
Detection of Visual Clickjacking Vulnerabilities in
Incomplete Defenses

Yusuke Takamatsu†1 Kenji Kono†1

Abstract: Clickjacking is a new attack which exploits a vulnerability in web applications. It tricks victims into
clicking on something different from what they perceive they are clicking on. The victims may reveal confidential
information or start unintended online transactions. Clickjacking attacks compromise visual integrity (called visual
clickjacking) or condition integrity (called switchover clickjacking) to deceive victims. We address visual clickjacking
in this paper. Visual clickjacking can be prevented if appropriate countermeasures such as frame busting are imple-
mented in web applications. However, the correct implementation is not easy. A trivial mistake in the implementation
leads to evasion of the countermeasures. For the correct implementation, web developers must have intimate knowl-
edge on evasion techniques of the countermeasures. In this paper, we propose Clickjuggler, an automated tool for
checking defenses against visual clickjacking during the development. Clickjuggler generates some types of visual
clickjacking attack, performs those attacks on web applications, and checks whether the attacks are successful or not.
By automating the process of checking for the vulnerabilities, web developers are released from the burden of checking
the correctness of their implementation. Unskillful developers can benefit from Clickjuggler since no special knowl-
edge on a variety of visual clickjacking and evasion techniques is needed to use Clickjuggler. Our experimental results
demonstrate that Clickjuggler can detect the visual clickjacking vulnerabilities in 4 real-world web applications and
can detect the vulnerabilities in a shorter time than existing tools.

1. Introduction
Clickjacking is known as a new attack which exploits a vul-

nerability in web applications [1]. It tricks victims into clicking
on something different from what they perceive they are clicking
on. In principle, an attacker prepares a button, a link, or a form
that the victims can not recognize (i.e, hidden from the victims),
and induces them to manipulate the hidden elements of the web
page. For example, an attacker overlays a visible button with an
invisible button. Although the victims are clicking on the invisi-
ble button, they believe they are clicking on the visible button. To
prepare invisible buttons, a vulnerable page is made transparent
(the buttons on the vulnerable page become invisible) and embed-
ded in an attacker’s page (the buttons on the attacker’s page are
visible). As a result, an attacker can induce the victims to click
on the buttons on the vulnerable page.

Clickjacking is a real threat. Sophos [2] reported a clickjacking
worm spreads quickly over Facebook users. Using a clickjack-
ing technique, the users are tricked into recommending a page
to their Facebook friends. The Setting Manager of Adobe Flash
Player was vulnerable to clickjacking [3]. The victims unknow-
ingly click on the button of the access control dialog, and allow
remote attackers to hijack the victims’ cameras and microphones.
According to [4], 30% of Alexa Top 10 web sites, 70% of Top 20
bank web sites, and 80% of 5 popular open-source web applica-

†1 Presently with Keio University
A preliminary version of this paper appears in IEEE Twelfth Annual In-
ternational Conference on Privacy, Security and Trust.

tions have no defense against clickjacking in 2012.
Attackers violate visual integrity (called visual clickjacking)

or condition integrity (called switchover clickjacking) to deceive
victims in clickjacking [5]. In visual clickjacking, attackers com-
promise the guarantee that victims can fully see and recognize
an object on a browser. Visual clickjacking attacks are classi-
fied into two categories [5]. In the first category (called basic
clickjacking), attackers manipulate an element on a vulnerable
page. This is the category the example mentioned earlier falls in.
In the second category (called cursorjacking), attackers manipu-
late cursor feedback to select locations for victims’ input events.
An attacker hides the real cursor and displays a fake cursor. In
switchover clickjacking, attackers compromise the guarantee that
victims have enough time to comprehend where they are clicking.
This paper focuses on visual clickjacking because visual click-
jacking is widely recognized as clickjacking and cursorjacking.

Frame busting [6] and X-Frame-Options [7] are well-known
defenses against visual clickjacking. Since an attacker tries to
embed a vulnerable page in an attacker’s page, frame busting
prevents a page from being embedded in attackers’ pages. If
an attempt is made to embed a page to be protected in an at-
tacker’s page, the code of frame busting redirects browsers to
the protected page. X-Frame-Options controls whether a browser
should be allowed or not to render a page in a frame or an iframe
tag. To prevent a page from being embedded in attackers’ pages,
X-Frame-Options is set not to allow browsers to render framed
pages. These defenses’ policies are enforced on each page so that
they are not enforced on each element on the page.

