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Abstract: This paper focuses on initializing 3-D reconstruction from scratch without any prior scene information.
Traditionally, this has been done from two-view matching, which is prone to the degeneracy called “imaginary focal
lengths.” We overcome this difficulty by using three images, but we do not require three-view matching; all we need
is three fundamental matrices separately computed from pair-wise image matching. We exploit the redundancy of the
three fundamental matrices to optimize the camera parameters and the 3-D structure. The main theme of this paper
is to give an analytical procedure for computing the positions and orientations of the three cameras and their internal
parameters from three fundamental matrices. The emphasis is on resolving the ambiguity of the solution resulting from
the sign indeterminacy of the fundamental matrices. We do numerical simulation to show that imaginary focal lengths
are less likely for our three view methods, resulting in higher accuracy than the conventional two-view method. We
also test the degeneracy tolerance capability of our method by using endoscopic intestine tract images, for which the
camera configuration is almost always nearly degenerate. We demonstrate that our method allows us to obtain more
detailed intestine structures than two-view reconstruction and observe how our three-view reconstruction is refined by
bundle adjustment. Our method is expected to broaden medical applications of endoscopic images.

Keywords: three-view 3-D reconstruction, fundamental matrix, focal length computation, motion parameter compu-
tation, endoscopic image analysis

1. Introduction

Today, 3-D reconstruction from images is a common technique
of computer vision thanks to various reconstruction tools avail-
able on the Web. The basic principle is what is known as bundle

adjustment, computing from point correspondences over multi-
ple images all 3-D point positions and all camera parameters by
searching the high-dimensional parameter space. The search is
done so as to minimize the discrepancy, or the reprojection er-

ror, between the observed images and the projections of the 3-D
points predicted using the estimated camera parameters. The
best known bundle adjustment software is SBA of Lourakis and
Argyros [15]. Snavely et al. [17], [18] combined it with feature
point detection and matching as a package called bundler. Bun-
dle adjustment is an iterative process, requiring an initial solution,
which is usually computed by choosing from among the input im-
age pairs of well matched views. This is because the 3-D shape
and the camera parameters are easily computed from two views,
and various practically high-accuracy techniques have been pre-
sented [12].

However, it is well known that two-view reconstruction fails
if the two cameras are in a “fixating” configuration [3], [8], i.e.,
their optical axes intersect in the scene (Fig. 1 (a)). This includes
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Fig. 1 Fixating camera configuration. (a) The optical axes intersect. (b) The
optical axes are parallel.

the case of parallell optical axes (Fig. 1 (b)), which are regarded
as intersecting at infinity. This configuration is very natural when
one takes images of the same object from different positions. In
fact, almost all casual tourist images are taken in this way. An-
other problem is that irrespective of the camera configuration, the
information obtained from two views is minimal, resulting in the
same number of equations as the number of unknowns. This may
be an advantage in that the solution can be obtained analytically,
but often the solution that satisfies all equations does not exist for
noisy data. Typically, the square of some expressions containing
the focal lengths become negative; this problem is known as the
“imaginary focal length degeneracy.”

The purpose of this paper is not so much to achieve yet higher
reconstruction accuracy. Rather, we focus on preventing degen-
eracy. Namely, we want to initialize 3-D reconstruction stably
from scratch, i.e., without requiring any prior information about
the scene structure or the camera positions. There have already
been some such attempts. Observing that fixating configurations
occur when the principal point of one image matches to that of
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the other image, Hartley and Silpa-Anan [4] used the regulariza-
tion approach to minimally move the assumed principal points
so that the imaginary focal lengths do not arise, but the solu-
tion depends on the regularization parameter. Kanatani et al. [9]
proposed random resampling of matching points to avoid imag-
inary focal lengths, but a sufficient number of correspondences
are necessary. Goldberger [2] adopted the projective reconstruc-
tion framework, computing the camera matrices up to projectivity
from fundamental matrices and epipoles computed from image
pairs. For Euclidean reconstruction, however, more information
is required [16]. In this paper, we impose a strict constraint on the
cameras so that the Euclidean structure results from minimum in-
formation, yet extra degrees of freedom remain to be adjusted to
suppress imaginary focal lengths. This is made possible by us-
ing three images, but we do not require three-view matching; all
we need is three fundamental matrices separately computed from
pair-wise image matching.

In this paper, we provide an analytical procedure for comput-
ing the positions and orientations of the three cameras and their
internal parameters from three fundamental matrices. This was
already given in our earlier version [14], but here a special em-
phasis is placed on resolving the ambiguity of the solution result-
ing from the sign indeterminacy of the fundamental matrices. We
also discuss an optimal process for computing the 3-D position
of corresponding image points. If correspondence is obtained
between two images, this is done by the optimal triangulation
scheme of Kanatani et al. [13]. We extend this to the case where
correspondence is given over three images.

In Section 2, we state the objective of this paper. In Section 3,
we present our strategy for computing focal lengths from three
fundamental matrices, and in Sections 4 and 5, we describe our
iterative scheme for simultaneously computing the camera trans-
lations and rotations. Section 6 deals with the issue of sign am-
biguity of the solution. We explain the origin of the ambiguity
and introduce our rule for resolving it. Section 7 summarizes our
parameter computation algorithm. In Section 8 and Section 9, we
show how observed image positions are optimally corrected for
computing their 3-D positions for those points that are matched
over the three views; for points matched between two images,
this can be done using the standard procedure of two-view re-
construction [5], [12]. In Section 10, we do numerical simulation
and observe that imaginary focal lengths are less likely to oc-
cur, resulting in higher accuracy than two-view reconstruction.
In Section 11, we apply our method to endoscopic intestine tract
images. This provides a good testbed for the degeneracy toler-
ance capability of our method, because the camera configuration
is very pathological: the camera moves almost in one direction
in intestine tracts and hence always in a near fixation configura-
tion, which is very likely to cause imaginary focal lengths. We
observe that our method produces a more detailed structure in a
wider range than pairwise two-view reconstructions combined.
We also observe how our three-view reconstruction is refined by
bundle adjustment. In Section 12, we conclude.

2. The Task

For two-view reconstruction, the cameras must satisfy the fol-

Fig. 2 The XYZ camera coordinate system and the xy image coordinate
system.

lowing conditions [5], [12]:
( 1 ) The principal point is known.
( 2 ) The aspect ratio is 1.
( 3 ) No image skew exists.
This constraint stems from the fact that the available informa-
tion from two views is limited. We could relax this for three
views [2], [4], [16], but since our intention is to exploit the re-
dundancy of three-view information to do optimization, we adopt
the same constraint. This is no big restriction in practice, because
today’s cameras mostly satisfy the requirements or can easily be
so calibrated beforehand.

