Vol. 46

No. 2 IPSJ Journal

Regular Paper

Distributed Scalable Multi-player Online Game Servers
on Peer-to-Peer Networks

TAakUJI IIMURA," HIROAKI HAZEYAMAT and YOUKI KADOBAYASHI*

Today’s Multi-player Online Games (MOGs) are challenged by infrastructure requirements
because of their server-centric nature. Peer-to-peer overlay networks are an interesting alter-
native if they can implement the set of functions that are traditionally performed by centric
game servers. In this paper, we propose a Zoned Federation Model (ZFM) to adapt MOGs
to peer-to-peer overlay networks. We also introduce the concept of zone and zome owner to
MOGs. A zone is some part of the whole game world, and a zone owner is a game sever of a
specific zone. According to the demands of the game program, each node actively changes its
role to a zone owner. By dividing the whole game world into several zones, workloads of the
centric game server can be distributed to a federation of zones. In order to reduce response
latency overhead on data exchanges between a zone owner and its clients, we limit the use of
a Distributed Hash Table (DHT) to the rendezvous point of each zone; actual data exchanges
are carried out through direct TCP connection between a zone owner and its members. We
also use the DHT as backup storage media to cope with the resignation of a zone owner. We
have implemented this zoned federation model as a middle layer between the game program
and the DHT, and we evaluate our implementation with a prototypical multi-player game.
Evaluation results indicate that our approach enables game creators to design scalable MOGs
on the peer-to-peer environment with a short response latency which is acceptable for MOGs.

Feb. 2005

1.

Today’s Multi-player Online Games (MOGs)
are constructed in a server-centric model. To
achieve scalability, MOGs usually employ clus-
ters of game servers. In spite of scalability,
clustering technologies cost game creators co-
location fees. Therefore, starting a new MOG
for small or medium enterprises is difficult.
Also, in today’s server-centric solutions, users
cannot play the game when the centric game
server stops its services.

In this paper, we try to achieve an alterna-
tive MOG infrastructure by using peer-to-peer
overlay technologies. The peer-to-peer overlay
network is a highly distributed network or com-
puting environment. Nodes on a peer-to-peer
overlay network compose a network on the ap-
plication layer and share resources of each node.

To construct a peer-to-peer overlay infras-
tructure for MOG, we model a “Zoned Feder-
ation Model (ZFM)”. ZFM is a latency opti-
mizing approach based on peer-to-peer overlay
technologies. The key idea of the ZFM is as fol-
lows: numerous participating user nodes on an
peer-to-peer overlay network compose a large
game server cluster. The ZFM creates several

Introduction

t Graduate School of Information Science, Nara Insti-
tute of Science and Technology

376

client-server groups on a peer-to-peer overlay
network, as shown in Fig.1. Constructing a
small-scale client-server model in each zone, the
ZFM can achieve as short a response latency as
that of the server-centric MOG solutions.

In the ZFM, the tasks of a centric-server are
distributed into a peer-to-peer overlay network.
We partition the game world into several zones
by the locality of the game world or the local-
ity of the game data’s features. In addition,
we let participating nodes play a cluster of the
game server on each zone. The node playing a
cluster of the game server establishes a direct
connection to each client node in the same way
that the direct connection between the server
and clients in the client-server model is con-
nected. Hence, each server node can serve the
latest game status with almost the same perfor-
mance as that of a centric-server. Each zone is
independent from each other; therefore, a user
node can become the server on several zones
and play the client of some zones.

The cluster of the game server in the ZFM
is maintained by participating user nodes au-
tonomously. According to the peer-to-peer
overlay environment or the game sequence, each
participating user node changes its role to ei-
ther a cluster of the game server on some zone,
the client of the game on other zones, or to
resources for constructing a large network or

Vol. 46 No. 2

Zone Z

Overlay Networ!

Fig.1 Zones on the overlay network.

storage. Of course, each participating node can
easily resign from the game server task, stop the
client role, or leave from the peer-to-peer over-
lay network. Employing a peer-to-peer over-
lay network as a backup storage media, the
ZFM provides a mechanism for all participat-
ing nodes to record the latest game status seri-
alized by the game server role node, to inherit
the tasks of the old server role node or the game
sequence completely, and to continue serving
the game data.

We have implemented the ZFM as a library
of a zoning layer, a middle layer between a
game program layer, and a TCP/IP stack, or
between the game program layer and the Dis-
tributed Hash Table (DHT), which is a tech-
nique for constructing a peer-to-peer overlay
network. We also evaluated the performance
of the ZFM implementation with a prototypi-
cal multi-player game.

The rest of this paper is organized as follows:
we describe the features of today’s MOGs and
server-centric solutions in Section 2. We men-
tion details of the ZFM, and describe its im-
plementation in Sections 3 and 4, respectively.
Section 5 shows the evaluation result of our
ZFM implementation with a focus on the re-
sponse latency.

We refer to related work in Section 7, and
finally, we discuss future work and conclude this
paper in Sections 8 and 9.

2. Multi-player Online Games

MOGs are such games such that several game
users share a game world and play on the
game world by exchanging shared game data.
We call such shared game data, Global Status
Data (GSD). There are several types of MOGs,
such as racing, First Person Shooter (FPS),
Real Time Strategy (RTS), or Role Playing
Game (RPG), etc. Some MOGs, called Mas-
sive Multi-player Online Games, are played by

Distributed Scalable MOG Servers on P2P Networks 377

thousands or even tens thousands of users.

Typically, a MOG requires a short response
latency and a consistency of GSD among users.
Short response latency is needed to provide a
comfortable game response without stress for
users)~6) and the consistency of GSD is re-
quired to produce the same game world for all
users, as well as to prevent cheating or unfair-
ness in play . Today’s MOG is usually con-
structed in the client-server model to manage
the consistency of GSD, and several cluster-
ing or distributing techniques are employed to
achieve a short response latency and scalability.

2.1 Global Status Data

In MOG, users have to share GSD to play in
the same game world. GSD can be changed ac-
cording to the game players’ demands or the
game sequence. Changes of GSD should be
serialized and should be synchronized among
game players to keep to the consistency of the
game world. Therefore, MOG requires some
authoritative nodes to provide serializability of
state changes and to ensure the consistency of
changes. In the client-server model, a centric
game server works as this type of authoritative
node.

The GSD of the MOG has several localities of
interest, and several large-scale MOGs employ
interest management techniques®. The exam-
ples of localities of interest on a game world are
as follows: locality of the network infrastruc-
ture, locality of part of game world, locality of
the group sharing specific GSD, locality of per-
sonal information, etc.

Distributing or clustering techniques use
these localities to partition the tasks of a sin-
gle centric server or the whole GSD. In other
words, partitioning GSD or server tasks into
several groups by locality enable a reduction in
overhead on a single server machine, to achieve
scalability or responsibility. Contents Distribu-
tion Network technologies focus on the locality
of network infrastructure, and SimMud?) par-
titions the game world into several regions with
focus on the locality of the area of the game
world. Server clusters are constructed by the
locality of the group sharing specific GSD, the
locality of personal information, or the locality
of the numbers of access.

In modeling the ZFM, we focus on the local-
ity of GSD, that is, the locality of the group
sharing specific GSD, the locality of personal
information, and the locality of the number of
access.

