.17%
15,000,000 10,000,000 5,462.73 61.82 5,391.97 8.94 1.14% 98.70% 0.16%
20,000,000 1,000,000 1,262.07 18.57 1,234.71 8.79 1.47% 97.83% 0.70%
20,000,000 2,000,000 1,945.03 27.31 1,908.62 9.10 1.40% 98.13% 0.47%
20,000,000 3,000,000 2,650.20 34.55 2,606.29 9.36 1.31% 98.34% 0.35%
20,000,000 4,000,000 3,290.98 48.55 3,232.87 9.56 1.48% 98.23% 0.29%
20,000,000 5,000,000 4,027.68 52.45 3,965.57 9.66 1.30% 98.46% 0.24%
20,000,000 6,000,000 4,599.46 56.33 4,533.42 9.71 1.23% 98.56% 0.21%
20,000,000 7,000,000 5,274.06 69.39 5,194.96 9.71 1.32% 98.50% 0.18%
20,000,000 8,000,000 5,881.29 71.58 5,800.11 9.60 1.22% 98.62% 0.16%
20,000,000 9,000,000 6,637.26 74.17 6,553.24 9.85 1.12% 98.73% 0.15%
20,000,000 10,000,000 7,239.77 76.49 7,153.42 9.86 1.05% 98.81% 0.14%

core version of the bit-parallel algorithm on a CPU. In addition,
the proposed algorithm executes 10.9 to 18.1 times faster than
Kloetzli et al.’s algorithm on a GPU. Future studies will include
optimization to the newest Kepler architecture and measuring ex-
ecution times on a Kepler GPU.

References

[1] Chowdhury, R.A. and Ramachandran, V.: Cache-Oblivious Dynamic
Programming, The Annual ACM-SIAM Symposium on Discrete Algo-
rithm (SODA), pp.591–600 (2006).

[2] Crochemore, M., Iliopoulos, C.S., Pinzon, Y.J. and Reid, J.F.: A
Fast and Practical Bit-Vector Algorithm for the Longest Common
Subsequence Problem, Information Processing Letters, Vol.80, No.6,
pp.279–285 (2001).

[3] Deorowicz, S.: Solving Longest Common Subsequence and Related
Problems on Graphical Processing Units, Software: Practice and Ex-
perience, Vol.40, pp.673–700 (2010).

[4] Dhraief, A., Issaoui, R. and Belghith, A.: Parallel Computing the
Longest Common Subsequence (LCS) on GPUs: Efficiency and Lan-
guage Suitability, The 1st International Conference on Advanced
Communications and Computation (INFOCOMP) (2011).

[5] Garland, M. and Kirk, D.B.: Understanding Throughput-Oriented Ar-
chitectures, Comm. ACM, Vol.53, No.11, pp.58–66 (2010).

[6] Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer
Science and Computational Biology, Cambridge University Press
(1997).

[7] Hirschberg, D.S.: A Linear Space Algorithm for Computing Maxi-
mal Common Subsequences, Comm. ACM, Vol.18, No.6, pp.341–343
(1975).

[8] Kirk, D.B. and Hwu, W.W.: Programming Massively Parallel Proces-
sors: A Hands-on Approach, Morgan Kaufmann (2010).

[9] Kloetzli, J., Strege, B., Decker, J. and Olano, M.: Parallel
Longest Common Subsequence Using Graphics Hardware, The 8th
Eurographics Symposium on Parallel Graphics and Visualization
(EGPGV) (2008).

[10] Lindholm, E., Nickolls, J., Oberman, S. and Montrym, J.: NVIDIA
Tesla: A Unified Graphics and Computing Architecture, IEEE Micro,
Vol.28, No.2, pp.39–55 (2008).

[11] Ozsoy, A., Chauhan, A. and Swany, M.: Towards Tera-Scale Perfor-
mance for Longest Common Subsequence Using Graphics Processor,
IEEE Supercomputing (SC) (2013).

[12] Ozsoy, A., Chauhan, A. and Swany, M.: Achieving TeraCUPS on
Longest Common Subsequence Problem Using GPGPUs, IEEE Inter-
national Conference on Parallel and Distributed Systems (ICPADS),
pp.69–77 (2013).

[13] Sanders, J. and Kandrot, E.: CUDA by Example: An Introduction to
General-Purpose GPU Programming, Addison-Wesley Professional
(2010).

[14] Sklansky, J.: Conditional-Sum Addition Logic, IRE Trans. Electronic
Computers, EC-9, pp.226–231 (1960).

[15] Vai, M.: VLSI DESIGN, CRC Press (2000).
[16] Webster, M.T., Smith, N.G., and Ellegren, H.: Microsatellite Evo-

lution Inferred from Human-Chimpanzee Genomic Sequence Align-
ments, The National Academy of Sciences of the USA, Vol.99, No.13,
pp.8748–8753 (2002).

[17] Yang, J., Xu, Y. and Shang, Y.: An Efficient Parallel Algorithm
for Longest Common Subsequence Problem on GPUs, The World
Congress on Engineering (WCE), Vol.I (2010).

c© 2014 Information Processing Society of Japan 43

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.7 No.2 36–44 (Nov. 2014)

Katsuya Kawanami is a Ph.D. student
of the Graduate School of Science at
Osaka Prefecture University in Japan. He
received his B.Sc. and M.Sc. degrees from
Osaka Prefecture University. He is a
member of IPSJ and JSCES. His research
interests include GPGPU.

Noriyuki Fujimoto is a professor of the
Graduate School of Science at Osaka Pre-
fecture University in Japan. He received
his B.Eng., M.Eng., and Dr.Eng. degrees
from Osaka University in Japan. He is a
member of IPSJ, IEICE, IEEE, and ACM.
His research interests include high perfor-
mace computing and combinatorial opti-

mization. In particular, his research efforts now focus on GPGPU
for combinatorial optimization.

c© 2014 Information Processing Society of Japan 44