We define a camera-based XYZ coordinate system with the ori-
gin at the lens center and the Z-axis along its optical axis. On the
image plane, we define an xy image coordinate system such that
the origin o is at the principle point (at the frame center by de-
fault) with the x-axis upward and the y-axis rightward (Fig. 2).
This setting is for the x- and y-axes to constitute, together with
the optical axis, a right-handed system, which is necessary for
3-D rotation computation (for this purpose, we could instead take
the x-axis rightward and the y-axis downward).

We capture three images of the same scene by three cameras
(or equivalently by moving one camera). We call these images
the 0th, 1st, and 2nd views, and the corresponding cameras the
0th, 1st, and 2nd cameras, respectively. Suppose a point (x, y) in
the 0th view corresponds to (x′, y′) in the 1st view. We write the
epipolar equation [5] between them in the form

(x, F01x′) = 0, x =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x/ f0
y/ f0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠, x′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
x′/ f0
y′/ f0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠, (1)

where F01 is the fundamental matrix between the 0th and 1st
views. We write (a, b) for the inner product of vectors a and
b. The scaling constant f0 is for stabilizing numerical computa-
tion; we take it to be an approximate focal length of the cameras
and call it the default focal length (we set it to 600 pixels in our
experiment). The fundamental matrices F02 between the 0th and
2nd views and F12 between the 1st and 2nd views are similarly
defined. Fundamental matrices are uniquely computed from eight
or more point correspondence pairs (theoretically seven points are
sufficient, but the solution may not be unique). In our experiment,
we use the EFNS (Extended Fundamental Numerical Scheme) of
Kanatani and Sugaya [10], which can compute an exact reprojec-
tion error minimization solution.

We regard the XYZ coordinate system of the 0th camera as the
world coordinate system. Let t1 and t2 be the lens centers of the
1st and the 2nd cameras, respectively, and R1 and R2 their rota-
tions relative to the 0th camera (Fig. 3). Let f , f ′, and f ′′ be the
focal lengths of the 0th, 1st, and 2nd cameras, respectively. The
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Fig. 3 The translations t1 and t2 and the rotations R1 and R2 of the 1st and
2nd cameras relative to the 0th camera.

fundamental matrices F01, F02, and F12 ideally (i.e., if they are
exact) satisfy the following identities [5], [7]:

F01�diag(1, 1,
f
f0

)
(
t1 × R1

)
diag(1, 1,

f ′

f0
),

F02�diag(1, 1,
f
f0

)
(
t2 × R2

)
diag(1, 1,

f ′′

f0
),

F12�diag(1, 1,
f ′

f0
)
(
(R�1 (t2 − t1)) × (R�1 R2)

)
diag(1, 1,

f ′′

f0
).

(2)

Here, the symbol � denotes equality up to a nonzero constant and
diag(a, b, c) denotes the diagonal matrix with a, b, and c as the
diagonal elements in that order. For a vector u and a matrix A, we
define u × A to be the matrix whose columns are the vector prod-
ucts of u and the corresponding columns of A. The task of this
paper is to compute f , f ′, f ′′, t1, t2, R1, and R2 from given fun-
damental matrices F01, F02, and F12, considering the fact that the
computed F01, F02, and F12 may not be exact. Since the funda-
mental matrices are determined only up to scale, we assume that
F01, F02, and F12 are all normalized to unit Frobenius norm, as
is customary for most available fundamental matrix computation
tools.

3. Focal Length Computation

Instead of computing f , f ′, and f ′′, we compute the following
x, y, and z:

x ≡
( f0

f

)2
− 1, y ≡

( f0
f ′
)2
− 1, z ≡

( f0
f ′′
)2
− 1. (3)

This definition is in this section only (these x and y are different
from those in Eq. (1)) . It is known [9] that x and y ideally mini-
mize, in the neighborhood of the solution, the quadratic polyno-
mial in x and y

K01(x, y) = (k, F01 k)4x2y2 + 2(k, F01 k)2‖F�01 k‖2x2y

+2(k, F01 k)2‖F01 k‖2xy2 + ‖F�01 k‖4x2 + ‖F01 k‖4y2

+4(k, F01 k)(k, F01F�01F01 k)xy + 2‖F01F�01 k‖2x

+2‖F�01F01 k‖2y + ‖F01F�01‖2 −
1
2

(
(k, F01 k)2xy

+‖F�01 k‖2x + ‖F01 k‖2y + ‖F01‖2
)2
, (4)

where k ≡ (0, 0, 1)�, and that the minimum is 0 (Fig. 4 (a)).
If quadric polynomials K02(x, z) and K12(y, z) are similarly de-
fined, x and z minimize K02(x, z), and y and z minimize K12(y, z);
their minimums are 0. Hence, we can determine x and y from

Fig. 4 (a) The values of x and yminimizes K01(x, y), and the minimum is 0.
(b) For a fixating camera configuration, the minimum of K0,1(x, y) is
not uniquely determined. If x = y, the solution is at the intersection
of the minimum contour of K0,1(x, y) with the line x = y.

K01(x, y), y and z from K12(y, z), and x and z from K02(x, z). More-
over, the solution is analytically computed by the Bougnoux for-

mula [5], [9]. In the presence of noise, however, the analytically
obtained solutions are in general inconsistent to each other. This
is because three fundamental matrices are not mutually indepen-
dent but should satisfy some compatibility constraint [5], which
does not hold for noisy data (the constraint given in Ref. [5] is a
weak form; their fundamental matrices are formulated at the pro-
jective framework. Here, we are further assuming the conditions
(1), (2), and (3) listed in the beginning of Section 2). Theoreti-
cally, we could first modify F01, F02, and F12 to make them com-
patible, but that would involve mathematical difficulties. Here,
we adopt a much easier strategy of finding the three focal lengths
by a simple averaging scheme: we compute the solution x, y, and
z that minimize

F(x, y, z) = K01(x, y) + K02(x, z) + K12(y, z). (5)

Note that although this F(x, y, z) is identically 0 for ideal data,
its minimization for noisy data does not necessarily compute
a theoretically optimal solution. Theoretically, the three terms
should be given appropriate weights that reflect the scale and the
uncertainty of each term. We omit such weights, partly because
their theoretical evaluation is difficult and partly because our aim
is to “initialize” 3-D reconstruction to be refined later by other
means such as bundle adjustment, depending on the application.
Here, we simply regard the three terms as having approximately
the same scales and equal degrees of uncertainty.