378 IPSJ Journal

Also, GSD should keep its consistency by us-
ing an authority to produce the same game
world for all users. In the client-server model,
a centric server or centric server clusters judge
conflicts among users, modify the GSD accord-
ing to game sequence, serialize changes, syn-
chronize updated GSD on all users to prevent
a mismatch, and audit GSD to find cheat-
ing or unfairness. Processing these tasks on
a distributed environment such as on peer-to-
peer overlay networks is difficult. Some dis-
tributed agreement protocol ') can resolve in-
consistency on peer-to-peer overlay networks,
but such distributed agreement protocol is
likely to be complex.

3. Zoned Federation Model

We design the Zoned Federation Model
(ZFM) as a model of a MOG on an overlay
network by employing five techniques to con-
struct the ZFM: zone, the Distributed Hash Ta-
ble (DHT), zoning, mapping, and zoned feder-
ation. A zone is a judgment and data transfer
block of the GSD to distribute whole GSD into
a peer-to-peer overlay network. DHT is a peer-
to-peer overlay network technique we employ
to construct the ZFM. Zoning is a framework
of partitioning whole GSD into several zones to
use the DHT as a backup storage media and as
a rendezvous point to zones. Zoned federation
is a mechanism to let participating user nodes
manage each zone and the whole game world
autonomously.

3.1 Assumptions

Before describing the ZFM in detail, we as-
sume the following:

e GSD on the DHT overlay network never

disappears

e No malicious user nodes join to the MOGs

e Network infrastructure provides short and

stable network delay over the inter-domain
networks.

3.2 Zone

First, we introduce the concept of a zone. A
zone is a piece of the whole GSD partitioned by
locality of interest. When dividing the whole
GSD into zones by locality, the GSD on some
zones is required by some of all the participating
nodes. We define a zone as a judgment block
and a data transfer block. According to this
definition of zone, we define a server role as ex-
isting on each zone, and design a mechanism to
manage the server role and the GSD on each
zone.

Feb. 2005

As in the ZFM, the SimMud? partitions
whole GSD by locality of interest. However,
SimMud divides the game world into several
regions only by locality of area in the game
world. The ZFM partitions whole GSD into
several zones not only by locality of area in
the game world, but also by locality of group
sharing specific GSD or the locality of personal
information. The ZFM can produce a flexible
data structure for any type of MOG.

Along with the concept of zone, we introduce
node status. Basically, each user node has one
of three statuses for each zone: independent,
zone member, and zone owner.

The zone owner represents the server role on
a zone, and the zone member represents the
client role on a zone. When a user node wants
to receive updates of the GSD of a particular
zone, the node changes its status as a zone
member. A zone member node can request
the zone owner node to modify some GSD on
the zone. If a user node wants to modify the
GSD on the zone when there is no zone owner,
then the node tries to change its role to zone
owner. Although the zone owner node has a
right to change all GSD on the zone, the zone
owner node has responsibility for judging con-
flicts among requests from zone members, mod-
ifying GSD along with the requests, serializing
GSD according to the game sequence, and an-
nouncing any updates of GSD to all zone mem-
bers.

If a user node is not interested in the GSD of
some zone, the node then has an independent
status to the zone. Next, we add a new def-
inition for “zone” When we describe “a node
joining to a zone” or “the zone owner leaving
from the zone”, we use “zone” to represent the
membership who manages the zone owner role
and GSD.

Along with the basic three node statuses, we
add one extra node status: data holder. In the
ZFM, whole GSD is distributed into a peer-to-
peer overlay network representing several zones.
Futuremore, some nodes contribute their own
local storage to part of the shared storage on
the peer-to-peer overlay network. We call the
node contributing its storage for storing GSD
of some zone, a data holder. Therefore, a data
holder node has all GSD of some zone. Data
holder nodes are selected by the data sharing
algorithm of the employed overlay technique.

3.3 Distributed Hash Table

In the ZFM, we employ the DHT as at tech-

Vol. 46 No. 2

nique to construct an peer-to-peer overlay net-
work. The DHT is a distributed data placement
and a data lookup algorithm for an overlay net-
work. Basically, the DHT stores the mapping
between a key and a value, and the DHT ap-
pears as an ordinary hash table for each user
node. When a node tries to search some data,
the node looks up its own DHT as a hash ta-
ble. A key points to the identifier of some node,
then, the node pointed to by the key contains
true data on the hash table. Therefore, a user
node refers the true data to some other node
whose identifier is obtained through the DHT.
Variations of DHT, e.g., Chord '), CAN'?),
Pastry '), Tapestry '¥), etc. exist.

Using the DHT, all nodes on the same DHT
overlay network use one hash table, that is, all
nodes share the same data. DHT ensures the
pairing of a key and the corresponding data or
the identifier of some data holder node; there-
fore, the mismatching of data among nodes
never occurs.

However, DHT has several drawbacks. First,
the DHT has accessibility to data, that is, ev-
ery node can modify every piece of data on the
DHT. Therefore, some nodes can modify some
data when the data is not a match for the node.
The DHT does not have a judge to avoid con-
flicts of changing data among user nodes. Also,
the DHT ensures every node will share the same
data; hence, the accessibility of the DHT can
easily provide inconsistency of data on a time
sequence.

Second, the DHT has a tradeoff between the
size of the routing table and routing hops. If
the order of the routing table size is O(logN)
at most, then the order of the routing hops
becomes O(logN)'1)-13). Hence, read or write
operations to the DHT require O(logN) rout-
ing hops. Several Application Layer Multi-
cast (ALM) methods using the DHT are pro-
posed '®); these ALMs require several routing
hops on the application layer. Therefore, using
the DHT as a data transfer method may provide
long network latency when the overlay network
topology is large. Such long network latency
may be a critical overhead for some MOGs, rac-
ing games or first person shooter games.

To reduce the number of nodes access the
GSD through the DHT, we use the DHT as
a backup storage media, and as a rendezvous
point of zones; that is, as the routing map to
zones.

Distributed Scalable MOG Servers on P2P Networks 379
< whole GSD > < DHT (user side view) >
data 1 key zone data
data 2 zone 1 candidate list,
member list,
. data 1, data ¢
- —— - -
- zoning - -
datay zone Z candidate list,
datz member list,
ata z data b, data m, data y

Fig.2 Zoning.

< DHT (user side view) > < DHT Network>

ke zone data
zone | data 1, data ¢
zone 2 data a

zone Y| data 11 to data 33
zone Z, data b, datam, data y

Fig.3 Mapping.

3.4 Zoning and Mapping

We introduce zoning and mapping methods
for using the DHT as the rendezvous point to
zones. To reduce message forwarding through
the DHT, an independent node should know the
latest membership of each zone by using only a
single access to the DHT. In other words, the
ZFM requires a mechanism by which an inde-
pendent node can learn which node is the zone
owner and which nodes are zone members when
the independent node accesses to the zone data
on the DHT overlay network.

Zoning makes each zone a judgment and a
data transfer block of GSD by adding the in-
formation about the membership on each zone.
Each zone contains some piece of the whole
GSD (see Section 3.2). We add candidate list
and members list to each zone by zoning. The
candidate list shows which node is the current
zone owner, or tells which nodes are the can-
didates for a new zone owner. On the other
hand, the members’ list expresses which nodes
have the zone member state for the zone. Fig-
ure 2 shows how the information about each
zone looks on the user side of the DHT.

Data of each zone and data holder nodes on
the DHT overlay network correspond to map-
ping methods. A DHT algorithm selects data
holder nodes randomly, and assigns the key of
each zone to the identifier of a corresponding
data holder node (Fig.3). Because each key
on the user side of the DHT points to the iden-
tifier or the address of the corresponding data
holder node, the user node can use the DHT as

380 IPSJ Journal

key identifier
zonel node A)
zone2 node B == : forwarding path
zone3 node C : return path
zone4 node D
zone5 | “node E

Overlay Networ

Fig.4 Message forwarding on DHT.

the routing map to each zone.

