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Abstract: Parallelization of the alpha-beta algorithm on distributed computing environments is a promising way of
improving the playing strength of computer game programs. Search programs should predict and concentrate the effort
on the subtrees that will not be pruned. Unlike in sequential search, when subtrees are explored in parallel, their results
are obtained asynchronously. Using such information dynamically should allow better prediction of subtrees that are
never pruned. We have implemented a parallel game tree search algorithm performing such dynamic updates on the
prediction. Two kinds of game trees were used in performance evaluation: synthetic game trees and game trees gener-
ated by a state-of-the-art computer player of shogi (Japanese chess). On a computer cluster with 1,536 cores, dynamic
updates actually show significant performance improvements, which are more apparent in game trees generated by
the shogi program for which the initial prediction is less accurate. The speedup nevertheless remains sublinear. A
performance model built through analyses of the results reasonably explains the results.
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1. Introduction

Most game-playing programs perform game tree search to de-
cide the move to play for a given position (i.e., game state). The
alpha-beta algorithm [10] is arguably the most widely used game-
tree search algorithm for chess-like games. Large-scale paral-
lelization of the alpha-beta algorithm on a distributed comput-
ing environment is a promising way of improving the playing
strength of the programs. For example, Deep Blue, which is a
well-known Chess machine that defeated the then World Chess
Champion, performed parallel alpha-beta search on a 30-node
RS/6000 SP computer with 480 chess chips [3].

The alpha-beta algorithm significantly reduces the search space
by pruning subtrees, but, given a search tree, one of certain sub-
sets of nodes must be visited to complete the search. Such a sub-
set of nodes is called a minimal tree [1]. Note that there can be
multiple minimal trees in a search tree. Since minimal trees are
yet to be known to the program during the search, a minimal tree
needs to be predicted in actual search if we are to reduce the num-
ber of visited nodes.

Parallelization of the alpha-beta algorithm is challenging be-
cause parallelized programs tend to search unnecessary nodes in
subtrees that would have been pruned in the sequential search.
When multiple parts of the tree are searched in parallel, these
tasks have to be started before knowing the results of others which
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could have been obtained in the sequential search. Several pro-
grams attempted to visit only those nodes in one of the minimal
trees by suspending search of nodes unlikely to be included in
the minimal tree [2], [4], [7]. The minimal tree is predicted using
partial search results. Thus, it is important to utilize the results
of partially completed search for minimal tree prediction, and dy-
namically update the prediction based on information incremen-
tally obtained by other tasks.

Game tree search is conducted in an iterative deepening fash-
ion, that is, the tree is inspected incrementally deeper, so as to
predict a minimal tree based on the results of a shallower search.
If subtrees were inspected independently and only the final results
are used, results obtained during shallower search would not be
used in prediction of a minimal tree.

Brockington has proposed a method to utilize results of shal-
lower search by subtasks in prediction of a minimal tree [2]. The
effectiveness of the idea on the performance has not been thor-
oughly evaluated, however. In this work, we have performed ex-
periments using a computer cluster with 1,536 cores to evaluate
the idea.

Two kinds of game trees were used: synthetic game trees and
game trees generated by a state-of-the-art computer player of
shogi (Japanese chess). The results show that the dynamic up-
dates of a predicted minimal tree are especially effective for the
game trees generated by the shogi player program.

This paper is structured as follows. Section 2 introduces
the alpha-beta algorithm and describes related work on parallel
alpha-beta algorithms. Next, the implementation of our parallel
game tree search algorithm is explained in Section 3. Experimen-
tal results are then reported in Section 4. Factors of the sublinear
speedup are analyzed in Section 5. Lastly, we summarize the
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work and describe future work in Section 6.

2. Related Work

2.1 Alpha-Beta Algorithm
The alpha-beta algorithm [10] is a game tree search algorithm

that computes the min-max value of a game tree, while pruning
the edges that are guaranteed to have no effect in the min-max
value. A pseudo-code of the alpha-beta algorithm is shown in
Fig. 1. The alpha-beta pair is called a search window, which is
used as the thresholds for pruning subtrees. Narrower search
windows can prune more subtrees. The function Evaluate() re-
turns the static evaluation of a given game position. The function
SortChildren() returns a list of child positions of a given position.
The list is sorted so that promising children come first.
2.1.1 Iterative Deepening

An internal iterative deepening search helps sorting the chil-
dren. On line 4 in Fig. 1, a shallower search is performed to tell
the most promising child position, i.e., the one that is expected
to give the best min-max value among siblings. With iterative
deepening, the first element of clist on line 5 is the child obtained
by AlphaBeta() on line 4. Other children are also sorted so that
promising children come first.
2.1.2 Transposition Table

A transposition table is used, but it is omitted in Fig. 1. Trans-
position tables store the results of an already finished search to
avoid searching subtrees below the same position more than once.
The return value of AlphaBeta() is the exact evaluation of the po-
sition if the min-max value is within the search window. Oth-
erwise, the function returns the alpha or beta value. The value
indicates an upper or lower bound of the min-max value. Trans-
position tables are looked up to know whether the valuation of a
node resides within the search window or not, for which stored
results may or may not be used.

2.2 Parallel Alpha-Beta Algorithms
Parallel alpha-beta algorithms are divided into two groups,

synchronized and asynchronous. Synchronization means that
processes wait other processes searching sibling nodes to fin-
ish. In general, synchronization algorithms search fewer nodes
than asynchronous algorithms, but synchronized algorithms make
more processors idle due to synchronization.