In our experiment, we minimized Eq. (5) by using Newton it-
erations starting from x = y = z = 0, which is equivalent to
f = f ′ = f ′′ = f0. Then, f , f ′, and f ′′ are given from Eq. (3) in
the form

f =
f0√

1 + x
, f ′ =

f0√
1 + y

, f ′′ =
f0√

1 + z
. (6)

Note that if any of x, y, and z are equal to or less than −1, the com-
putation fails. This is the so called “imaginary focal length prob-
lem,” which frequently occurs in two-view reconstruction. One
of the causes of this phenomenon is that the analytical solution
relies on the fact that the solution not only minimizes K01(x, y),
K02(x, z), and K12(x, z) but also their minimums are exactly 0,
which does not hold for real data. Here, we are not assuming
that their minimums are 0, so we expect that the imaginary focal
length problem will be alleviated, if not completely avoided.

If the three focal lengths f , f ′, and f ′′ are known to be the
same, e.g., when the same camera is used to take the three im-
ages, and if we want to use this information, two approaches are
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conceivable. One is to minimize the function

F(x) = K01(x, x) + K02(x, x) + K12(x, x), (7)

for a single variable x. Another approach is to correct the com-
puted x, y, and z to a single value x̄ in such a way that the increase
in the value of Eq. (5) is minimum. If Eq. (5) is approximated by
a quadratic function in the neighborhood of its minimum, we ob-
tain

x̄ =
(
(Fxx + Fxy + Fxz)x + (Fyx + Fyy + Fyz)y

+ (Fzx + Fzy + Fzz)z
)/(

Fxx + Fyy + Fzz

+ 2(Fxy + Fyz + Fzx),
)

(8)

where Fxx, Fxy, etc. are the second derivatives of Eq. (5) at its
minimum. The role of the equal focal length constraint in two-
view reconstruction was studied experimentally in Ref. [9]. We
also repeated similar experiments, but the results are inconclu-
sive. We found no definitive evidence that the equal focal length
constraint improves the accuracy: better results were observed in
some but not all cases. The reason that treating the focal length as
varying, even though an identical camera is used, sometimes pro-
duces better 3-D shapes may be that some data inconsistency in
the presence of noise is absorbed by multiple degrees of freedom
of the focal lengths. However, this is not always the case. So, we
leave this issue to future research.

It is known [9] that if two cameras, say the 0th and the 1st, are
in a fixating configuration, the minimum of K01(x, y) in Eq. (4)
degenerates to a curve in the xy plane so it does not have a unique
minimum. If we assume that f = f ′, the solution is uniquely
determined as the intersection of that curve with the line x = y

(Fig. 4 (b)). However, if the two cameras are in an “isosceles”
configuration (fixating with equal distance; Fig. 5 (a)), the mini-
mum curve of K01(x, y) is “tangent” to the line x = y and hence
no clear intersection is defined (Fig. 5 (b)). The same holds for
the other pairs of cameras. However, our three-view formulation
can uniquely determine the solution even when fixating camera
configurations are included, unless the three cameras are in a si-
multaneous fixating configuration, in which case the Hessian of
F(x, y, z) in Eq. (5) becomes singular at the minimum, making
numerical minimization unstable.

According to our experience, we observed that in situations
where noise is very large and the camera configuration is nearly
degenerate, as in the case of endoscopic image analysis to be
shown later, the occurrence of imaginary focal length is less likely
when the equal focal length constraint is imposed.

Fig. 5 (a) Isosceles camera configuran. (b) The minimum contour of
K01(x, y) is tangent to the line x = y.

As mentioned earlier, the aim of our study is to obtain initial
3-D reconstruction to be refined later. For this purpose, it seem
that we may simply use the nominal focal length provided the
camera manufacturer or the value obtained by prior camera cal-
ibration. Today, however, more and more applications require
3-D reconstruction from images of unknown origin, such as on
the Web. Even if the camera information is provided, the zoom
setting at the time of shooting is often not recorded. Hence, esti-
mating the focal lengths from images alone is an important issue
today. The endoscopic image analysis to be shown later is one
such example.

4. Translation Computation

The relative camera translation can be computed from the fun-
damental matrix between two views [12]. Hence, the three funda-
mental matrices F01, F02, and F12 can determine the translations
between all the camera pairs. However, their signs and scales
are indeterminate. Although we cannot fix the absolute scale as
long as images are used, we can fix their relative scales from the
“triangle condition,” requiring that the three translations form a
closed triangle. However, as we show shortly, the triangle con-
dition involves camera rotations, so, unlike two-view reconstruc-
tion, translations cannot be determined separately. Here, we in-
troduce a procedure for computing the translations and rotations
at the same time.

Using the computed focal lengths f , f ′, and f ′′, we define the
essential matrices E01, E02, and E12 by

E01≡diag(1, 1,
f0
f

)F01diag(1, 1,
f0
f ′

),

E02≡diag(1, 1,
f0
f

)F02diag(1, 1,
f0
f ′′

),

E12≡diag(1, 1,
f0
f ′

)F12diag(1, 1,
f0
f ′′

), (9)

From Eq. (2), they ideally satisfy

E01 � t1 × R1, E02 � t2 × R2, E12 � t12 × R�1 R2, (10)

where t12 is the translation of the 2nd camera relative to the 1st
camera with respect to the 1st camera coordinate system. Since
the 1st camera coordinate system is rotated relatieve to the 0th
camera coordinate system by R1, the translation of the 2nd cam-
era relative to the 1st camera with respect to the world coordinate
system is R1 t12, which should equal t2 − t1. Hence, the triangle
condition is written as follows (Fig. 6):

t12 = R�1 (t2 − t1). (11)

This condition involves R1, which is unknown yet. We resolve
this problem as follows. Since Eq. (10) implies that t1, t2, and

Fig. 6 Triangle condition.
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t12 are, respectively, null vectors of E�01, E�02, and E�12 in the ab-
sence of noise, we compute those unit vectors t1, t2, and t12 that
minimize ‖E�01 t1‖2, ‖E�02 t2‖2, and ‖E�12 t12‖2, respectively. The
solution is given by the unit eigenvectors of E01E�01, E02E�02, and
E12E�12 for their smallest eigenvalues. At this stage, the scales
and the signs of t1, t2, and t12 are indeterminate. We choose their
signs so that∑

α

|t1, xα, E01x′α| > 0,
∑
α

|t2, xα, E02x′′α | > 0,

∑
α

|t12, x′α, E12x′′α | > 0, (12)

where |a, b, c| is the scalar triplet product of a, b, and c. The
vectors xα, x′α, and x′′α are the coordinates of the αth point rep-
resented by vectors as in Eq. (1) with the default focal length f0
replaced by the computed f , f ′, and f ′′. The summations run
over the image pairs from which that point is visible. In other
words, three-view matching is not necessary; each inequality of
Eq. (12) is tested by the matching over two views from which
the fundamental matrix was computed for that image pair. The
meaning of Eq. (12) will be discussed in Section 6 in detail.