コンピュータシステム・シンポジウム
Computer System Symposium

ⓒ 2014 Information Processing Society of Japan 16

ComSys2014
2014/11/20

Unfortunately, it is quite difficult to correctly implement these
defenses. A trivial mistake in the implementation leads to eva-
sion of the defenses. As shown in Section 3.3, there are many
subtle issues in the implementation of frame busting. If devel-
opers do not have intimate knowledge on evasion techniques of
frame busting [8] [9] [10], it is almost impossible to correctly
implement frame busting. In addition, X-Frame-Options is not
free from incorrect implementations. Joomla 3.x, a content man-
agement framework, employs X-Frame-Options to defend against
visual clickjacking. However, X-Frame-Options is not effective
because of trivial typing errors [11].

Frame busting and X-Frame-Options can not be used to al-
low a page to be embedded in a third-party page. As shown in
Section 3.1.3, some developers need to allow a page to be em-
bedded in a third-party page and disable only sensitive buttons
on the page in the third-party page. In this case, the developers
must implement element-customized defenses to enforce differ-
ent policies on different elements on the page. One approach
to disable sensitive buttons does not display the buttons on a
protected page if the protected page is embedded in the third-
party page. Developers make mistakes in the implementation
of element-customized defenses because they implement policies
for each element and may not spend the time to test all elements.

We propose Clickjuggler, an automated tool that checks for
incomplete defenses against visual clickjacking in the develop-
ment phase. Clickjuggler checks for incomplete implementations
of frame busting, X-Frame-Options, and the element-customized
defenses. Clickjuggler crafts attacker’s pages, generates events
such as click to perform visual clickjacking attacks, and deter-
mines whether the attacks are successful or not.

Clickjuggler deals with a wide range of visual clickjacking at-
tacks from the basic ones to advanced ones. In fact, it performs 8
different attacks including basic clickjacking one, cursorjacking
one, and several ones based on evasion techniques of frame bust-
ing. Existing tools such as CJTool [12] and BeEF plug-in [13]
help developers to craft attacker’s pages. These tools focus only
on basic clickjacking and do not cover such a wide range of eva-
sion techniques. CJTool does not support any of evasion tech-
niques and BeEF plug-in detects only one evasion technique.

Clickjuggler brings about several benefits by automating the
process of checking for the visual clickjacking vulnerabilities.
Web developers are released from the burden of checking the
incorrectness of their implementation. Clickjuggler detects the
vulnerabilities and/or insufficient implementations of the coun-
termeasures, even if the developers are not familiar with a variety
of visual clickjacking and evasion techniques. In addition, Click-
juggler shortens the time to test web applications and improves
the coverage of the tests. Since modern web sites consist of a
large number of buttons and pages, it is difficult for developers to
spend the time to test the buttons and pages.

To demonstrate the usefulness of Clickjuggler, we have ap-
plied it to four real-world web applications including Joomla [14]
(downloaded over 35 million times), WordPress [15] (over 70
million users), MediaWiki [16], and Roundcube [17]. Clickjug-
gler detects 15, 4, 5 and 2 visual clickjacking vulnerabilities in
Joomla, WordPress, MediaWiki, and Roundcube, respectively.

Clickjuggler does not cause false positives and false negatives in
those web applications. Moreover, we measure the time to de-
tect the vulnerabilities with Clickjuggler. The detection time of
Clickjuggler is shorter than CJTool and BeEF plug-in.

The remainder of this paper is organized as follows. We de-
scribe the background of clickjacking in Section 2 & 3. Section
4 explains Clickjuggler. Section 5 presents our experimental re-
sults. Section 6 discusses related work. Finally, we conclude the
paper in Section 7.

2. Clickjacking
2.1 An example of clickjacking

To understand the concept of clickjacking, we show a simple
example of clickjacking. In this example, an attacker puts an
unreasonably expensive item for sale at a shopping site (shop-
ping.com). The attacker forces a victim to buy the item in the
shopping site. Figure 1 illustrates the example of clickjacking.
The shopping site is vulnerable to clickjacking. To exploit this
shopping site, the attacker prepares the web site (malicious.com),
called the attacker’s site, and induces the victim to visit the at-
tacker’s site with, for instance, social engineering tricks (Step 1).

The page in the attacker’s site, called the attacker’s page, is
constructed so that it is overlaid with the target page in the vulner-
able site (shopping.com). The attacker’s page obtains the target
page and embeds it in the attacker’s page (Step 2). To deceive the
victim, the target page is made transparent by the attacker’s page
so that the victim cannot perceive the presence of the target page
(Step 3). To force the victim to buy the item in shopping.com,
the decoy button is shown on the attacker’s page and precisely
overlaid with the “Buy” button on the target page (Step 4). Since
the target page is transparent, the victim cannot perceive the pres-
ence of the “Buy” button; he clicks on the “Buy” button although
he believes he is clicking on the decoy button (Step 5). Conse-
quently, the victim unintentionally buys the item in shopping.com
(Step 6). The attacker can obtain a payment for the item.