Young Brothers Wait Concept (YBWC) [4] is a successful syn-
chronized parallel alpha-beta algorithm and has been studied

1 int AlphaBeta(position, depth, alpha, beta){
2 if(depth == 0 || position is a terminal position)
3 return Evaluate(position);
4 AlphaBeta(position, depth−2, alpha, beta);
5 clist = SortChildren(position);
6 foreach(child of clist){
7 alpha = max(alpha, −AlphaBeta(child, depth−1, −beta, −

alpha));
8 if(beta <= alpha) return beta;
9 }

10 return alpha;
11 }

Fig. 1 Pseudo-code for the alpha-beta algorithm.

well (e.g., Refs. [3], [5], [11], [18]). At each node, YBWC first
searches the most promising child. It is only after the search of
the most promising child finishes that YBWC starts a search in all
the rest in parallel. YBWC is effective because the best child is
often identified as the most promising. In this case, the informa-
tion obtained in the search of the most promising child narrows
the search window optimally. The narrowed search window leads
to effective pruning in the succeeding search of other children.
YBWC avoids searching nodes not in a predicted minimal tree
by waiting for the completion of the search of the nodes in it.

A problem with YBWC is that synchronization may degrade
the performance by making many processes idle [2]. This prob-
lem becomes critical when iterative deepening is performed in
order to sort child nodes because the shallower search is also
a synchronization point. To resolve this problem, some ap-
proaches have been proposed to reduce the required synchro-
nization [9], [20]. However, these approaches may drastically
increase the number of nodes visited because, like YBWC, the
ordering of children is fixed even if the most promising child is
found to be less promising during the search.

Dynamic Tree Splitting (DTS) [7] is an algorithm that attempts
to predict a minimal tree. DTS maintains a confidence score for
each node, indicating the degree of likelihood that all of its chil-
dren have to be inspected. DTS updates the confidence score of a
node each time search in its child node finishes. This update can
be regarded as an update of the predicted minimal tree. However,
the update is performed only when the search of a child node is
completed. Results of a shallow search in child nodes are not
used. Furthermore, the algorithm is designed for a shared mem-
ory architecture and not suitable for distributed environments.

Asynchronous algorithms have also been studied although
there are fewer studies than on synchronized ones. Unsynchro-
nized Iteratively Deepening Parallel Alpha-Beta Search (UID-
PABS) [13] is a basic asynchronous algorithm. UIDPABS dis-
tributes child subtrees of the root node to processes and each pro-
cess keeps searching them within a time limit using the iterative
deepening method. Kaneko proposed a similar algorithm more
suitable for large-scale environments [8]. Some subtrees are fur-
ther split and processes are assigned to subtrees. More processes
are assigned to more promising children to search them deeper.
Figure 2 depicts examples of the process assignment in these two
algorithms. These algorithms may visit many unnecessary nodes
because they use no information about minimal trees.

Asynchronous Parallel Hierarchical Iterative Deepening
(APHID) [2] is an asynchronous algorithm. APHID uses a

Fig. 2 Examples of process assignment in UIDPABS and the approach by
Kaneko.
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Fig. 3 Examples of an update of the master’s tree in APHID.

master-worker model. Let d be the total search depth. The
master repeatedly performs tree search to a certain depth d′, each
repetition of which is called a pass. Leaf nodes in the master’s
tree are regarded as tasks and sent to workers. The master
continues the search using the static evaluation values as the
values of the leaves without waiting for the results from workers.
Workers search the subtrees rooted at the leaf nodes with the
depth of d − d′, using iterative deepening. After each worker has
finished one iteration of its shallow search, it reports the result to
the master and then starts the next iteration, which goes down a
little deeper. After receiving the results, the master can use them
in place of the static evaluation values in the subsequent passes.
This may allow better prediction of the minimal tree and change
the form of the master’s search tree, making the master send
workers new tasks. Some tasks are stopped when they are found
likely to be pruned.

One of the most important characteristics of APHID is that the
prediction of the minimal tree can be promptly updated using new
results obtained from the workers. This typically happens when
the child that looked most promising has been found to be less
so, making another child the most promising. Figure 3 shows an
example of the update. The figure on the left shows the situation
in which the left child of the root is more promising than the right
child. The subtree D is not searched at this point because prun-
ing is anticipated. The figure on the right shows the situation in
which the score of the subtree B has dropped to 2 from 9 after
a deeper search finished. In this case, the right child of the root
has become more promising. As a result, the form of the tree
changes. The subtree D should be searched instead of the subtree
A.

As shown in the above example, dynamic updates using shal-
low results may be effective, but its impact on the performance
was not thoroughly evaluated in Ref. [2]. In addition, APHID
itself has not been evaluated on systems with more than 64 pro-
cesses.

Although this paper focuses on dynamic updates of the pre-
dicted minimal tree to avoid searching unnecessary nodes, it is
also important to avoid searching the same position twice by shar-
ing results of search in subtrees among processes. Several ap-
proaches to sharing the search results in distributed environments
have been discussed. In the implementation of YBWC, each pro-
cess keeps a part of the results. To obtain the result for a node, a
process sends a message to the owner process of the part of the
information. In the implementation of APHID, processes share
small portion of results by periodically communicating with each

other. As another approach to share the information, Transposi-
tion table Driven work Scheduling (TDS) [15] was used in im-
plementation of parallel alpha-beta algorithms by Refs. [9], [18].
In TDS, search tasks for a position are always sent to the same
process using the hash value of the position.

3. Implementation

We have implemented a parallel game tree search program
based on the idea that the prediction of the minimal tree should be
dynamically updated using tentative results obtained during the
search. The implementation of APHID served as a rough guide-
line for the implementation of our program, such as the master-
worker model and repetitive search in the master. Implementation
details are changed, however. The main difference is in when in-
formation updates are utilized: (1) the master notifies workers
as soon as the form of its search tree has changed; (2) workers
promptly absorb the information and reflect it to their behavior.