Once the signs of t1, t2, and t12 are determined, we can deter-
mine the rotations R1 and R2 (next section). Then, substituting
the computed R1 into the triangle condition of Eq. (11), we min-
imize not ‖E�01 t1‖2, ‖E�02 t2‖2, and ‖E�12 t12‖2 separately but their
sum

‖E�01 t1‖2+‖E�02 t2‖2+‖E�12 t12‖2 = (

⎛⎜⎜⎜⎜⎝ t1

t2

⎞⎟⎟⎟⎟⎠,G
⎛⎜⎜⎜⎜⎝ t1

t2

⎞⎟⎟⎟⎟⎠), (13)

where we define the 6 × 6 matrix G by

G =

⎛⎜⎜⎜⎜⎝E01E�01+R1E12E�12R�1 −R1E12E�12R�1
−R1E12E�12R�1 E02E�02+R1E12E�12R�1

⎞⎟⎟⎟⎟⎠ . (14)

As in the case of Eq. (5), Eq. (13) is identically 0 for ideal data,
but for noisy observation the left side should theoretically be
given weights that reflect the scale and the uncertainty of each
term. Here, we ignore them for the ease of computation, assum-
ing that the three terms have approximately the same scales and
equal degrees of uncertainty.

As is well known, Eq. (13) is minimized by the unit eigenvec-

tor

⎛⎜⎜⎜⎜⎝ t1

t2

⎞⎟⎟⎟⎟⎠ of G for the smallest eigenvalue, which is normalized to

‖t1‖2 + ‖t2‖2 = 1. The sign is adjusted so that the recomputed t1

and t2 align to their original orientations. After t1 and t2 are thus
updated, we compute t12 in Eq. (11). From these t1, t2, and t12,
we update R1 and R2 (next section). Using the resulting R1, we
compute the unit eigenvector of G in Eq. (14) to update t1 and t2.
We repeat this until they converge; usually, only a few iterations
are sufficient.

5. Rotation Computation

Given t1, t2, and t12, we compute R1 and R2 that satisfy
Eq. (10) by minimizing

‖c1E01 − t1×R1‖2 + ‖c2E02 − t2×R2‖2
+‖c3E12 − t12×R�1 R2‖2, (15)

where ‖ · · · ‖ means the Frobenius norm and the constants c1,

c2, and c3 account for the scale indeterminacy of the essential
matrices in Eq. (10). It can be shown [7] (see Appendix A.1),
however, that these constants are irrelevant (we can simply let c1,
= c2 = c3 = 1), and minimizing Eq. (15) is equivalent to maxi-
mizing

J = tr[K�01R1] + tr[K�02R2] + tr[K�12R�1 R2], (16)

where tr[ · ] denotes the trace of a matrix and we define

K01 = −t1 × E01, K02 = −t2 × E02, K12 = −t12 × E12.

(17)

Here again, we omit the weight that would reflect the scale and
the uncertainty of each term of Eqs. (15) and (16), assuming that
each term has approximately the same scale and equal degree of
uncertainty.

For maximizing Eq. (16), we make use of the following propo-
sition [7]:

Proposition: Let K = VΛU� be the singular value decomposi-
tion of matrix K. The rotation R that maximizes tr[K�R] is
given by

R = Vdiag(1, 1, det(VU�))U�. (18)

First, we compute the rotation R1 that maximizes tr[K�01R1].
Equation (16) can be rewritten as

J = tr[K�01R1] + tr[(K02 + R1K12)�R2]. (19)

Using the computed R1, we determine the rotation R2 that maxi-
mizes tr[(K02 + R1K12)�R2]. Equation (16) can also be rewritten
as

J = tr[K�02R2] + tr[(K01 + R2K�12)�R1]. (20)

Using the computed R2, we determine the rotation R1 that maxi-
mizes tr[(K01 +R2K�12)�R1]. We iterate this, each time J increas-
ing, until J ceases to increase.

6. Sign Selection Rule

For the above computation of the translations and rotations, we
need to resolve a critical issue: the signs of E01, E02, and E12 in
Eq. (9) are indeterminate, because the fundamental matrices F01,
F02, and F12 have sign indeterminacy [5], [7]. The inequalities
in Eq. (12) state that almost all points are “in front” of the three
camera pairs provided the signs of E01, E02, and E12 are cor-
rect [7], [12]. This stems from the fact that the epipolar equation
in Eq. (1) holds even if the point is “behind” the cameras and that
the essential matrices in Eq. (9) inherit the sign indeterminacy of
the fundamental matrices in Eq. (2).

This ambiguity also occurs for two-view reconstruction, but
no problem arises. This is because the sign ambiguity of a
single fundamental matrix F results in two solutions, which is
known to produce two 3-D shapes that are mirror images to each
other [5], [7]. Hence, it suffices to choose the 3-D shape that are
in front of the two cameras in the final reconstruction stage [7].
For three fundamental matrices F01, F02, and F12, however, the
sign ambiguity of each of them results in eight solutions, which
are difficult to disambiguate by a simple means in the final stage.
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Imposition of Eq. (12) ensures that the signs of t1, t2, and t12

are compatible with the signs of E01, E02, and E12. This means
that:
• Either t1 and E01 have correct signs or their signs should be

reversed.
• Either t2 and E02 have correct signs or their signs should be

reversed.
Hence, the combination of these yields four possibilities, but
among them only two are compatible with the triangle condition
of Eq. (11).

Note that K01 in Eq. (17) uniquely determines R1, since it
is unchanged if the signs of t1 and E01 are simultaneously re-
versed. Similarly, K02 in Eq. (17) uniquely determines R2. In
order to select a correct combination, we assume that the signs
of t1 and E01 are correct, because one degree of sign indetermi-
nacy, which corresponds to mirror image ambiguity, is inevitable
as long as the 3-D reconstruction is based on the epipolar con-
straint. For selecting the correct signs of t2 and E02, we note that
E�12R�1 (t2 − t1) = 0 in the absence of noise, but this does not hold
if the sign of t2 (and hence the sign of E02) is not correct. So, we
introduce the following rule:

Rule 1: If ‖E�12R�1 (t2 − t1)‖ > ‖E�12R�1 (t2 + t1)‖, reverse the
signs of t2 and E02.

Now, the signs of t1 and t2 are correctly selected. However,
the sign of t12 may not be correct: if we compute t12 from them
using the triangulation condition of Eq. (11), its sign may not be
compatible with that computed from E12. In that case, K12 in
Eq. (17) may not be correctly computed. As we see in Eq. (10),
E12 � t12 × R�1 R2 should hold in the absence of noise, so we add
the following rule:

Rule 2: If ‖E12− t12×R�1 R2‖ > ‖E12+ t12×R�1 R2‖, we change
the sign of K12.

Using these two rules, we can correctly compute t1, t2, R1,
and R2 provided the sign of E1 (and hence the sign of t1) is cor-
rect. The remaining ambiguity is resolved in the final stage of
3-D reconstruction by choosing, from among two mirror image
solutions, the shape that are in front of all cameras, as will be
discussed in Section 9.