2.2 Methods of clickjacking
Existing clickjacking attacks compromise visual integrity

(called visual clickjacking) or condition integrity (called
switchover clickjacking) to deceive victims [5]. In this paper, we
address visual clickjacking.

(1) Visual clickjacking: the attackers compromise the guar-
antee that victims can fully see and recognize an object on a
browser. Visual clickjacking attacks are classified into two cat-
egories based on the methods to deceive victims [5]. In the first
category (called basic clickjacking), attackers manipulate an el-
ement on a target page. An approach is to overlay a web page
with a transparent page as explained in the previous section. The
victims click on buttons on the target page although they believe
that they manipulate the attacker’s page.

In the second category (called cursorjacking), attackers manip-
ulate cursor feedback to select locations for victims’ input events.
The attackers display a fake cursor and hide the real one. Since
the victims can not recognize correct locations of the cursor, they
click on an unintended button on a target page. For example, an
attacker’s page displays a fake cursor at 200 pixels right of the

コンピュータシステム・シンポジウム
Computer System Symposium

ⓒ 2014 Information Processing Society of Japan 17

ComSys2014
2014/11/20

Fig. 1 Example of clickjacking. The victim accesses the attacker’s page (Step 1). The attacker’s page
requests the target page (Step 2). To deceive the victim, the target page is made transparent by the
attacker’s page (Step 3). To force the victim to click on the “Buy” button, the decoy button on the
attacker’s page is precisely overlaid with the “Buy” button on the target page (Step 4). The victim
clicks on the decoy button and sends the request (Steps 5 & 6).

real cursor and hides the real cursor to deceive a victim. To hide
the real cursor, it uses the CSS cursor property which controls the
type of cursor. To force the victim to click on a target button, it
sets a decoy button at 200 pixels right of the target button. The
victim clicks on the target button although he believes he clicks
on the decoy button.

(2) Switchover clickjacking: the attackers compromise the
guarantee that victims have enough time to comprehend where
they are clicking. For example, the attackers move a button on a
target page on top of a decoy button shortly after the victim hov-
ers the cursor over the decoy button. The victim can not react to
the condition change and clicks on the button.

3. Defenses and Evasion Techniques
This section introduces the well-known defenses against visual

clickjacking: 1) frame busting and 2) X-Frame-Options. Since
those defenses do not allow a page to be embedded in another
page, the developers can not design a page that is allowed to be
embedded but still prevents sensitive elements from being ma-
nipulated. This section also introduces 3) element-customized
approaches to design such a page. Section 3.2 shows the difficul-
ties that lie in the implementation of those defenses. Section 3.3
elaborates Section 3.2 from the viewpoint of frame busting.

3.1 Defenses against Visual Clickjacking
3.1.1 Frame Busting

Frame busting is a technique to prevent a page from being
embedded in another page [6]. In visual clickjacking, a vul-
nerable page is embedded in an attacker’s page to deceive vic-
tims. In frame busting, a small piece of code (usually written in
JavaScript) is embedded in a page to be protected. If an attempt is
made to embed a protected page in an attacker’s page, the frame
busting code redirects the browser to the original site so that the
victims can see the protected page instead of the attacker’s page.

Frame busting’s policy is enforced on all buttons, links, and
forms on a single web page and thus, can not be used if a web
page is allowed to be embedded in a third-party page. As shown
in Section 3.1.3, some web applications need to enforce different
policies on different elements on a single web page.

3.1.2 X-Frame-Options
X-Frame-Options HTTP response header indicates whether a

browser should be allowed or not to display a page in a frame or
an iframe [7]. It can be used to avoid visual clickjacking because
a page in which X-Frame-Options is set can not be embedded
in other pages. Three attributes can be specified for X-Frame-
Options: 1) DENY, 2) SAMEORIGIN, and 3) ALLOW-FROM. DENY
prohibits a page from being displayed in an iframe. SAMEORIGIN
allows only the pages that belong to the same origin to be dis-
played in an iframe. ALLOW-FROM allows the pages that originate
from the pre-defined origins to be displayed in an iframe. As with
frame busting, the policy of X-Frame-Options is not enforced on
each element on a single page because it is enforced on the single
web page.

There are web application frameworks which support X-
Frame-Options, but developers need to check the correctness of
X-Frame-Options in these frameworks. This is because the de-
velopers make mistakes in setting policies. For example, Ruby
on Rails [18] and django [19] support X-Frame-Options. These
frameworks set X-Frame-Options for all responses in sites by set-
ting policies. However, the developers might make mistakes in
setting the policies because they set the policies on every page.
3.1.3 Element-customized approaches

Frame busting and X-Frame-Options can not allow a page to
be embedded in a third-party page. Suppose that there are the
“Buy” and the “Cart” button on the vulnerable page in Fig. 1 and
the page is allowed to be embedded in a third-party page. If it is
embedded, the “Buy” button is not clickable but the “Cart” but-
ton is clickable since the “Cart” button does not start any critical
transactions. Neither frame busting nor X-Frame-Options can be
applied to this page.