Our implementation is similar to that of APHID described in
Section 2. Therefore, we first describe further details. The mas-
ter of APHID distinguishes uncertain values and decided values.
When the master visits leaf nodes of its tree that have not been
visited in any previous passes, their static evaluations are used as
the uncertain values of the nodes. When the master visits the leaf
nodes in a subsequent pass, it can use the results reported from
workers if any. The values are still regarded as uncertain if the
search depth of the worker is smaller than d − d′. In contrast, the
search results obtained with the depth d − d′ are regarded as de-

cided. The master continues its search until no uncertain values
are found in an entire pass.

We now describe parts of our implementation not directly in-
herited from APHID. The master stores its search tree in mem-
ory. Moves are generated only once at a node when it is visited
for the first time. If the move generation is costly, this short-
ens the time required for a single pass and enables the master
to send new information to workers more frequently. Making
passes quicker is important especially in large-scale environments
because the master’s tree should be large enough to generate an
adequate number of tasks.

The master sends tasks at every pass even when they are the
same as those of the last pass. This enables workers to promptly
prioritize the tasks visited in the current pass over those not vis-
ited. Furthermore, the master sends pass messages when it fin-
ishes a pass. On receiving a pass message, the worker can discard
the tasks that it has not received during the pass. For example, in
the case of the figure on the right in Fig. 3, workers discard task
A after the pass messages. Note that the master does not have to
send messages to explicitly stop A.

Workers should promptly detect changes in the predicted mini-
mal tree of the master. For this purpose, workers frequently check
message arrivals even during search. If a received message indi-
cates that the task a worker is running is less important than an-
other task, the worker aborts the current task and starts the most
important task. To realize this, we used a method proposed in
Ref. [20]. When a worker receives a task, it suspends its search,
inserts the received task into its priority queue, and then resumes
its search. If the priority of the received task is higher than that of
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1 int MasterSearch(position, depth){
2 while(true){
3 score =MasterAlphaBeta(position, depth, −INF, INF, −

INF, INF);
4 if(no uncertain values have been found) return score;
5 SendPassMessages();
6 RecvMessagesFromWorkers();
7 }
8 }
9 int MasterAlphaBeta(position, depth, a1, b1, a2, b2){

10 if(position is a terminal position) return Evaluate(position);
11 if(depth == d−d’)
12 return EvalAndSendTask(position, depth, a1, b1, a2, b2);
13 if(position is visited for the first time)
14 MasterAlphaBeta(position depth−2, a1, b1, a2, b2);
15 clist = SortChildren(position, a1, b1);
16 foreach(child of clist){
17 score = max(a1, −MasterAlphaBeta(child, depth−1, −b1,

−a1, −b2, −a2));
18 a1 = max(a1, score);
19 if(no uncertain values were found in this child)
20 a2 = max(a2, score);
21 if(b1 <= a1) return b1;
22 }
23 return a1;
24 }

Fig. 4 Pseudo-code for the master program.

the suspended task, it starts the received task instead of resuming
the suspended task. The efforts on the aborted task are not wasted
thanks to transposition tables.

3.1 Details of the Master Program
Figure 4 shows a pseudo-code for the master program. INF is

an integer large enough. The master executes passes in the func-
tion MasterSearch(). If no uncertain values have been found in a
pass, the master finishes the search and returns the score on line 4.
Otherwise, the master sends pass messages to all the workers to
inform that the master has finished a pass, on line 5. The mas-
ter receives messages from workers and updates the information
about the leaf nodes of the master’s tree on line 6 before it starts
the next pass. When the master’s tree does not change in this pass,
the master does not have to start the next pass until receiving new
information in messages from the workers.

The function MasterAlphaBeta() is a modified version of Al-
phaBeta() in Fig. 1. There are three major differences.

One difference is that MasterAlphaBeta() maintains two search
windows. One (a1 and b1) is the pass window used to execute the
pass and the other (a2 and b2) is the task window used for the
search windows of worker tasks. The pass window is updated
by both uncertain values and decided values on line 18 while the
task window is only updated by decided values on line 20. For
these updates, the master labels internal nodes with decided or
uncertain depending on whether the search of the node down to
the required depth has been completed or not. A pass window is
an “estimated” window that may change in the next pass of the
master, and workers’ search with this window may become use-
less. Instead of using pass windows, we used task windows to
decide search windows of tasks.

Another difference is that the master sends tasks if the remain-
ing search depth is d − d′ on line 12. The function EvalAnd-

SendTask() first checks the deepest result obtained so far for the
position in a similar way to APHID. If the result can be used with
the pass window, the function returns the result. Otherwise, the
function checks shallower results in turn. If all the results can-
not be used with the pass window, the function returns the static
evaluation. The master also sends a task to a worker when the re-
turned value is uncertain. The search window of the task is set to
the task window (a2 and b2). Notice that the master sends tasks
even if the tasks have already been sent in previous passes.

The last difference is how child positions are sorted. Iterative
deepening is performed only when positions are visited for the
first time on line 14. In the shallower search, the master does
not send tasks to workers and only static evaluation values are
returned on line 12. If positions are already visited, the master
can use obtained results to sort the children. When the master
can use decided values of some children with the pass window,
it updates both the pass window and the task window using the
decided values, and then searches other children.

A task consists of the following: a position, a required search
depth (d − d′), a search window, and a signature. Note that an
identical position can generate multiple tasks which are differ-
ent from each other in search windows. A signature is a list of
numbers identifying the path from the root to the node [9]. Each
number represents the rank of the child in the order of predicted
promises of the children. Signatures were used as priorities of
tasks in Ref. [18]. They are designed so that tasks can be exe-
cuted in the depth-first-search order. We used signatures as a part
of priorities.