7. Summary of the Parameter Computation

We now summarize the computation of the focal lengths f , f ′,
and f ′′, the translations t1 and t2, and the rotations R1 and R2. It
consists of three procedures focal lengths, translations, and rota-

tions:

focal lengths

( 1 ) From the given fundamental matrices F01, F02, and F12,
define the functions K01(x, y), K02(x, y), and K12(x, y) as in
Eq. (4).

( 2 ) Compute the x, y, and z that minimize Eq. (5) (the equal fo-
cal length constraint may or may not be imposed).

( 3 ) Return the focal lengths f , f ′, and f ′′ given by Eq. (6) and
stop.

translations

( 1 ) Using the focal lengths f , f ′, and f ′′ computed by focal

lengths, compute the essential matrices E01, E02, and E12

by Eq. (9).
( 2 ) Compute the unit eigenvectors t1, t2, and t12 of E01E�01,

E02E�02, and E12E�12, respectively, for the smallest eigenval-
ues.

( 3 ) Adjust the signs of t1, t2, and t12 so that Eq. (12) holds.
( 4 ) From the computed t1, t2, and t12, compute the rotations R1

and R2 by rotations.
( 5 ) Let t(0)

1 ← t1, t(0)
2 ← t2, and t(0)

12 ← t12.
( 6 ) Update t1 and t2 by computing the unit eigenvector of

the matrix G in Eq. (14) for the smallest eigenvalue. If
(t1, t

(0)
1 ) < 0 and (t2, t

(0)
2 ) < 0, reverse the signs of t1 and

t2.
( 7 ) Let t12 ← R�1 (t2 − t1).
( 8 ) If ‖t1 × t(0)

1 ‖ ≈ 0, ‖t2 × t(0)
2 ‖ ≈ 0, and ‖t12 × t(0)

12 ‖ ≈ 0, return
t1, t2, R1, and R2 and stop. Else, go back to Step (4).

rotations

( 1 ) From the given t1, t2, and t12, compute the matrices K01,
K02, and K12 of Eq. (17).

( 2 ) Compute the rotation R1 via the SVD of K01, and let R(0)
1 ←

R1.
( 3 ) Compute the rotation R2 via the SVD of K02, and let R(0)

2 ←
R2.

( 4 ) If ‖E�12R�1 (t2 − t1)‖ > ‖E�12R�1 (t2 + t1)‖, reverse the signs of
t2 and E02.

( 5 ) If ‖E12 − t12×R�1 R2‖ > ‖E12+ t12 ×R�1 R2‖, reverse the sign
of K12.

( 6 ) Compute the rotation R2 via the SVD of K02+R1K12. Using
that R2, compute the rotation R1 via the SVD of K01+R2K�12.

( 7 ) If R1 ≈ R(0)
1 and R2 ≈ R(0)

2 , return R1 and R2 and stop. Else,
let R(0)

1 ← R1 and R(0)
2 ← R2, and go back to Step (6).

8. Optimal Correction of Matching Points

After all the parameters (the focal lengths f , f ′, and f ′′, the
translations t1 and t2, and the rotations R1 and R2) are com-
puted, we determine the 3-D positions of individual points. As
pointed out earlier, our method does not require point matching
over three images; all we need is three fundamental matrices sep-
arately computed from pair-wise point matching. So, point data
are classified into two types: points that are matched only be-
tween a pair of images, and points that happen to be matched
over all the three images. For points of the former type, we use
the standard two-view reconstruction method [5], [12]. We now
describe the procedure for points of the latter type.

First, we recompute the essential matrices E01, E02, and E12 as
follows:

E01 = t1 × R1, E02 = t2 × R2,

E12 =

(
R�1 (t2 − t1)

)
× R�1 R2. (21)

Then, we optimally correct the observed image positions, i.e., op-
timally correct the vectors x, x′, and x′′, constructed from the
image coordinates as in Eq. (1) with the default focal length f0
replaced by the computed f , f ′, and f ′′, to x̂, x̂′, and x̂′′, re-
spectively. The correction is done so that the corrected positions
exactly satisfies the epipolar equations for the essential matrices
E01, E02, and E12 recomputed by Eq. (21) using the computed
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translations t1 and t2 and rotations R1 and R2. To be specific, we
modify x, x′, and x′′ to x̂, x̂′, and x̂′′, respectively, in such a way
that ‖x̂ − x‖2 + ‖x̂′ − x′‖2 + ‖x̂′′ − x′′‖2 is minimized subject to
(x̂, E01 x̂′) = (x̂, E02 x̂′′) = (x̂′, E12 x̂′′) = 0. For two views, this
is nothing but the optimal triangulation procedure of Kanatani
et al. [10], [13]. For points matched over three views, this pro-
cess is extend to the following form (see Appendix A.2 for the
derivation):
( 1 ) Let E0 = ∞ (a sufficiently large number), x̂ = x, x̂′ = x′,

x̂′′ = x′′, and x̃ = x̃′ = x̃′′ = 0.
( 2 ) Compute λ, λ′, and λ′′ by solving the following linear equa-

tion, where Pk = diag(1, 1, 0):⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(PkE01 x̂′, E01 x̂′) + (PkE�01 x̂, E�01 x̂)

(PkE01 x̂′, E02 x̂′′)
(PkE�01 x̂, E12 x̂′′)

(PkE02 x̂′′, E01 x̂′)
(PkE02 x̂′′, E02 x̂′′) + (PkE�02 x̂, E�02 x̂)

(PkE�02 x̂, E�12 x̂′)

(PkE12 x̂′′, E�01 x̂)
(PkE�12 x̂′, E�02 x̂)

(PkE12 x̂′′, E12 x̂′′) + (PkE�12 x̂′, E�12 x̂′)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
λ

λ′

λ′′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(x̂, E01 x̂′) + (x̃, E01 x̂′) + (x̃′, E�01 x̂)

(x̂, E02 x̂′′) + (x̃, E02 x̂′′) + (x̃′′, E�02 x̂)
(x̂′, E12 x̂′′) + (x̃′, E12 x̂′′) + (x̃′′, E�12 x̂′)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (22)

( 3 ) Update x̃, x̃′, and x̃′′ as follows:

x̃← λPkE01 x̂′ + λ′PkE02 x̂′′,

x̃′ ← λPkE�01 x̂ + λ′′PkE12 x̂′′,

x̃′′ ← λ′PkE�02 x̂ + λ′′PkE�12 x̂′. (23)

( 4 ) Update x̂, x̂′, and x̂′′ as follows:

x̂← x − x̃, x̂′ ← x − x̃′, x̂′ ← x − x̃′′. (24)

( 5 ) Compute the reprojection error E = ‖x̃‖2 + ‖x̃′‖2 + ‖x̃′′‖2. If
E ≈ E0, then return x̂, x̂′, x̂′′ and stop. Else, let E0 ← E and
go back to Step (2).