Figure 4 shows message forwarding on the
DHT. On the user node side, when a user node
wants to read zone data, the user node gets the
key generated by an employed hash function
and a key word, and then user node can look
up the identifier of the data holder node pointed
out by the key. The user node then sends a mes-
sage to the data holder node via several routing
hops, and receives the zone data from the data
holder node. If some user node wants to change
some zone data, the user node sends a message
to the data holder via several forwarding hops,
and the data holder node changes the zone data
according to the received message.

3.5 Zoned Federation

A zoned federation is a mechanism to manage
the information of membership and consistency
of the GSD on each zone. Zoning and mapping
methods enable each participating node on the
DHT overlay network to access each zone and
to grasp the zone data of the accessed zone. For
the nature of the DHT overlay network, the
ZFM should let each participating user node
join and leave the DHT overlay network eas-
ily. Therefore, the procedures to inherit the
information of the zone data on the zone from
the zone owner node must be tolerant of the
frequent changes of the zone owner role node.
The zoned federation provides a mechanism to
inherit the current situation of each zone and
to manage each zone autonomously.

3.5.1 Data Backup

To succeed in taking the current GSD from
the old zone owner, the ZFM uses the DHT
overlay network as a backup storage media. A
zone owner is the centric game server on par-
ticular zone; therefore, the zone owner accepts
zone members’ requests, judges conflicts among
requests, modifies GSD, serializes the changes
of GSD, and announces any updates of GSD to
all zone members. Also, the zone owner up-

Feb. 2005

dates the current GSD on the corresponding
data holder node whenever any updates about
GSD occur.

By recording the current zone’s GSD on the
DHT overlay network, all participating user
nodes can get the latest information about each
zone from the DHT even when no zone owner
exists in a specific zone. If a participating user
node changes its status to the zone owner on
some zone, the node can know all zone member
nodes and the latest GSD from the zone data
on the corresponding data holder node; there-
fore, the new zone owner node can accomplish
all the tasks left by the old zone owner.

Requests about changes to GSD and an-
nouncements of the latest GSD are transmit-
ted between the zone owner and zone mem-
bers directly; in other words, no intermediate
hop on the application layer level is employed
in transmitting GSD-related messages in the
ZFM. On the other hand, updating GSD on the
data holder node is processed through the mes-
sage forwarding mechanism on the DHT over-
lay network. Using the message forwarding of
the DHT requires several routing hops; how-
ever, the updated zone data on the data holder
node is processed in parallel by announcing the
latest GSD to each zone member. Hence, back-
ing up the zone data to The DHT overlay net-
work doesn’t influence the response latency of
message exchanges between the zone owner and
the zone members.

3.5.2 Zone Membership Management

In the ZFM, each user node accesses zones
where the GSD required by the user node is
stored. Also, the node playing the zone owner
role is changed dynamically. The candidate list
and the member list on each zone provides man-
agement mechanism of the zone owner role and
grasping current zone members.

Each user node changes its status regarding
each zone as illustrated in like Fig. 5. An user
node becomes the zone owner from the inde-
pendent state or the zone member state by the
step up procedure. An independent state node
can join the zone as a zone member by follow-
ing the join procedure. The zone member state
node leaves from the zone by the leave proce-
dure, and the zone owner role node can resign
its game server task by the step down proce-
dure and change to the independent state. Ba-
sically, these status changes and procedures are
announced to other nodes by the candidate list
and the members’ list of each zone.

Vol. 46 No. 2

zone owner

step up

step up

zone member

joi

independent

Fig.5 Node status changes.

leave

The candidate list shows which node is the
current zone owner, or which node has the right
to play the zone owner role. When there is no
zone owner in a zone and a user node tries to
become the new zone owner of the zone, the
user node writes its identifier into the candidate
list of the zone and reads the latest zone data
through DHT message forwarding. If the iden-
tifier of the user node is listed on the top of the
loaded candidate list, the user node can become
a new zone owner, and then the user node can
start working as the zone owner. When the zone
owner wants to leave the zone, the zone owner
has to remove its identifier from the candidate
list on the data holder node. After removing
its identifier from the candidate list, the zone
owner can leave the zone.

On the other hand, when a user node wants
to join a zone as a zone member, the user node
writes its identifier into the members’ list on
the data holder node, reads the latest situation
about the zone from the DHT overlay network,
and sends a join message to the zone owner
who is listed on the top of the candidate list.
When the zone owner receives a join message
from a new zone member, the zone owner adds
the identifier of the new zone member into its
own members’ list. Next, the zone owner and
the new zone member establish a connection
and exchange messages directly. When a zone
member node tries to leave the zone, the zone
member node removes its identifier from the
members’ list on the DHT, that is, the mem-
bers’ list on the data holder node. The zone
owner can realize the disappearance of the zone
member when the connection between the zone
owner and the zone member is closed.

The details of the procedures for managing
the membership of zones and GSD on each zone
are described in Section 4.3.

Distributed Scalable MOG Servers on P2P Networks 381

game program

zoning layer

DHT layer
network layer

Fig.6 Zoning layer.

Table 1 APIs of Pastry for ZFM.

function definition
join() join to DHT network
query(key) get the current

zone data pointed out
from the hash key to DHT
add new data

to zone data on DHT
delete the specific data
from zone data on DHT

set(key, data)

delete(key, data)

4. Implementation

In this section, we describe our implemen-
tation of the Zoned Federation Model (ZFM).
We have inserted a zoning layer as a mid-
dle layer between game programs and TCP/IP
stacks, and between game programs and the
DHT layer.

The zoning layer covers both the DHT layer
and the TCP/IP stacks (Fig. 6). By using the
zoning layer, game programs don’t have to con-
sider whether a message should be exchanged
through the DHT or not.

Our ZFM optimizes the response latency on
a MOG. In the implementation, we introduced
several techniques to reduce or to optimize re-
sponse latency.

We implemented this zoning layer as a C li-
brary; we call this zoning layer library a lib-
cookai, and a C library of Pastry customized
for the ZFM. We also implemented a sample
MOG using libcookai.

4.1 Pastry for ZFM

Table 1 shows APIs of our pastry implemen-
tation in C language. These APIs are the in-
terfaces of the Pastry DHT overlay network for
the zoning layer (Table 1).

Each user node also participates in the Pastry
DHT overlay network by the join function. By
using the query API, the zoning layer reads cur-
rent zone data from the data holder node on the
Pastry DHT overlay network. If any node tries
to change the same zone data asynchronously,
some inconsistency of the zone data may occur.
To avoid inconsistencies of data, we divide the
‘write operation’ of the zone data into set and
delete. The zoning layer calls the set function

382 IPSJ Journal Feb. 2005

Table 2 Zoning layer API.

function
initialize()
step_up(zone)
join(zone)

definition

to connect to the game world

to step up to zone owner

to become zone member

and listen to update messages

update(zone, data) | to updated modified GSD

commit(zone, data) | to send a commit message
release(zone) to release direct connection

to the zone owner

to step down from a zone owner

and close all connections to

zone members

step-down(zone)

to add a new data value of zone data on the
DHT, and calls the delete function to remove
the old value of the zone data.