The master selects a worker to send a task from the viewpoint
of load balancing. That is, the master attempts to reduce the num-
ber of idle workers that have no tasks. To realize this, the master
counts the number of positions sent to each worker in every pass.
Two or more tasks with the same position are counted only once,
because that does not mean heavy load. When the position of a
task has not been sent in any previous passes, the master selects
the worker which has the smallest number of positions in the last
pass and increments the count for the worker. If there are multiple
candidate workers, a worker is selected in a round-robin fashion.
When the position was already sent in previous passes, the mas-
ter normally selects the owner worker to which the position was
sent because an identical position should be searched by only one
worker to utilize the transposition table. The owner worker of the
position is changed, however, to balance the load, if the following
three conditions are met: (1) the position has not been sent in this
pass; (2) there is at least one idle worker which has received no
positions in the last pass; (3) the owner worker of the position has
already received at least one position in this pass. In this case, the
idle worker becomes the new owner worker and the position will
be sent to this new owner also in the succeeding passes.

3.2 Details of the Worker Program
Figure 5 shows a pseudo-code for the worker. A worker main-

tains a priority queue of tasks (taskQueue in Fig. 5). The function
RecvMessages() checks and receives messages from other pro-
cesses. Message checking and receiving is also performed during
the execution of WorkerAlphaBeta(). When a worker receives a
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1 void WorkerSearchLoop(){
2 while(the master continues the search){
3 do{
4 RecvMessages();
5 }while(taskQueue.empty());
6 task = taskQueue.top();
7 d = GetSearchDepth(task);
8 if(task need not be executed){
9 tasksQueue.dequeue();

10 continue;
11 }
12 score =WorkerAlphaBeta(task.position, d, task.alpha,

task.beta)
13 if(this search was not aborted){
14 SendResult(task.position, d, score);
15 SetTaskResult(task.position, d, score);
16 if(d == task.depth) TaskQueue.dequeue();
17 }
18 }
19 }

Fig. 5 Pseudo-code for the worker program.

task, it enqueues the task into its task queue. When a worker re-
ceives a pass message, it removes the tasks from its task queue
that were not received after it had received the last pass mes-
sage. The currently running task WorkerAlphaBeta() is execut-
ing may not be the highest priority task due to such alterations
in the task queue. In such a case, the current execution of Work-
erAlphaBeta() is aborted. A worker retrieves the task with the
highest priority on line 6. The function GetSearchDepth() checks
whether the position has already been searched deep enough with
the same or a wider search window. If so, the task is ignored
on lines from 8 to 11. Otherwise, this function adds 2 to the
depth with which the position was already searched. For this,
the worker stores results for positions obtained through finished
search (on line 15). The function WorkerAlphaBeta() is identical
to AlphaBeta() in Fig. 1 except that RecvMessages() is inserted
before line 4 of Fig. 1. The search result is returned to the master
on line 14 when the search completes without abort. The task is
removed from the queue if the finished search depth is equal to
d − d′. Otherwise, the task remains in the queue and a deeper
search will be performed in succeeding repetitions.

Sharing the transposition table between workers is an impor-
tant issue in parallel game tree search. We have implemented
a scheme based on APHID’s idea that only the results of deep
searches are shared. We call this scheme a partial sharing

scheme. Workers form a communication ring and share the deep
results by circulating them. When a worker stores a result into its
transposition table, it also stores a pointer to the transposition ta-
ble entry into another table (called a pointer table) to easily spec-
ify updated entries. The first worker sends the entries pointed
to from this pointer table to the next worker and then clears its
pointer table. Every sent entry includes the ID of the worker that
added the entry. When a worker receives entries from the previ-
ous worker, it inserts them into its own transposition table. The
worker then sends both the received entries and entries pointed to
from its pointer table to the next worker. Before sending them,
the worker removes entries whose worker ID is equal to the next
worker’s ID, because all workers have already shared such en-

tries.
The priorities of tasks are decided as follows. First, tasks re-

ceived after the last pass messages are prioritized over the others.
Second, tasks with shallower completed search are prioritized.
Third, the signatures of tasks are checked: tasks preceding in the
depth-first tree traversal order are prioritized. Lastly, tasks with
narrower windows are prioritized.

4. Evaluation

We used two kinds of game trees for evaluation: synthetic
game trees and game trees generated by the move generation
method and evaluation function of Gekisashi [19], one of the
strongest shogi programs. The former is for making the analy-
sis of the search algorithm simpler and the latter is for evaluating
it under more realistic situations.

4.1 Synthetic Game Trees
We used incremental random trees used in Ref. [16], which as-

signs random values to edges of trees. The evaluation value of a
leaf node is the sum of the values of the edges on the path from
the root *1. While a uniform distribution was used in Ref. [16],
we used a more realistic distribution for the random values. The
distribution parameters were decided based on statistics of dif-
ferences of Gekisashi’s static evaluation values between parent
nodes and their children.

Nodes in the game tree are visited more than once in repeated
search. The same node should always have the same value at ev-
ery visit. This is realized by a method similar to the one described
in Ref. [12]. The synthetic game trees we generated are not just
directed acyclic graphs but real trees, i.e., two nodes through dif-
ferent paths always indicate different states. Note that the trans-
position table is still necessary, because the same state is visited
many times.

The branching factor may considerably affect the performance
of parallel search programs. YBWC’s performance is heavily de-
pendent on the branching factor while APHID’s performance is
almost independent [2]. We generated game trees with a branch-
ing factor of 5 or 20 – all nodes of each tree have the same num-
ber of children. Note that the average number of legal moves for
a shogi position is about 80, but the effective branching factor,
i.e., the number of meaningful moves in an actual shogi position,
is usually much smaller [6].

The generated game trees are accurately ordered. That is, the
child found to be the best in a shallower search is highly probable
to be the best child in the following deeper search. The perfor-
mance of parallel search is higher with stronger ordering than for
not accurately ordered trees because programs can more easily
predict a minimal tree and thus the number of visited nodes can
be reduced.

4.2 Game Trees Generated by a Shogi Program
The alpha-beta search program we implemented for more real-

istic game trees bases on features of Gekisashi: its static evalua-
tion function, move generation, and child node ordering method.