For points matched only over two images, we use the method
described in Refs. [10], [13].

9. Computation of 3-D Position

After the observed image positions are optimally corrected by
the procedure described above, we compute their 3-D positions.
The projection matrices P, P′, and P′′ of the three cameras have
the form

P = diag(1, 1,
f0
f

)
(

I 0
)
,

P′ = diag(1, 1,
f0
f ′

)
(

R�1 −R�1 t1

)
,

P′′ = diag(1, 1,
f0
f ′′

)
(

R�2 −R�2 t2

)
. (25)

Let Xα = (Xα,Yα,Zα)� be the 3-D position of the αth point, and
x̂α, x̂′α, x̂′′α its 2-D positions in the 0th, 1st, and 2nd views, re-
spectively, after the optimal correction. The following projection
relationships hold:

x̂α � P

⎛⎜⎜⎜⎜⎝ Xα
1

⎞⎟⎟⎟⎟⎠ , x̂′α � P′
⎛⎜⎜⎜⎜⎝ Xα

1

⎞⎟⎟⎟⎟⎠ , x̂′′α � P′′
⎛⎜⎜⎜⎜⎝ Xα

1

⎞⎟⎟⎟⎟⎠ . (26)

By canceling the denominators, we obtain the following linear
equations in Xα:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̂αP31 − f0P11 x̂αP32 − f0P12 x̂αP33 − f0P13

ŷαP31 − f0P21 ŷαP32 − f0P22 ŷαP33 − f0P23

x̂′αP′31 − f0P′11 x̂′αP′32 − f0P′12 x̂′αP′33 − f0P′13

ŷ′αP′31 − f0P′21 ŷ′αP′32 − f0P′22 ŷ′αP′33 − f0P′23

x̂′′αP′′31 − f0P′′11 x̂′′αP′′32 − f0P′′12 x̂′′αP′′33 − f0P′′13

ŷ′′αP′′31 − f0P′′21 ŷ′′αP′′32 − f0P′′22 ŷ′′αP′′33 − f0P′′23

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Xα
Yα
Zα

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̂αP34 − f0P14

ŷαP34 − f0P24

x̂′αP′34 − f0P′14

ŷ′αP′34 − f0P′24

x̂′′αP′′34 − f0P′′14

ŷ′′αP′′34 − f0P′′24

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (27)

Since Eq. (26) exactly holds due to the optimal correction proce-
dure, we can choose any three from the six equations in Eq. (27)
to solve for Xα. Alternatively, we can use all the equations by
least squares. If the point is visible only in two views, we remove
the corresponding rows and columns from the above equation.

So far, we have assumed that the sign of E01 is correct (Sec-
tion 6). If its sign is wrong (hence the signs of E02 and E12 are
also wrong), the reconstructed shape is a mirror image of the true
shape locating behind the cameras [5], [7]. Hence, if

N∑
α

sgn(Zα) < 0, (28)

for the visible points from the 0th camera, where sgn(x) returns
1, −1, and 0 according to x > 0, x < 0, and x = 0, respectively,
we reverse the signs of all (Xα,Yα, Zα)�.

10. Simulation Experiments

Figure 7 shows three simulated views (0th, 1st, and 2nd
from left) of a grid surface. The frame size is assumed to be
800 × 800 pixels and the focal lengths f = f ′ = f ′′ = 600 pixels.
We added independent Gaussian random noise of mean 0 and
standard deviation σ pixels to the x and y coordinates of each
grid point and conducted calibration and 3-D reconstruction. For
a computed focal length f , we evaluated the difference Δ f = f− f̄

from its true value f̄ . If the computation failed (“imaginary focal
lengths”), we let f = 0. Since the absolute scale of translation
is indeterminate, we evaluated for a computed translation t the
angle Δθ = cos−1(t, t̄)/‖t‖ · ‖ t̄‖ (in degree) it makes from its true
value t̄. If the computation failed due to imaginary focal lengths,

Fig. 7 The 0th, 1st, and 2nd views a simulated curved grid surface. The 0th
and the 2nd cameras are nearly in a fixating configuration.
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Fig. 8 The RMS error of focal length computation for σ, where “2view01,”
etc. denote the values computed from the 0th-1st image pair, etc., and
“3view” means the value computed from the three views.

Fig. 9 The RMS error (in degree) of translation computation for σ.
“2view01,” etc. denote the values computed from the 0th-1st im-
age pair, etc., and “3view” means the value computed from the three
views.

we let Δθ = 90◦. For a computed rotation R, we evaluated the
angle ΔΩ (in degree) of the relative rotation RR̄� from the true
value R̄. If the computation failed due to imaginary focal lengths,
we let ΔΩ = 90◦. Then, we evaluated the RMSs

E f =

√√√
1
K

K∑
a=1

Δ f 2
a , E t =

√√√
1
K

K∑
a=1

Δθ2a,

ER=

√√√
1
K

K∑
a=1

ΔΩ2
a, (29)

over K = 10,000 independent trials, each time using different
noise, where the subscript a indicates the value of the ath trial.

Figure 8 compares the accuracy of focal lengths computed
from two views and from three views. We see that f and f ′′

computed from the 0th-2nd image pair have large errors. This is
because the 0th and 2nd cameras are nearly in a fixating configu-
ration. The large fluctuations of the plots indicate the occurrence
of imaginary focal lengths. However, we can obtain accurate val-
ues for all the focal lengths if we use three images. In this noise
range, no imaginary focal lengths occurred for three-view compu-
tation. Figure 9 and Fig. 10 compare the accuracy of translation
and rotation. The error is large for the values computed from the
0th-2nd image pair due to the low accuracy of the focal length
computation from them. However, we can obtain accurate values
by using three views despite the fixating camera configuration of
the 0th and 2nd cameras.

Fig. 10 The RMS error (in degree) of rotation computation for σ.
“2view01,” etc. denote the values computed from the 0th-1st image
pair, etc., and “3view” means the value computed from the three
views.

Fig. 11 Three consecutive frames of endoscopic intestine tract images.

11. Endoscopic Image Experiments

Figure 11 shows three consecutive frames of intestine tract im-
ages taken by an endoscope receding along the tract. These im-
ages were provided by medical researchers without any informa-
tion about the endoscopic camera used. It is well known that if a
camera is moved forward or backward, two-view reconstruction
frequently fails because any two camera positions are nearly in
a fixating configuration, frequently resulting in imaginary focal
lengths. Hence, this is a good testbed for examining the degen-
eracy tolerance capability of our method. At the same time, our
method, if successful, would bring about a new medical applica-
tion of reconstructing 3-D structures from endoscopic images.