4.2 Zoning Layer

The zoning layer controls network access.
When the game program on a user node tries to
send a message, the zoning layer chooses Pas-
try message forwarding or the end-to-end TCP
connection according to the node status and
the data type of the message. On the game
program side, the zoning layer represents the
interface necessary to control its node status
for each zone, as well as the interface of the
network layer including the Pastry overlay net-
work. Game programs access the zoning layer
by using the APIs listed in Table 2.

4.2.1 Data Structure of Zone

The data structure of the zone is described in
Fig. 7. DHT_DATA is the basic data structure,
and it constructs a one-way list. If the data type
is OWNER, the DHT _DATA contains the iden-
tifier of the zone owner or that of a candidate
for a new zone owner. The DHT_DATA is used
as a part of the members’ list when the data
type is MEMBER. Each GSD is contained in
the DATA type DHT_DATA. Example of data
on zone data list is described in Fig. 8.

New DHT_DATA is added in the tail of the
zone data list by the set function of Pastry for
the ZFM. Focusing on OWNER type data, the
zone data list is attached to the candidate list
of the zone. The zone data structure is a one-
way list; therefore, when a user node searches
the zone owner on some zone, the zone owner
is the node whose identifier is contained in the
first OWNER-type data listed in the zone data.

4.2.2 Latency Optimizing Techniques

Most types of MOGs require a short response
latency of less than 200 ms®). We designed the
ZFM to optimize response latency. In addition,
we add two latency optimizing techniques onto

enum {
OWNER,
MEMBER,
DATA,

¥

struct DHT_DATA {
unsigned int type;
unsinged int data_length;
char dataf];
struct DHT_DATA *next;

Fig.7 Data structure of zone.

s N
zone data{
OWNER{
data_length
“nodel.example.com:8472”

}
MEMBER{
data_length
“node2.example.com:8472”
}
DATA{
data_length
binary_data

}

MEMBER{
data_length
“node3.example.com:8472”

}
}

N J

Fig. 8 Example of data on zone data list.

the implementation of the zoning layer; namely,
data caching, and connection caching.

The zone owner has the permission to write to
the master data of GSD on its governing zone.
However, updating data on a data holder node
through the DHT forwarding paths causes more
latency than the modifying data on the local
storage of a zone owner. Therefore, by using a
local cache of the zone data list on a zone owner
as master data of the GSD on its zone, the local
cache is able to cut the response latency caused
by searching the data holder node to modify the
GSD through DHT message forwarding.

Along with data caching on each zone owner,
we combine connection caching to reduce the
response latency on the announcing updated
GSD. Each zone member of a zone is listed
on the zone data list of the zone; therefore,
a new zone owner can understand all current
zone members. When a user node becomes a
new zone owner, the new zone owner estab-
lishes an end-to-end TCP connection to each
zone member, and the zone owner keeps these
TCP connections until the zone owner leaves
the zone. We call each TCP connection between
a zone owner and a zone member a transfer
path. When a zone owner changes the GSD on
its local cache of the zone data, the zone owner
announces updated GSD for each zone mem-
ber directly through transfer paths. In parallel

Vol. 46 No. 2

with updating zone members’ GSD, the zone
owner also updates GSD on the data holder
node through DHT message forwarding to avoid
loss of the current GSD of the zone. Hence,
every node can understand new zone owner by
following in sequence the latest GSD from DHT
overlay network.

4.3 Procedures

Our zoning layer implementation provides
several APIs for game programs (Table 2). Us-
ing these APIs, game programs should only be
concerned about their own node status for each
zone. On the assumption that game programs
are written in an event driven model, we have
designed and implemented APIs. Figure 9
shows pseudo codes of a zoning layer API.

Initialize function is used when a user node
joins to the DHT overlay network where a MOG
runs. Initially, for the user node just joining
the DHT network, the user’s node state is an
independent state for all zones. The node tries
to participant in several zones which have the
GSD that the user node must read or change
according to the game sequence.

When a user node wants to change the GSD
of a zone, the user node tries to become the new
zone owner of the zone. Next, the user node
takes a step up procedure. First, the user node
adds its identifier to the zone data list on the
data holder node through the DHT forwarding
path, and reads the current zone data list from
the data holder node. If the user node finds the
OWNER-type data it wrote by itself first when
the user node searched the current candidate
nodes, then the user node changes its node sta-
tus to zone owner, reads the current zone data
list again, comprehends all current zone mem-
ber nodes, and establishes a transfer path to
each zone member. Establishing a transfer path
tells each zone member about the arrival of a
new zone owner. If the user node finds an other
node’s identifier first when searching the candi-
date nodes, the user node realizes that the other
node is the zone owner, then the user node re-
moves the OWNER-type data it committed by
itself from the zone data list.

If the zone owner already exists when an in-
dependent node wants to modify the GSD, or
when an independent state node wants to just
read the current GSD or to receive the up-
dated GSD from the zone owner, the indepen-
dent node changes its status to zone member
by a join function. Joining steps are as fol-
lows: an independent node changes its status to

Distributed Scalable MOG Servers on P2P Networks 383

s N

function initialize(){
DHT - join();

function step_up(zone){
DHT _append(zone, mydata.hostdata + type:: OWNER);
data_list = DHT_get(zone);
foreach element (data_list){
switch(element.type){
case MEMBER:
regist_member(zone, element.hostdata);
break;
case OWNER:
if(element.hostdata == mydata.hostdata){
return success;

if(alive_check(element.hostdata) == alive){
DHT _delete(zone, mydata.hostdata + type: OWNER);
return fail;
}else{
DHT_delete(zone, element.hostdata + type:: OWNER);
}
break;

}
return fail;

function join(zone){
DHT.append(zone, mydata.hostdata + type:: MEMBER);
data_list = DHT_get(zone);
foreach element (data_list){
switch(element.type){
case OWNER:
regist(zone, element.hostdata);
break;
case DATA:
mydata.zone.data = element.data;
break;
}
}

function commit(new_data.zone.data){
send(owner.hostdata, new_data.zone.data);

function update (mydata.zone.data){
foreach member (zone.member_list){
send(member, new_data.zone.data);

}
DHT_delete(zone, old_data.zone.data);
DHT _write(zone, new_data.zone.data);

} function step_down(zone){
DHT_delete(zone, mydata.hostdata + type::OWNER);
foreach member (zone.member_list) {
disconnect(member);

}

function release(zone){
DHT_delete(zone, mydata.hostdata + type::MEMBER);
disconnect(zone::owner);

u y,

Fig.9 Zoning APIL

zone member, writes its identifier in the tail of
the zone data list as MEMBER-type data, and
reads the latest zone data list from the DHT
overlay network. Next, the new zone member
checks the zone owner identifier and tries to es-
tablish a transfer path by sending a join mes-
sage to the zone owner. When the zone owner
receives the join message, the zone owner adds
the new zone member’s identifier to the zone
data list on its own local cache, and establishes
the new transfer path.

When a zone member node wants to change
some GSD value, the zone member sends a com-
mit message with new GSD to the zone owner.
When the zone owner receives a request for
modification from some zone member or the
zone owner wants to modify some GSD on its
own zone, the zone owner calls an update func-
tion. After judging the conflict or the consis-

384 IPSJ Journal

tency of the GSD, the zone owner modifies the
GSD on its local cache, announces new GSD to
each zone member through transfer paths, and
sends the new GSD to the data holder node via
the DHT message forwarding for the purpose of
backup.