*1 These synthetic trees are also known as N-Game trees [17].
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Gekisashi has a variety of other features for further improvement
of its performance, which were not used in our experiments for
ease in analyzing the behavior of the parallel search. We call the
game tree structure this program searches shogi trees in this pa-
per.

We limited the branching factors to 5 and 20. At each node, all
of its children are generated and sorted, and then the most promis-
ing 5 or 20 children are chosen. Note that some nodes have fewer
children than these designated numbers (e.g., positions where the
king is in check). Since all children need to be generated first, the
search speed is slow (approximately 5,000 or 10,000 nodes are
visited per second).

There are three main differences between synthetic game trees
and shogi trees. First, two nodes through different paths can in-
dicate the same game position in a shogi tree. Sharing evaluation
of positions among workers may be beneficial in avoiding dupli-
cated search. Second, shogi trees are not ordered so accurately as
synthetic trees. Figure 6 shows the difference in the accuracy of
the ordering between synthetic trees and shogi trees. When the
branching factor is 5, only 82.3% of the child nodes judged to
be the best with the search depth of 14 are also found to be the
best with depth 16, which is 89.8% for synthetic trees. With the
branching factor of 20, it is as low as 66.7% between the depths
of 6 and 8, while it is 81.9% for synthetic trees. Third, search
time varies more largely between subtrees than that for synthetic
trees. This may be mainly because the numbers of children vary
among nodes.

4.3 Experimental Settings
A computer cluster with 1,536 cores consisting of Xeon E5-

2665, E5530, and E5620, all with the clock speed of 2.40 GHz
was used for experiments. Each process ran on one core. When
we performed experiments using up to 512 cores, only computing
nodes with E5-2665 were used. The computing nodes were inter-
connected through a 10-Gbps Ethernet. Every worker process of

Fig. 6 Ratios of the number of nodes judged to be the best with shallower
search to that with the following deeper search.

Table 1 Results using synthetic trees.

b = 5, d = 24, and d′ = 12 b = 20, d = 12, and d′ = 6

search # of start-up other search # of start-up other
# of time leaves idle time idle time time leaves idle time idle time

proc. method [sec.] speedup [×106] [sec.] [sec.] [sec.] speedup [×106] [sec.] [sec.]

1 sequential 19,438.92 1 790 7,321.58 1 149

512
w/ updates 56.71 343 1,162 0.64 0.43 20.85 351 208 0.17 0.57
w/o updates 50.43 385 1,008 0.65 0.56 22.88 320 228 0.18 0.59

1,536
w/ updates 25.91 750 1,381 0.88 0.68 11.21 653 289 0.47 0.54
w/o updates 28.55 681 1,401 0.89 2.13 13.31 550 323 0.47 1.09

parallel versions has a table with 31,250,000 entries. The master
uses a fully associative table that keeps the full information on
already finished search results. These settings were used for both
synthetic and shogi trees.

The sequential program for performance comparison uses a
transposition table with 1,000,000,000 entries for synthetic trees.
For shogi trees, the sequential program is the baseline method de-
scribed in Section 5.2. It uses two transposition tables and each
table has 1,000,000,000 entries.

We generated 32 synthetic trees by changing random number
seeds. For shogi trees, we used 32 shogi middle-game positions
that were randomly taken from game records of professionals.
Each game tree was searched only once.

We compared three configurations: with updates, without up-
dates, and with share. The first method performs dynamic up-
dates on prediction of minimal trees while the second does not.
When the dynamic updates are off, the function GetSeachDepth()
always returns the required depth of the task. Note that workers
still perform iterative deepening, but results of search with shal-
lower depths are not reported. In these two methods, workers do
not share transposition tables. In the third method, the dynamic
updates are performed and transposition tables are shared among
workers. Workers share only results of nodes whose depth from
root nodes of tasks’ subtree is less than or equal to 4 and 2 when
b = 5 and when b = 20, respectively.

Performance measurement results are shown in Table 1, Ta-
ble 2, and Table 3. Search time figures are the geometric means
of search time periods for 32 different trees. The speedup is the
sequential search time divided by the parallel search time. The
average numbers of leaf nodes visited and the average idle time
per worker are also shown. The idle time is divided into start-up
idle time and other idle time. The start-up idle time is the average
idle time before workers receives their first task. The rest is idle
time after finishing a task and before receiving a new task or the
termination of the whole search.

4.4 Results for Synthetic Trees
Table 1 shows the results with synthetic game trees. We can

find that the dynamic updates tend to improve the performance,
but the improvement is not so significant. This can be explained
by accurate ordering made for synthetic trees. A minimal tree
can be predicted with high accuracy using only the game state
without search. In this case, results of shallow search are not so
useful and the impact of the dynamic updates is small. On the
other hand, since programs can mainly search those nodes in the
minimal tree, the speedup is high compared to that reported in
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Table 2 Results using shogi trees when b = 5 and d = 24.

# of start-up other
# of search time leaves idle time idle time

proc. d′ method [sec.] speedup [×106] [sec.] [sec.]
1 sequential 30,767.09 1 165

64
10

w/ updates 1,297.36 23.72 398 0.40 23.18
w/ share 1,257.79 24.46 384 0.42 18.05

12
w/ updates 1,155.40 26.63 362 1.90 4.98

w/ share 1,138.39 27.03 353 1.99 4.74

128
10 w/ updates 708.36 43.43 454 0.45 25.91
12 w/ updates 592.00 51.97 405 1.81 7.00

256
10 w/ updates 435.48 70.65 557 0.48 33.38
12 w/ updates 334.97 91.85 468 2.02 11.01

512
10 w/ updates 268.82 114.45 652 0.57 39.30

12
w/ updates 209.13 147.12 584 2.06 12.43

w/o updates 443.19 69.42 1,080 2.07 68.04

1,024
10 w/ updates 205.59 149.65 763 0.79 64.92
12 w/ updates 149.01 206.47 740 2.27 16.33

1,536

10 w/ updates 184.31 166.93 820 0.92 81.49

12
w/ updates 122.23 251.72 847 2.51 18.48

w/o updates 312.41 98.48 1509 2.52 121.35
w/ share 119.03 258.49 829 2.51 17.91

Table 3 Results using shogi trees when b = 20.

d = 12 d = 14

search # of start-up other search # of start-up other
# of time leaves idle time idle time time leaves idle time idle time

proc. d′ method [sec.] speedup [×106] [sec.] [sec.] [sec.] speedup [×106] [sec.] [sec.]