We extracted feature points and matched them between each
pair of frames, using the method of Hirai et al. [6]. Figure 12 (a)
shows the reconstruction from the three frames in Fig. 11. For
comparison, Fig. 12 (b), (c), (d) show the two-view reconstruc-
tions from the 0th-1st frame pair, the 0th-2nd frame pair, and the
1st-2nd frame pair, respectively; only those points viewed in the
corresponding image pairs are reconstructed.

Since the ground truth is not known, we cannot tell which of
(a), (b), (c), and (d) is the most accurate. As we can see, how-
ever, the three-view reconstruction (a) provides a detailed shape
in a longer range along the tract with a larger number of points
than the two-view reconstructions (b), (c), and (d). Ideally, the
superimposition of (b), (c), and (d) should coincide with (a) if we
correctly adjust the scale of the two-view reconstructions in (b),
(c), and (d) (recall that the scale is indeterminate in each recon-
struction). For real data, however, the two-view reconstructions
do not necessarily agree with the three-view reconstruction. In
this sense, our three-view reconstruction can be viewed as au-
tomatically adjusting the scales of two-view reconstructions and
optimally merging them into a single shape.

Figure 13 shows another set of three consecutive frames of in-
testine tract images, and Fig. 14 shows the reconstruction from
them. Figure 14 (a) shows the resulting three-view reconstruc-
tion. In this case, two-view reconstruction was possible only from
the 1st-2nd frame pair (Fig. 14 (b)); the computation failed both
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Fig. 12 Front views (left) and side views (right) of the 3-D reconstruction
from the data of Fig. 11. (a) Using the three frames. Different col-
ors indicate different image pairs they originate from. (b) Using the
0th-1st frame pair. (c) Using the 0th-2nd frame pair. (d) Using the
1st-2nd frame pair.

Fig. 13 Another set of three consecutive frames of endoscopic intestine tract
images.

Fig. 14 Front views (left) and side views (right) of the 3-D reconstruction
from the data set in Fig. 13. (a) Using the three frames. (b) Using
the 1st-2nd frame pair. Reconstruction from the 0th-1st frame pair
and reconstruction from the 0th-2nd frame pair both fail.

for the 0th-1st frame pair and for the 0th-2nd frame pair due to
imaginary focal lengths. Yet, using three images, we can accu-
rately compute the 3-D positions of all pairwise matched points
and obtain a detailed structure in a longer range along the tract.

Figure 15 shows the result of applying bundle adjustment to
the shape shown in Fig. 12 (a): red points by three-view recon-
struction are corrected to white points (the details of our program

Fig. 15 Front view (left) and side view (right) of bundle adjustment. Red
points correspond to the result in Fig. 12 (a), which are corrected to
white points.

is described in Ref. [11]). The reprojection error reduced from
204.89 to 0.47058, which means that the distance between ob-
served and predicted image positions reduced about 0.05 times
on average. This reduction is partly due to optimizing the focal
lengths and principal points of the three views independently, al-
though the camera is the same, i.e., the same focal length and
principal point. Since the ground truth is unknown, it is un-
able to tell if the accuracy has really improved by bundle adjust-
ment. Bundle adjustment is very effective when object is viewed
from many different viewpoints. For endoscopic images, how-
ever, one feature point is observed mostly by two or three consec-
utive frames. In such a case, we cannot expect much information
is added by bundle adjustment.

12. Concluding Remarks

We have presented a new method for initializing 3-D recon-
struction from three views, generating a candidate solution to be
refined later. Our main focus is to prevent the imaginary focal
length degeneracy, which two-view reconstruction frequently suf-
fers. Our method does not require correspondences among the
three images; all we need is three fundamental matrices sepa-
rately computed from pair-wise correspondences. We exploited
the redundant information provided by the three fundamental ma-
trices to optimize the camera parameters and the 3-D structure.
We conducted numerical simulation and observed that imagi-
nary focal lengths never occurred in the experimented noise range
while two-view computation frequently failed, resulting in higher
average accuracy of our method than two-view reconstruction.
We also tested the degeneracy tolerance capability of our method
by using endoscopic intestine tract images, noting that the camera
configuration is almost always near degeneracy. We observed that
our method produced a more detailed structure in a wider range
than combining pairwise two-view reconstructions, for which
computation frequently fails. We also observed how our three-
view reconstruction is refined by bundle adjustment. Our method
is expected to broaden medical applications of endoscopic im-
ages.
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Appendix

A.1 Rotation Computation

Consider the computation of the rotation R that minimizes the
square Frobenius norm

‖cE − t × R‖2 (A.1)

for given matrix E and vector t and for some scale constant c.
Equation (A.1) is rewritten as

c2‖E‖2 − 2ctr[E�(t × R)] + ‖t × R‖2. (A.2)

The second term can be written as

−2ctr[E�(t × I)R] = −2ctr[((t × I)�E)�R] = −2ctr[K�R]

(A.3)

where we let

K = (t × I)�E = −(t × I)E = −t × E. (A.4)

If we recall that ‖( · · · )R‖2 = ‖ · · · ‖2 for the Frobenius norm, the

third term of Eq. (A.2) is

‖(t × I)R‖2 = ‖t × I‖2 = 2‖t‖2. (A.5)

Thus, Eq. (A.2) becomes

c2 − 2ctr[K�R] + 2‖t‖2 (A.6)

Here, we assume that the sign of E is correctly chosen so that
c > 0 (the issue of sign selection is discussed in Section 6). Then,
minimizing Eq. (A.2) is equivalent to maximizing tr[K�R]. Thus,
the scale constant c is irrelevant as long as the sign of E is cor-
rectly chosen.

A.2 Derivation of Optimal Correction

We correct vectors x, x′, and x′′ to x − Δx, x′ − Δx′, and
x′′ −Δx′′, respectively, such that the following epipolar equations
satisfy

(x−Δx, E01(x′−Δx′)) = 0, (x−Δx, E02(x′′−Δx′′)) = 0,

(x′−Δx′, E12(x′′−Δx′′)) = 0. (A.7)

Expanding these with respect to the correction terms Δx, Δx′, and
Δx′′ and ignoring higher order terms, we obtain

(Δx, E01x′) + (Δx′, E�01x) = (x, E01x′),

(Δx, E02x′′) + (Δx′′, E�02x) = (x, E02x′′),

(Δx′, E12x′′) + (Δx′′, E�12x′) = (x′, E12x′′). (A.8)

Among those Δx, Δx′, and Δx′′ that satisfy these, we choose the
values that minimizes ‖Δx‖2+ ‖Δx′‖2+ ‖Δx′′‖2. Since the correc-
tion occurs in the image plane, the third component of Δx, Δx′,
and Δx′′ are zero. In other words,