If a zone member leave the zone, the zone
member shuts down the transfer path and re-
moves the MEMBER-type data which contains
its own identifier from the data holder node
through DHT forwarding path. When the
transfer path has been closed by some zone
member, the zone owner realizes that the zone
member left from the zone, and the zone owner
removes the zone member’s identifier from its
local zone data list.

A zone owner steps down to the independent
state when the zone owner wants to leave from
the managing zone or just wants to resign from
the zone owner role. In this case, the zone
owner removes its identifier from the OWNER-
data from the zone data list on its local cache
and on the data holder node respectively. Next,
the zone owner closes all transfer paths, and
changes its status to an independent state. All
zone members realize the zone owner has just
left the zone by the closed transfer path. If
some zone member simply tries to commit after
the zone owner leaves, the zone member tries to
become the zone owner by calling the step up
function.

4.3.1 Recovery from Failure

In this section we describe the error process-
ing procedure that occurs when a node is sud-
denly isolated from the peer-to-peer network
because of a network failure.

When a zone member is isolated from the
network, this event of isolation looks for the
“leave” action called by the zone member. The
zone owner is the only node which knows that
the zone member has left, so the zone owner re-
moves the zone member’s entry from the zone
data list on its own local cache. If the isolated
zone member comes back to the DHT overlay
network, then the zone member realizes that
the transfer path has been closed. In this case,
the zone member must send a join message to
the zone owner again.

When a zone owner has been disconnected
from the network, its zone members notice that
the zone owner has been isolated from the net-
work due to an absence of heartbeat messages
from the zone owner. Next, each zone mem-
ber sends an owner-lost message to the game

Feb. 2005

program by itself. After sending an owner-lost
message, one of these zone members deletes the
zone owner entry from the DHT. If the game
program on some zone demands a change of the
GSD, the zone member tries to “step up”.

If a zone owner disappears from the network
by a network accident when no zone member is
listed, the entry of the zone owner remains on
the DHT. In this case, a node becomes a zone
member because of the remnant of the zone
owner entry on the DHT, but the new zone
member cannot establish the transfer path to
the registered zone owner, so the zone mem-
ber notices that the zone owner doesn’t exist.
Then, the zone member deletes the old zone
owner entry from the DHT and tries to step
up.

4.4 Sample MOG Program

To evaluate the zoning layer, we have imple-
mented a MOG program.

Our sample MOG is “get the game flag” sim-
ilar to “rally-x”, but extended to a multi-player
game. Each player drives a small car and play-
ers struggle to get flags distributed on a two di-
mensional world map. Each player can disturb
other players by a smokescreen. If a player’s car
hits a rock or another player’s car, the player
has to restart.

To divide the whole world into several zones
on this MOG, we used maps and positions as
features of the zones. A zone of a map image
contains a map image which is 128 x 128 square
when one square is defined as the size of a car
image. On the other hand, each zone of posi-
tions contains the positions of cars, flags, and
smokescreens on a specific map image are de-
fined by a zone of the map image. These zones
are distributed onto a DHT overlay network.

5. Evaluation

In this section, we evaluate our zoning layer
implementation of the zoning layer described in
Section 4. For evaluation, we employed a sam-
ple MOG program and examined it by focusing
on latency overhead as a performance metric.

5.1 Order

We clarify the tradeoff between the order
of message forwarding hops on an application
layer level and the order of messages to be sent
by a node in several models. We describe the
ZFM in Table 3, in the client-server model
in Table 4, and in Scribe'®, which is an
Application Layer Multicast (ALM) based on
DHT message forwarding in Table 5, respec-

Vol. 46 No. 2

Distributed Scalable MOG Servers on P2P Networks 385

Table 3 Communication overhead of ZFM.

num of messages | hop counts
step up O(N) O(logN)
join o(1) O(logN)
step down 0(1) O(logN)
leave o(1) O(logN)
commit o(1) o(1
update O(N) O(logN)

Table 4 Communication overhead of client server

model.
num of messages | hop counts
recovery O(N) O(1)
join O(1) o(1)
leave O(1) O(1)
request O(1) O(1)
update O(N) O(1)

Table 5 Communication overhead of Scribe.

num of messages | hop counts
create 0(1) O(logN)
subscribe O(1) O(logN)
unsubscribe o(1) O(logN)
publish O(N) O(logN)

tively. Scribe is employed by SimMud ? which
is another DHT overlay infrastructure model
for MOGs.

Because the DHT overlay network can be ac-
cessed on all actions but commit, ZFM appears
to be a hybrid model of a client-server model
and scribe. Therefore, the ZFM appears to pro-
vide at least the same response latency as Scribe
although the recovery steps of the zone owner
(step up) may become a bottleneck point for the
ZFM.

Comparing the recovery steps of the game
server, the ZFM, and the client-server model
requires O(N) when sending messages to all
clients. The ZFM also needs O(logN) hop
counts to inherit the latest zone data list from
the DHT overlay network.

When joining or leaving from a zone, the
ZFM requires O(logN) hop counts to add or to
remove its identifier from the zone. In addition,
the Scribe needs Olog(NN) hop counts to add or
to remove its entry from a multicast group.

Updating the GSD, Scribe and the ZFM re-
quires O(N) message forwarding and O(logN)
hop counts. However, the Scribe needs
O(logN) hop counts because the Scribe em-
ploys the DHT as the message forwarding path
for all messages. On the other hand, the ZFM
requires O(logN) hop counts to back up the
current GSD on the DHT overlay network. If
only some nodes play the zone owner role of

a zone, backing up the current GSD into the
DHT overlay network may not be necessary for
the zone owner node. Also, updating each zone
members’ GSD through the direct TCP connec-
tions is processed in parallel by backing up the
GSD on the DHT overlay network. Therefore, a
zone owner works with O(NN) message forward-
ing and O(1) hop counts from the standpoint
of zone members (game clients).

5.2 Response Latency Overhead

We have evaluated response latency overhead
caused by our zoning layer implementation.
MOGs need low latency overhead on message
exchanges and on updating the latest GSD in
order to provide stress-free interactions among
game players. On the evaluation of response
latency overhead, we examined two kinds of re-
sponse latency used by the zoning layer: one
on a step up action, and the other on update
action. In Section 5.1, we described how the
step up action may be a bottle-neck point be-
cause the step up action requires O(N) message
sending and O(logN) DHT forwarding hops to
inherit and to recover zone owner tasks. Also,
we mentioned how update action may achieve
a short response latency to zone members with-
out concerns about back up on a DHT overlay
network.

Response latency on step up action is influ-
enced by two actions: a node becomes a zone
owner and establishes direct connections to all
zone members. To become a zone owner, a node
has to search a data-holder node twice. The
first search is needed to write its entry as an
owner on the zone-data list, and, after becom-
ing the zone owner, second search is required
to fetch all zone data from the data holder-
node to use as master GSD, and to comprehend
all zone members. Therefore, response latency
on step up is affected by the time needed to
search a data holder through the DHT forward-
ing path. Also, response latency on step up is
influenced by the number of zone members be-
cause of establishing TCP connections between
a zone owner and each zone member. In Sec-
tion 5.2.1, we describe the relation between the
number of zone members and the response la-
tency of step up action.

On the other hand, response latency on up-
date action is affected by updating a GSD on all
zone members and on the data holder. We mea-
sured response latency on update action as up-
date time, which is influenced by the number of
zone members. Through experiments described

386 IPSJ Journal Feb. 2005

in Section 5.2.2, we try to clarify the relation
between update time and the number of zone
members on a single zone.