1 sequential 4,020.24 1 41 48,773.45 1 457

64
4

w/ updates 186.58 21.55 113 0.02 18.78 2,180.14 22.37 1,227 0.02 220.01
w/ share 174.51 23.04 106 0.02 15.18 2,086.01 23.38 1,171 0.02 203.32

6
w/ updates 146.72 27.40 83 0.18 1.28 1,781.06 27.38 959 0.18 14.89

w/ share 140.97 28.52 79 0.18 1.04 1,718.05 28.39 913 0.19 15.43

128
4 w/ updates 122.17 32.91 144 0.03 22.65 1,433.14 34.03 1,530 0.03 298.46
6 w/ updates 75.97 52.92 96 0.20 1.53 902.72 54.03 1,032 0.20 21.41

256
4 w/ updates 92.84 43.30 174 0.05 34.13 1,102.05 44.26 1,871 0.05 431.26
6 w/ updates 44.15 91.06 117 0.22 1.87 522.71 93.31 1,240 0.23 25.91

512
4 w/ updates 77.64 51.78 187 0.12 46.06 937.99 52.00 2,070 0.12 566.95

6
w/ updates 29.50 136.26 157 0.28 2.74 317.55 153.59 1,512 0.29 32.79

w/o updates 44.88 89.57 224 0.29 7.38 643.98 75.74 2,858 0.29 130.03

1,024
4 w/ updates 82.12 48.96 188 0.42 64.70 975.66 49.99 2,013 0.55 779.26
6 w/ updates 22.91 175.45 211 0.43 4.19 239.48 203.67 1,976 0.46 53.12

1,536

4 w/ updates 82.84 48.53 183 2.11 69.37 972.22 50.17 1,960 5.56 835.18

6
w/ updates 20.26 198.46 254 0.63 4.77 203.65 239.50 2,229 0.66 60.64

w/o updates 34.41 116.85 333 0.63 13.99 532.31 91.63 3,980 0.62 276.48
w/ share 20.71 194.12 254 0.66 5.11 195.48 249.50 2,137 0.69 59.74

previous work (e.g., the speedup of YBWC for chess was 344
using 1,024 processes [4]).

4.5 Results for Shogi Trees
Table 2 shows the results for shogi trees when b = 5 and

d = 24. When b = 20, Table 3 shows the results with the depth of
12 and 14. We changed d′ to study the relationship between the
number of processes and the task granularity.

First, we focus on the impact of the dynamic updates on the
performance. Figure 7 shows the improvements in the perfor-
mance. The x-axis represents the search time with the dynamic
updates divided by that without them. The y-axis represents the
ratio of the number of leaf nodes visited. The numbers in paren-
theses are b, d, and the number of processes. We can find that
the dynamic updates reduce both the search time and the num-
ber of leaves. The improvements by dynamic updates are larger
when the problem size d is larger. The search time is roughly
halved when b = 5 and d = 24, and when b = 20 and d = 14,

Fig. 7 Ratio of the search time and the number of leaf nodes between the
methods with and without the dynamic updates.

which is more significant than for synthetic trees. This is because
shogi trees cannot be ordered so accurately as synthetic trees by
the initial prediction. In this case, dynamic updates improve the
performance considerably.

Next, we compare the methods with and without sharing trans-
position tables between workers. Table 4 shows the ratio of the
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Table 4 Improvements by sharing transposition tables.

# of proc. b d d′ ratio of search time

64

5 24
10 0.969
12 0.985

20
12

4 0.935
6 0.961

14
4 0.957
6 0.965

1,536
5 24 12 0.974

20 12 6 1.022
20 14 6 0.960

Fig. 8 Speedup of the parallel search program.

search time with sharing to that without sharing. We can observe
that sharing transposition tables shortens the search time by at
most 7%.

Lastly, Fig. 8 shows the speedups of our program with dynamic
updates and without sharing transposition tables. If d is large and
d′ is appropriately set, greater speedups can be obtained as the
number of processes increases. The speedup of 250 is, however,
much smaller than for synthetic trees. From Table 2 and Table 3,
we can find that the main reason for the sublinear speedup is that
the number of visited leaf nodes increases significantly. The idle
time is also a cause, but less problematic than the increase of the
number of leaves.

5. Analysis

5.1 Suspected Factors of Sublinear Speedup
The increase of the number of leaf nodes may be attributed to

the following three factors: (1) the scheme for sharing transposi-
tion tables might not have worked well; (2) workers execute tasks
using wider search windows than in the sequential search because
most tasks start before the results of other tasks are obtained; (3)
inaccurate initial prediction of a minimal tree may increase the
number of tasks. These factors cannot be clearly differentiated,
but we attempted to estimate the extents of the three factors. For
this purpose, we have performed supplementary experiments us-
ing the sequential program.

5.2 Supplementary Experiments
We made a small modification to the sequential search program

in order to estimate how much of the increase is due to imperfect
sharing of transposition tables. Two separate transposition tables
are used: one for the results of nodes whose depths from the root
are less than or equal to d′, simulating the master’s table; the

Fig. 9 Increase of the number of leaves caused by not sharing transposition
tables and by using full search windows.

other for the results of nodes whose depths are greater than d′,
simulating a transposition table fully shared among workers. To
simulate the behavior of the parallel program without table shar-
ing, we restricted the usage of the second transposition table so
that search results obtained from tasks for different positions will
not be used. This simulation assumes that tasks for different po-
sitions are executed by different workers. In addition, to simulate
the partial sharing scheme described in Section 3.2, we allowed
the sequential program to use results obtained from other tasks if
the search depths for the results are large. We call this method
partial share.