(k,Δx) = 0, (k,Δx′) = 0, (k,Δx′′) = 0, (A.9)

where k = (0, 0, 1)�. Introducing Lagrange multipliers for
Eqs. (A.8) and (A.9), we consider

1
2

(
‖Δx‖2 + ‖Δx′‖2 + ‖Δx′′‖2

)
−λ
(
(Δx, E01x′) + (Δx′, E�01x)

)
−λ′
(
(Δx, E02x′′) + (Δx′′, E�02x)

)
−λ′′
(
(Δx′, E12x′′) + (Δx′′, E�12x′)

)
−μ(k,Δx) − μ′(k,Δx′) − μ′′(k,Δx′′). (A.10)

Differentiating this with respect to Δx, Δx′, and Δx′′ and letting
the result be 0, we have

Δx = λE01x′ + λ′E02x′′ + μk,

Δx′ = λE�01x + λ′′E12x′′ + μ′k,

Δx′′ = λ′E�02x + λ′′E�12x′ + μ′′k. (A.11)

Multiplying these by Pk = diag(1, 1, 0) from left on both sides
and noting that PkΔx = Δx, PkΔx′ = Δx′, PkΔx′′ = Δx′′, and
Pk k = 0, we obtain

Δx = λPkE01x′ + λ′PkE02x′′,

Δx′ = λPkE�01x + λ′′PkE12x′′,
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Δx′′ = λ′PkE�02x + λ′′PkE�12x′. (A.12)

Substituting these into Eq. (A.8), we obtain the following linear
equation in λ, λ′, and λ′′:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(PkE01x′, E01x′) + (PkE�01x, E�01x)
(PkE01x′, E02x′′)
(PkE�01x, E12x′′)

(PkE02x′′, E01x′)
(PkE02x′′, E02x′′) + (PkE�02x, E�02x)

(PkE�02x, E�12x′)

(PkE12x′′, E�01x)
(PkE�12x′, E�02x)

(PkE12x′′, E12x′′) + (PkE�12x′, E�12x′)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
λ

λ′

λ′′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(x, E01x′)
(x, E02x′′)
(x′, E12x′′)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (A.13)

We solve this for λ, λ′, and λ′′ and correct x, x′, and x′′ according
to Eq. (A.12) as follows:

x̂ = x − λPkE01x′ − λ′PkE02x′′,

x̂′ = x′ − λPkE�01x − λ′′PkE12x′′,

x̂′′ = x′′ − λ′PkE�02x − λ′′PkE�12x′. (A.14)

However, this is only first approximation. So, we add higher or-
der correction terms Δx̂, Δx̂′, and Δx̂′′ in such a way that

(x̂ − Δx̂, E01(x̂′ − Δx̂′)) = 0,

(x̂ − Δx̂, E02(x̂′′ − Δx̂′′)) = 0,

(x̂′ − Δx̂′, E12(x̂′′ − Δx̂′′)) = 0. (A.15)

Expanding these with respect to Δx, Δx′, and Δx′′ and ignoring
higher order terms, we obtain

(Δx̂, E01 x̂′) + (Δx̂′, E�01 x̂) = (x̂, E01 x̂′),

(Δx̂, E02 x̂′′) + (Δx̂′′, E�02 x̂) = (x̂, E02 x̂′′),

(Δx̂′, E12 x̂′′) + (Δx̂′′, E�12 x̂′) = (x̂′, E12 x̂′′). (A.16)

Among those Δx̂, Δx̂′, and Δx̂′′ that satisfy these, we choose the
values that minimizes

‖x − (x̂ − Δx̂)‖2 + ‖x′ − (x̂′ − Δx̂′)‖2 + ‖x′ − (x̂′′ − Δx̂′′)‖2
=‖x̃ + Δx̂‖2 + ‖x̃′ + Δx̂′‖2 + ‖x̃′′ + Δx̂′′‖2, (A.17)

where we put

x̃ = x − x̂, x̃′ = x′ − x̂′, x̃′′ = x′′ − x̂′′. (A.18)

Since the correction occurs in the image plane, we have (k,Δx̂) =
0, (k,Δx̂′) = 0, and (k,Δx̂′′) = 0. Introducing Lagrange multi-
pliers, we differentiate

1
2

(
‖x̃ + Δx̂‖2 + ‖x̃′ + Δx̂′‖2 + ‖x̃′′ + Δx̂′′‖2

)
−λ
(
(Δx̂, E01 x̂′) + (Δx̂′, E�01 x̂)

)
−λ′
(
(Δx̂, E02 x̂′′) + (Δx̂′′, E�02 x̂)

)
−λ′′
(
(Δx̂′, E12 x̂′′) + (Δx̂′′, E�12 x̂′)

)

−μ(k,Δx̂) − μ′(k,Δx̂′) − μ′′(k,Δx̂′′), (A.19)

with respect to Δx, Δx′, and Δx′′ and let the result be 0. We
obtain

Δx = λE01 x̂′ + λ′E02 x̂′′ + μk − x̃,

Δx′ = λE�01 x̂ + λ′′E12 x̂′′ + μ′k − x̃′,

Δx′′ = λ′E�02 x̂ + λ′′E�12 x̂′ + μ′′k − x̃′′. (A.20)

Multiplying these by Pk from left on both sides and noting that
PkΔx = Δx, PkΔx′ = Δx′, PkΔx′′ = Δx′′, Pk k = 0, Pkx̃ = x̃,
Pkx̃′ = x̃′, and Pkx̃′′ = x̃′′, we obtain

Δx = λPkE01 x̂′ + λ′PkE02 x̂′′ − x̃,

Δx′ = λPkE�01 x̂ + λ′′PkE12 x̂′′ − x̃′,

Δx′′ = λ′PkE�02 x̂ + λ′′PkE�12 x̂′ − x̃′′. (A.21)

Substituting these into Eq. (A.16), we obtain the linear equation
in Eq. (22). Solving it for λ, λ′, and λ′′, we correct x̂, x̂′, and x̂′′

according to Eq. (A.21) as follows:

ˆ̂x = x̂ − λPkE01 x̂′ − λ′PkE02 x̂′′ + x̃

= x − λPkE01 x̂′ − λ′PkE02 x̂′′,
ˆ̂x
′
= x̂′ − λPkE�01 x̂ − λ′′PkE12 x̂′′ + x̃′

= x′ − λPkE�01 x̂ − λ′′PkE12 x̂′′,
ˆ̂x
′′
= x̂′′ − λ′PkE�02 x̂ − λ′′PkE�12 x̂′ + x̃′′

= x′′ − λ′PkE�02 x̂ − λ′′PkE�12 x̂′. (A.22)

Regarding these as new x̂, x̂′, and x̂′′, we add higher order cor-
rections again and repeat this until the reprojection error E no
longer decreases. The procedure is arranged in the form given in
Section 8.
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