For each evaluation of response latency, we
employ a test code which is constructed by lib-
cookai. On the test code, a zone-owner node
sends a packet with a 1,024 bytes payload to
each zone member node over each TCP session.
Each zone member node simply receives the test
packet.

The threshold of response latency which users
can accept without stress is different among
MOG types®~%. Our sample game program
needs the same response latency accepted by
tye First Person Shooter (FPS) game. For the
evaluation, we set the threshold of the response
latency to 200 ms which is acceptable for users
on FPSY).

5.2.1 Response Latency on Step Up

First, we evaluated the overhead of response
latency on the step up procedure. In this eval-
uation, we used an experimental environment
consisting of 7 FreeBSD PCs, 3 with 500 MHz
processors and the other 4 with 850 MHz, in-
terconnected by a 100base-TX switch. All
PCs have 256 M bytes memory. To increase
the number of zone members, we simulated
multiple zone-member nodes by running zone-
member processes on PCs.

We estimated the response latency by di-
viding several time ranges, for example, DHT
Looking-up Time (DLT), Establishing Con-
nections Time (ECT), and Total Stepping-up
Time (TST). The relationship among these
time ranges is as follows:

e DLT

The time spent for fetching a zone-data list
from the DHT overlay network.

e ECT

The time spent for establishing each con-
nection between a zone owner and a zone
member.

e TST

The total time spent for stepping up to a
zone owner.

In the test-bed environment described above,
the zone owner was placed in only one PC.
The scenario of this experiment was as follows:
First, only zone members run; next, a new in-
dependent node steps up to the zone owner.
We evaluated these response latencies while in-
creasing the number of zone members gradu-
ally. The result of this experiment is shown in
Fig. 10.

=
%]
3
+
+

* X
+
T

. L EcT

08 F R s 4
LHrtt *

++
06 * K¥ i

.
T *
W x¥

*

time [sec]

+ X XXX,
XX XXX X BxxX T e)X
*

04 ¥ B o %
% X XXX X Xy

o
3
b

X

P

L L L L L
0 100 200 300 400 500 600 700 800 900
number of members

Fig.10 Response latency on step up.

Obviously, the topology of the Pastry for-
warding path is affected on by the TST. The
ECT draws the liner curve of O(N), but the
DLT draws an incontinuous line. TST When
the number of zone members was 700, the TST
was less than that on 600 zone members. This
was because that the difference of the ECT on
600 zone members versus on 700 members was
shorter than the difference of the DLT. Fig-
ure 10 shows that a longer Pastry forwarding
path is the bottleneck point of response latency
on the step up action. The maximum number
of zone members which satisfied the threshold
was 100 zone members; therefore, a single zone
owner can deal with 100 zone members by keep-
ing the TST at less than a 200 ms time thresh-
old.

5.2.2 Response Latency on Updating

GSD

Next, we evaluated update time. To evalu-
ate the response latency overhead of the up-
date time, we used the experiment on Starbed
which is a large scale network emulation test-
bed environment constructed in Hokuriku IT
Open laboratory '®). On Starbed, 512 PCs are
divided into five partitions and inter-connected
through several switches. Each PC has Intel
Pentium IIT 1 GHz, 512 MB main memory, two
100 Base-TX network interfaces, one of which is
connected to the control network and the other
to the experimental network. We ran FreeBSD
4.7 for the operating system on each PC.

For the evaluation of update time, we used
296 PCs on Starbed with a simple network
topology such that each PC connected to the
same layer 2 network. In this experimental en-
vironment, we did two experiments about up-
date time. We estimated update time on each
experiment. The start of the update time was
defined as the time when a zone owner sends a
test packet, and the end of the update time was

Vol. 46 No. 2

=

=55
== -
=
T T T T T T T T T T
100 200 300 400 500 600 700 800 900 1000

delay time [sec]
| | | I

010 045 020 025 030 035 040
L

number of members

Fig.11 Update time.

140 4

120
100 |
80 |
60 |
40 4
20 I
o N

o
s 9

number of nodes

16
0.22
024 ||

©
&
S

0.28
0.32
0.34

o o Q8
S s 883
S 33

0.04
0.06
0.08

- o
> S T o
S o

0.18

o
0.42
044
046

® v
b
S
delay time [sec]

Fig.12 Histogram of update time.

when a zone member received the test packet.
In the experiments, we measured the update
time on each zone member node, and drew the
results using a box-whisker plot (Figs. 11, 13).

First, we evaluated the effect of the number of
zone members on a single zone. In this experi-
ment, we used a PC to run only one zone owner
process with a 100ms delay caused by dum-
mynet, Zone member processes ran on other 295
PCs uniformly.

Figure 11 shows the trend of distribution for
the update time, and Fig. 12 represents the dis-
tribution of the update time when the number
of zone members was 1,000. According to these
figures, although dummynet caused a 100ms
delay, the minimum update time was 240 ms
and all update times on each zone member were
less than 440 ms, even when the number of zone
members was 1,000. The maximum number of
zone members which a single zone owner can
treat by satisfying the 200 ms threshold was 500
members.

In the second experiment, we measured the
effect of the number of zones needed to update
time when the total number of zone members
was fixed on 297 nodes. We changed the num-
ber of zones from 1 to 8, and we distributed
zone members to each zone equally. Figure 13
shows the result of this experiment. In Fig. 13,
we divided a zone which has many members

Distributed Scalable MOG Servers on P2P Networks 387

= _— 8

‘
g
1
=

delay time [sec
000 002 004 006 008 010 0.12
|

o
o
T T T T T
1 2 4 6 8

number of zones

Fig.13 Effect of the number of zones to the update
time.

into several small size zones to enables the re-
duction of the response delay and to stabilize
the distribution of the update time.

From the results of these experiments, we can
say that a single zone owner can deal with user
nodes as well as a single, not-clustered centric
MOG server, and zoning can reduce the over-
head on a zone owner and provide MOG the
scalability necessary for at number of users of
each zone.

5.3 Bandwidth Requirements

A zone owner has to update all zone mem-
bers’ GSD through unicast; therefore, our zon-
ing layer implementation consumes bandwidth
when a zone owner updates the GSD. Also, a
single user node can become the zone owner
on several zones, and if a single user node be-
comes the zone owner of all zones, the single
node requires the same upstream bandwidth as
the downstream bandwidth required for a sin-
gle centric MOG server. Required bandwidth
of a user node is described as follows:

about some node j (j =1,2,....,m)
inzone i (i = 1,2,...n), node j updates GSD as
the zone owner

e a;;: whether or not node j is an owner on

zone i, that is, a;; is 0 or 1
e N,;: the number of members on the zone ¢
e F;: frequency of updating GSD on zone @
G;: average size of updating GSD per node
on zone %
e M;: required number of messages sent by
the zone owner on zone i
e PB;: required upstream bandwidth con-
sumption on the zone owner on zone i

The total upstream bandwidth consumption

on node j (Br;) is:

388 IPSJ Journal

BT] = Z aijBi
%

= Z aijNiGiFi

7

6. Other MOG Models Based on P2P
Overlay Network

SimMud? and the PP-CA model!” are
other approaches to MOG infrastructure based
on to peer-to-peer overlay network. These ap-
proaches provide audit mechanisms for GSD
consistency by a third person or by an author-
ity.

SimMud employs Pastry ¥ and Scribe '®) as
base components of its architecture. In the Sim-
Mud approach, the authoritative role is given to
a data holder node, which is called “coordina-
tor”. By randomly mapping data holder nodes
on the DHT, SimMud prevents game players
from cheating global states because the coor-
dinator is rarely interested in the GSD stored
in its local storage. Also, by preparing sev-
eral replicas of a coordinator, SimMud provides
fault tolerance.