We made another small modification to determine the extent of
the increase caused by using wider search windows. The sequen-
tial program uses full search windows *2 for search in subtrees
with the depth of d − d′. That is, alpha and beta values are set to
−INF and INF before search in a subtree with the depth of d − d′.
The original window is restored after the search in the subtree.
This method simulates workers which execute all tasks using full
search windows. This is the estimation for the worst case because
actually there are cases where the search windows are narrowed.

We counted the number of leaf nodes visited by each simula-
tion method. The baseline method simulates the master’s trans-
position table and another table fully shared among workers. The
search windows are not changed in this method. We show results
of the simulation for shogi trees in Fig. 9. We fixed d − d′ and
changed d step by step. The x-axis denotes d and the y-axis rep-
resents the ratio of the number of leaves in each method to that in
the baseline.

5.3 Findings
We find that the program without sharing transposition tables

searches approximately twice as many nodes as the one with shar-
ing when b = 5. When b = 20, the difference becomes smaller.
The difference becomes smaller when full search windows are
used. Sharing transposition tables partially can actually decrease
the number of leaves. On the other hand, the improvement by
sharing transposition tables was at most 7% (see Table 4). The
improvement using a similar sharing scheme was about 18% with
16 processes in Ref. [2]. These results show that sharing transpo-
sition tables is difficult on larger-scale computing environments.

Figure 9 also shows that the increase of the number of leaves
caused by using full windows is substantial. As this is for the
worst case, we counted the number of tasks finished using full

*2 In this paper, we use the word “full search windows” or “full windows”
to indicate search windows (−INF, INF).

c© 2015 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.23 No.1

Fig. 10 Ratio of the number of tasks finished using full search windows to
the total number of tasks finished.

Table 5 Increase of the number of leaves caused by each factor when the
number of processes is 1,536.

b d d′ table windows tasks estimated actual

5 24 12 1.942 2.877 0.960 5.362 5.126
20 12 6 1.573 2.863 1.072 4.829 6.204
20 14 6 1.788 2.328 0.966 4.021 4.873

Fig. 11 Scatter plots between the estimated and the actual increase of the
number of leaves.

search windows in actual parallel search. Figure 10 shows the
ratio of this number to the total number of tasks finished when
shogi trees are searched. The ratio increases with the number of
processes.

We estimated the extent of each factor for the increase of the
number of leaves for shogi trees. The factors described in Sec-
tion 5.1 are (1) not sharing transposition tables, (2) using wider
windows, and (3) increase of the number of tasks. Table 5 shows
estimated increase ratio of the number of leaves given by each
factor. We also show the estimated (the product of the three ra-
tios) and actual increase ratio. Figure 11 shows scatter plots be-
tween the estimated and the actual increase. Each point in the
figure indicates the increase for a game position. We also show
correlation coefficients (corr). The increase ratio caused by not
sharing transposition tables is calculated as (1−r)tn+rt f , where r

is the ratio obtained from Fig. 10, and tn and t f are the increase ra-
tios with normal windows and with full windows estimated from
Fig. 9. The ratio by using full windows is calculated as (1−r)+rw,
where w is the ratio estimated from Fig. 9. The increase ratio of
the number of tasks is decided by comparing the numbers in the
sequential and parallel program. We find that the actual ratio can
be reasonably explained by these factors. One of the reasons of
the difference between estimated and actual ratio is that tasks that
are aborted and unfinished ones are ignored. These results also
show that using full windows is the most substantial factor of the
sublinear speedup.

5.4 Experiments with NegaScout
We have shown that the major bottleneck of the performance

comes from the fact that many tasks are executed using full search

windows. This is because we use task windows (a2,b2) for work-
ers’ search windows. Here, we discuss other methods to decide
search windows in workers, comparing them to APHID’s method.

The experiments reported so far were carried out without us-
ing the null-window search mechanism used in NegaScout [14],
but we here discuss the behavior of the master with NegaScout
and search windows used by its workers. In NegaScout, the
most promising child of every node is searched using a normal
search window, and then other children are searched using a null-
window. A null-window is a search window (α,α+1). If a child
returns a value higher than α, the child is re-searched using a nor-
mal search window.

If the master is certain of the min-max value of the most
promising child at a node on the estimated principal variation,
APHID’s workers use a null-window to search other children of
the node. Otherwise, the workers use estimated windows around
a guessed value, which is an estimated value of the root node
of the master. APHID’s estimated windows can be a good strat-
egy because they are narrower than our task windows in most
cases, but they may require a re-search since the estimation can be
wrong. The re-search may complicate the performance analysis.
This is why we use task windows instead of APHID’s estimated
windows or pass windows. In order to decrease the number of
nodes visited, however, we have then tried using some estimated
narrow windows.

The master can perform NegaScout also in our algorithm. We
discuss search windows used in workers. Recall that both task
windows (a2,b2) and pass windows (a1,b1) are decided by the
master (see Fig. 4). If task windows are still used by workers,
the difference between its behavior with and without NegaScout
emerges only when an estimated minimal tree changes, and the
performance difference may be small. This is because the mas-
ter mostly searches only estimated minimal trees even without
NegaScout. In this case, both our algorithm and APHID decide
workers’ search windows irrespective of whether the master per-
forms NegaScout or not. On the other hand, if pass windows are
used by workers instead of task windows in our algorithm, most
of search windows used by workers are null-windows and this is
different from the case where the master does not perform Ne-
gaScout.