Pellegrino, et al. has proposed the PP-CA
model, which is a peer-to-peer overlay MOG in-
frastructure with a central arbiter server 7). In
the PP-CA model, a central arbiter server only
audits inconsistencies of the GSD and resolves
the inconsistencies. Other messagings such as
updating the GSD are processed by user nodes
through a peer-to-peer overlay network.

Pellegrino, et al. analyzed three different
models: the client-server model, the peer-to-
peer model, and the PP-CA model by using an
open source MOG program, BZFlag'®). The
analysis shows that the PP-CA model can re-
duce the bandwidth requirement of the central
arbiter and resolve inconsistencies of the GSD
without a complex distributed agreement pro-
tocol.

Next, we try to compare ZFM, SimMud, and
the PP-CA model (Table 6). Durability of
GSD on each model is affected by the employed
peer-to-peer overlay network.

MOG, ZFM, and PP-CA models are supe-
rior to SimMud, because SimMud is a cus-
tomized model only for a Massive online RPG
and MOG, ZFM, and PP-CA models are more
adaptable.

SimMud has scalability ensured by a simu-
lation. ZFM also has scalability; however, we
have not evaluated ZFM in a simulation with

Feb. 2005

Table 6 Comparing three models.

ZFM | SimMud | PP-CA
durability o o o
adaptability [¢) X o
scalability o) -
response latency o x A
bandwidth X o A
cheat proofing X A o
incentive to serve o X o

a size as large as that of SimMud. PP-CA has
been evaluated only in a small LAN environ-
ment; therefore, we cannot discuss the scalabil-
ity of the PP-CA model.

ZFM is a more latency-optimized approach
than SimMud because SimMud uses Pastry '%)
as the DHT, and Scribe' as the message
exchange method based on an application-
layer multicast (ALM). While ALM reduces the
bandwidth consumption of the coordinator, it
incurs network delay by crossing several hops
on both the DHT and the ALM. In our zon-
ing layer approach, each node exchanges mes-
sages directly; therefore, ZFM can achieve a
shorter response latency than the ALM, ex-
cept for the initial rendezvous by the DHT. But
ZFM consumes more bandwidth than Scribe
because ZFM updates the GSD through uni-
cast connections.

The PP-CA is a hybrid model of the peer-
to-peer and client-server. Of course, the band-
width consumption of the central arbiter server
is low. However, in user nodes, the response la-
tency and bandwidth consumption are affected
by the data transfer protocol among user nodes.

The ZFM distributes arbiter servers if ev-
ery zone owner works with fair play. If we
assume that malicious users join in the ZFM
as malicious zone owners, then the ZFM has
the drawback of cheating or unfairness. Al-
though SimMud equips cheat proofing through
a third person, SimMud’s cheat proofing can
be overwhelmed by overriding numerous mali-
cious nodes. The central arbiter server on the
PP-CA is the authority or certificate server of
the game; therefore, the PP-CA is tolerant to
cheating or unfairness.

The SimMud third person check employs a
coordinator who is not interested in the GSD
of the managing zone. The game server tasks
highly consume the resources of a user node; for
this reason, an incentive is needed for the user
nodes to process the game server tasks. How-
ever, a third person check of SimMud employs a
coordinator who is randomly selected and may

Vol. 46 No. 2

be not be interested in the GSD of the man-
aging zone; hence, no incentive or interest for
the randomly selected third person exists. If a
user is not interested in a particular zone, the
user cannot grasp what is needed by most other
users on the zone correctly. If several MOGs
run on the same DHT overlay network of the
SimMud, this forces user nodes to act as the
game server for several MOGs. In such a sit-
uation, no merit exists on the user’s machine.
Dealing with several MOGs on the same DHT
overlay network is difficult for SimMud.

On the other hand, in both the ZFM and PP-
CA, the data transfer and judgment are pro-
cessed by nodes interested in the same game
world. In other words, an incentive to serve
GSD in both models exists.

7. Related Work

The scalable data dissemination problem has
been addressed in the application-level mul-
ticast literatures 919 where large receiver
groups are of particular concern. In contrast,
our work focuses on zone-local data dissemina-
tion with low latency.

A large number of small groups can be sup-
ported in small-group multicast protocols??);
our work can exploit such infrastructure sup-
port, for the purpose of efficient data dissemi-
nation from the zone owner.

While we have looked only at the application-
layer a topology in this paper, topology-aware
overlay 2! will further reduce the latency of
intra-zone communication by optimizing the
network-layer topology.

The API described in this paper resembles
the CAST interface which is part of the com-
mon API effort 22). However, the underlying se-
mantics have notable differences: zone-local se-
rializability, and the presence of multiple roles.
Typical any-source multicast protocols are not
serializable, in the sense that one particular re-
ceiver cannot ensure the same order of packet
arrival as other receivers. In the MOG context,
we believe that the serializability is of particu-
lar importance.

8. Future Work

We evaluated the ZFM by focusing on re-
sponse latency, and showed the scalability of
the ZFM. However, our experimental environ-
ment was conveyed on a local subnet; therefore,
we have to measure the scalability of the ZFM
on Internet size topology. Also, we have not

Distributed Scalable MOG Servers on P2P Networks 389

had subjective evaluations, so we plan to have
several subjective evaluations using our sample
game program shown in Section 4.4.

We have constructed the ZFM on the DHT
in order to achieve data consistency on the as-
sumption that the employed DHT has strong
durability. However, our implementation of
Pastry is not durable. When the data holder
node leaves the DHT overlay network, no other
node can refer to the GSD backed up on the dis-
appeared data holder node until the data holder
node returns again to the DHT network. In fu-
ture work, we need consider the durability of
GSD; a method such as OceanStore 23), which
uses the DHT overlay network as its largest
storage, would be useful.

In our model, increasing the number of zone
members increases the CPU and bandwidth
overhead on the zone owner. To solve this prob-
lem, increasing the number of zone owners in a
zone actively is necessary, in order to distribute
a zone owner’s tasks. In this case, achieving
consistency of the global state is difficult; we
should consider a the synchronization of data
between multiple zone owners in a specific zone.
We may have to consider workaround to reduce
the overhead of a zone owner with numerous
zone members.

Basically, for our design policy of the ZFM,
we assume that the protection for cheating or
unfairness on the ZFM is managed by partici-
pant users. In Section 6, we discussed how the
third-person check employed by SimMud? is
not suited for the ZFM. Reputation techniques
on a peer-to-peer overlay network 24) meets the
ZFM requirements, because such a reputation
system is based on interests.

However, most peer-to-peer overlay network
have congenial defects that apply to malicious
user nodes, such as catastrophe by a betrayer,
hijacking by numerous malicious nodes, or un-
dermining a chain of vouchers from forged mul-
tiple identities 4)25). A central arbiter server
may resolve these threats by providing a consis-
tency check and certificates of the users. There-
fore, the hybrid model of the ZFM and PP-CA
can be constructed. Such a hybrid model can
present short response latency and scalability
with consistency and authentication.

9. Conclusion

In this paper, we have proposed the Zoned
Federation Model, which adapts MOGs to peer-
to-peer overlay networks. In this model, the

390 IPSJ Journal

whole game world is divided into several zones;
each zone is maintained by a federation of
nodes: an owner and one or more members.
The zone owner plays two critical roles. First,
it provides zone-local serializability of state
changes by aggregating modifications from all
members, and by sending state-change notifica-
tions to all members. Second, the ZFM ensures
the consistency of changes committed by other
member nodes. The DHT harnesses this zoning
layer by providing rendezvous capability and by
working as a backup storage medium for zone
data.