We have modified our program to perform NegaScout in the
master. In the modified program, workers decide search win-
dows based on pass windows sent from the master. If pass win-
dows (a1,b1) are null-windows, workers use (a1-ε,b1+ε) instead,
where ε is an integer. We call these windows ε-windows. We note
that ε-windows are more similar to APHID’s estimated windows
than task windows (a2,b2) are.

When ε-windows are used, we should consider when they are
updated. Assume that a worker is executing a task using an ε-
window (10-ε,11+ε) under a pass window (10,11). If the pass
window is updated to (15,16), should the worker use a new ε-
window (15-ε,16+ε)? If it uses the new window, it cannot use
some results in its transposition table. This means that frequent
updates of ε-windows may degrade the performance. In our mod-
ified implementation, we do not update workers’ search windows
when the new pass windows are within the old ε-windows. In
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Table 6 Results using synthetic trees with NegaScout.

search # of start-up other
# of time leaves idle time idle time

b d d′ proc. method ε [sec.] speedup [×106] [sec.] [sec.]

5 24 12
512

w/o ε-windows 51.47 378 1,030 0.68 0.56
w/ ε-windows 200 38.50 505 775 0.69 0.53

20 12 6
w/o ε-windows 22.97 319 228 0.18 0.56
w/ ε-windows 200 17.34 422 188 0.17 0.62

Table 7 Results using shogi trees with NegaScout.

search # of start-up other
# of time leaves idle time idle

b d d′ proc. method ε [sec.] speedup [×106] [sec.] [sec.]

5 24 12
512

w/o ε-windows 210.39 146.24 582 2.13 13.31
w/ ε-windows 200 122.54 251.08 287 1.97 17.59

1,536
w/o ε-windows 126.04 244.11 862 2.33 21.05
w/ ε-windows 200 88.70 346.87 421 2.34 32.62

20 12 6
512

w/o ε-windows 28.72 139.98 152 0.28 2.84
w/ ε-windows 100 21.20 189.63 113 0.29 3.02

1,536
w/o ε-windows 20.33 197.75 255 0.65 4.75
w/ ε-windows 100 16.51 243.50 159 0.61 6.98

20 14 6
512

w/o ε-windows 312.53 156.06 1,495 0.28 31.23
w/ ε-windows 100 227.09 214.78 942 0.32 42.18

1,536
w/o ε-windows 202.87 240.42 2,227 0.66 60.15
w/ ε-windows 100 174.93 278.82 1,210 0.58 88.08

the case presented above, the worker does not update its search
window when the 16 is less than or equal to 11+ε.

We have performed experiments using the modified program
in which the master performs NegaScout. Workers did not share
their transposition tables. The results are shown in Table 6 and
Table 7 using synthetic trees and shogi trees, respectively. We
show results both with and without using ε-windows. When ε-
windows are used, we set ε to 50, 100, 200, and 500 for synthetic
trees and 100, 200, and 500 for shogi trees *3 using 512 processes.
We set the best ε when experiments with 1,536 processes were
performed for shogi trees. We show the best ε in the tables. By
comparing the results to Table 1, Table 2, and Table 3, we can
see that performing NegaScout only in the master does not lead
to performance improvements. On the other hand, the number of
leaves visited decreases and the performance is improved thanks
to ε-windows. However, the idle time is increased by the use of
ε-windows. This may be because tasks with null-windows are
smaller than tasks with wider windows and load imbalance oc-
curs.

As described above, we have conducted experiments using
both NegaScout and ε-windows, but ε-windows may be useful
also when the master does not perform NegaScout. In this case,
however, we would have to consider a more sophisticated up-
date policy for ε-windows, because pass windows are not null
windows anymore and they can get narrowed or widened during
search.

Dynamically extending the depth of subtrees of the master’s
tree for better load balancing is a promising way of improving
the performance. APHID dynamically divides subtrees which are
expected to take much time to search. Depth extension schemes,
however, may degrade the performance because many obtained
results in a worker’s transposition table are lost unless we have
an efficient scheme to share transposition tables between work-

*3 The value of a pawn is approximately 100 in Gekisashi.

ers. We did not dynamically extend the search depth because
the increase of the number of leaves was more problematic than
load imbalance, but the extension must be future work when ε-
windows are used.

6. Conclusion

Parallel alpha-beta algorithms should dynamically update pre-
diction of a minimal tree using results of shallow search to avoid
searching unnecessary nodes. However, the effect of the dynamic
updates has not been evaluated in detail on large-scale comput-
ing environments with more than 100 cores. We have imple-
mented a parallel alpha-beta search algorithm and evaluated the
effect of the updates. The results with game trees generated by
a shogi program show that the updates are important to shorten
the search time. We have also analyzed the reason why our paral-
lel program still suffered from visiting many unnecessary nodes.
Sharing transposition tables can reduce the number of leaves, but
its effect is limited on large-scale environments. The increase is
caused also by using wider search windows than in the sequential
search because the results of other tasks cannot be obtained be-
forehand. We have also shown that the number of leaves visited
is decreased by performing NegaScout in the master and using
ε-windows in workers.

Evaluation through games between programs is also our fu-
ture work. In games, game-playing programs must determine the
move to play within a time limit. A game tree of the master can
drastically change its form during search in our algorithm. If the
best move at the root node is selected at a point in time, this may
be a poor decision because the principal variation may be still not
searched deeply. Iterative deepening as in APHID can be a good
method when the proposed method is used in games.

Another direction of future work is introducing hierarchical
masters to alleviate the overload of the master with many work-
ers. The idea of using multiple masters, which Brockington has
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already proposed, is especially suitable to multi-cluster environ-
ments if a middle-level master and its workers can be located in
one cluster. In order to leverage the hierarchical masters, how-
ever, we have to discuss how to prioritize tasks in middle-level
masters. Tasks in middle-level masters are different from tasks
of their workers because the middle-level masters execute many
passes as the top-level master. Brockington has not discussed the
prioritization policy in the middle-level masters, although it is not
apparent.
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