We have applied this model to our prototyp-
ical MOG implementation, with which we have
evaluated latency and scalability. Our exper-
imental results show the relation between la-
tency of update time and the number of zone
members on a single zone, and represents the
effectiveness of distributing the functions of a
centric authoritative node to several zone own-
ers. Moreover, we have compared other models
with ours according to the number of messages
and the order of hop counts, and we have de-
scribed the upstream bandwidth consumption
of a zone owner node.

On our zoning layer implementation, the
whole game world can be divided into several
zones with no restrictions. Therefore, by con-
sidering the appropriate number of zones and
the permissible number of zone members on a
single zone according to our experimental re-
sults, we showed how game creators can de-
sign scalable MOGs on peer-to-peer environ-
ment with the short response latency required
by each type of MOG.

References

1) Armitage, G.: Sensitivity of Quake3 Play-
ers to Network Latency, ACM SIGCOMM In-
ternet Measurement Workshop 2001 Work-in-
progress Posters Session (2001).

2) Gummadi, K., Gummadi, R., Gribble, S.,
Ratnasamy, S., Shenker, S. and Stoica, I.: The
Impact of DHT Routing Geometry on Re-
silience and Proximity, Proc. ACM SIGCOMM
Conference, pp.381-394, ACM Press (2003).

3) Pantel, L. and Wolf, L.C.: On the impact
of delay on real-time multiplayer games, Proc.
12th International Workshop on Network and
operating systems support for digital audio and
video, pp.23-29, ACM Press (2002).

4) Armitage, G.J.: An Experimental Estimation
of Latency Sensitivity In Multiplayer Quake 3,
Proc. 11th IEEE International Conference on

Feb. 2005

Networks ICON 2003 (2003).

5) Beigbeder, T., et al.: The Effects of Loss and
Latency on User Performance in Unreal Tour-
nament 2003, Proc. ACM SIGCOMM Work-
shop Network and System Support for Games
NetGames-4 (2004).

6) Quax, P., et al.: Objective and Subjective
Evaluation of the Influence of Small Amounts
of Delay and Jitter on a Recent First Person
Shooter Game, Proc. ACM SIGCOMM Work-
shop Network and System Support for Games
NetGames-4 (2004).

7) Smed, J., Kaukoranta, T. and Hakonen, H.:
Aspects of Networking in Multiplayer Com-
puter Games, Proc. International Conference
on Applications and Development of Computer
Games in the 21st Century (2001).

8) Morse, K.L.: Interest Management in Large-
Scale Distributed Simulations, Technical Re-
port ICS-TR-96-27 (1996).

9) Knutsson, B., Lu, H., Xu, W. and Hopkins,
B.: Peer-to-Peer Support for Massively Mul-
tiplayer Games, Proc. 23rd Conference of the
IEEE Communications Society (Infocom 2004)
(2004).

10) Coulouris, G., Dollimore, J. and Kindberg,
T.: Distributed Systems Concepts and Design,
Addison-Wesley (2001).

11) Stoica, I., Morris, R., Karger, D., Kaashoek,
F. and Balakrishnan, H.: Chord: A Scalable
Peer-To-Peer Lookup Service for Internet Ap-
plications, Proc. 2001 ACM SIGCOMM Con-
ference, pp.149-160 (2001).

12) Ratnasamy, S., Francis, P., Handley, M.,
Karp, R. and Schenker, S.: A scalable content-
addressable network, Proc. 2001 Conference
on applications, technologies, architectures,
and protocols for computer communications,
pp-161-172, ACM Press (2001).

13) Rowstron, A. and Druschel, P.: Pastry: Scal-
able, Decentralized Object Location, and Rout-
ing for Large-Scale Peer-to-Peer Systems, Lec-
ture Notes in Computer Science, Vol.2218,
pp-329-350 (2001).

14) Zhao, B.Y., Kubiatowicz, J.D. and Joseph,
A.D.: Tapestry: An Infrastructure for Fault-
tolerant Wide-area Location and Routing,
Technical Report UCB/CSD-01-1141, UC
Berkeley (2001).

15) Castro, M., Druschel, P., Kermarrec, A. and
Rowstron, A.: Scribe: A large-scale and decen-
tralized application-level multicast infrastruc-
ture, IEEE JSAC, Vol.20, No.8, p.11 (2002).

16) NiCT: Hokuriku IT Open Laboratory.

17) Pellegrino, J.D., et al.: Bandwidth require-
ment and state consistency in three mutli-
player game architecture, Proc. 2nd Work-

Vol. 46 No. 2

shop on Network and system support for games
(NETGAMES), pp.52-59, ACM Press (2003).

18) Riker, T.: BZFlag (2002).

19) Zhuang, S., Zhao, B., Joseph, A., Katz, R. and
Kubiatowicz, J.: Bayeux: An architecture for
scalable and fault-tolerant wide-area data dis-
semination, Proc. NOSSDAV (2001).

20) Visoottiviseth, V., Takahashi, Y., Kadobayashi,
Y. and Yamaguchi, S.: SIM: Sender Initi-
ated Multicast for small group communica-
tions, INET’2001 (2001).

21) Ratnasamy, S., Handley, M., Karp, R. and
Shenker, S.: Topologically-Aware Overlay Con-
struction and Server Selection, Proc. INFO-
COM (2002).

22) Dabek, F., Zhao, B., Druschel, P. and Stoica,
I.: Towards a common API for structured peer-
to-peer overlays, IPTPS 03 (2003).

23) Kubiatowicz, J., Bindel, D., Chen, Y., Eaton,
P., Geels, D., Gummadi, R., Rhea, S., Weather-
spoon, H., Weimer, W., Wells, C. and Zhao, B.:
OceanStore: An Architecture for Global-scale
Persistent Storage, Proc. ACM ASPLOS, ACM
(2000).

24) Kamvar, S.D., Schlosser, M.T. and Garcia-
Molina, H.: The EigenTrust Algorithm for Rep-
utation Management in P2P Networks (2003).

25) Doucer, J.R.: The Sybil Attack, Proceedings
of IPTPS ’02 (2002).

(Received May 24, 2004)
(Accepted November 1, 2004)

(Online version of this article can be found in
the IPSJ Digital Courier, Vol.1, pp.75-90.)

Distributed Scalable MOG Servers on P2P Networks 391

Takuji Iimura received his
B.A. degree in Electronic En-
gineering from The Univer-
sity of Electro-Communications
‘ (UEC), Japan, in 2002. He is
‘N\ }A_‘ currently a M.E. course student

i in Nara Institute of Science and
Technology (NAIST). His current interests in-
clude overlay network techniques.

Hiroaki Hazeyama received
his M.E. degree in Informa-
tion Science from Nara Insti-
tute of Science and Technology
(NAIST), Japan, in 2003. He
is currently a Ph.D. course stu-

=~ dent in NAIST. His current in-
terests include overlay network techniques, and
network security.

Youki Kadobayashi received
his Ph.D. degree in Computer
Science from Osaka University
in 1997. He is currently an As-
sociate Professor in the Gradu-

h ate School of Information Sci-
a ence, Nara Institute of Science
and Technology, Japan. His research interests
include content internetworking, overlay net-
works, quality of services in the application-
layer, middleware security, and secure operat-
ing systems.