One approach to dealing with this situation is to implement
a defense customized for each element. A small piece of script
code is associated with each element. If the page to be protected
is embedded in a third-party page, the code, for instance, does not
display security-critical buttons such as the “Buy” button. An-
other approach is to stop sending cookies if the security-critical
buttons are clicked. If no cookies are sent, no critical transactions
can be initiated.

コンピュータシステム・シンポジウム
Computer System Symposium

ⓒ 2014 Information Processing Society of Japan 18

ComSys2014
2014/11/20

3.2 Difficulties in Implementing Defenses
It is not easy to correctly implement these defenses. To imple-

ment frame busting, the developers must have intimate knowl-
edge on evasion techniques of frame busting [8] [9] [10]. To
understand subtle issues in the implementation of frame busting,
Section 3.3 introduces seven evasion techniques of frame busting.
X-Frame-Options is not free from trivial mistakes. Joomla 3.x
(a widely used content management system) adopts X-Frame-
Options to avoid visual clickjacking. However, X-Frame-Options
is mis-spelled as X-Frames-Options (‘s’ following ‘Frame’ not
needed) and SAMEORIGIN is mis-spelled as SAME-ORIGIN (‘-
’ not needed) in behavior.php. This implies that the developers
have not devoted time to check the correctness of the defense.

The element-customized defenses are headache. Since each
button, link and form on every page must accompany a small
piece of code that controls its behavior when embedded in a third-
party page, the developers tend to make mistakes in the imple-
mentation or forget to write the code. It would be possible to
extend existing frameworks to support the development of the
element-customized defenses. In such a framework, however, the
developers would be requested to set policies on each button, link
and form on every web page. To check the correctness of the
policy setting, we need another system that guarantees the web
application is free from the visual clickjacking vulnerabilities.

3.3 Evasion Techniques of Frame Busting
3.3.1 double framing

As shown in Section 3.1.1, frame busting code redirects a
browser to the original site. If parent.location is used to redi-
rect a browser, the frame busting code can be evaded by double
framing. In double framing, an attacker nests a target page in two
frames of two attacker’s pages. By nesting the target page in two
frames, redirecting with parent.location in the frame busting
code becomes security violation due to descendant policy and is
disabled by browsers. In descendant policy a frame can navigate
only its descendant frame to a different URI so that the descen-
dant frame (the frame busting code in the protected page) can not
redirect the parent frame.
3.3.2 onBeforeUnload Event

Frame busting can be evaded if frame busting code does not
stop displaying a page to be protected when the redirection is
canceled. An attacker prepares a page that registers an onBefore-
Unload handler, which is invoked when the attacker’s page is un-
loaded because of the redirection. The handler asks a user if the
redirection should be canceled. If the user chooses the cancel, the
browser cancels the redirection and the protected page remains
being embedded into the attacker’s page.
3.3.3 No-Content Flushing

Frame busting can be evaded if frame busting code is not
placed in a head tag or the forefront of the body tag. If the frame
busting code is placed at the end of the body tag, it is evaluated
after the protected page is rendered, and then attempts to redirect
the browser. To keep the protected page rendered, an attacker’s
page registers an onBeforeUnload handler. Recall that this han-
dler is invoked when the frame busting code attempts to redirect
the browser. The handler submits a request to a server which re-

sponds with a HTTP/1.1 204 No Content. On the receipt of No
Content, the browser flushes the request pipeline and the redirec-
tion is canceled.
3.3.4 manipulating Referrer

Frame busting code checks document.referrer to allow a
page to be framed in pre-defined third-party pages. If a URI of
the pre-defined pages is in document.referrer, the frame bust-
ing code allows the page to be embedded. If this check is done by
using simple string search, the frame busting code can be evaded
since an attacker can embed a string that matches the search. For
example, if a page to be protected is allowed to be embedded in
a page originating from safe.com, an attacker can generate a URI
of attacker.com/page?s=safe.com.
3.3.5 Browser-dependent Approaches

Three evasion techniques of frame busting exploit browser-
specific behaviors. This is another reason it is hard to implement
the code of frame busting.
clobbering location variable: To disable frame busting
code, an attacker’s page can make use of security violation caused
by accessing a local variable in other pages. Frame busting code
accesses a global variable, top.location (the origin of the par-
ent page), to confirm the page is allowed to be embedded in the
parent page. To disable this type of frame busting code, an at-
tacker’s page redefines the location variable as a local variable.
When the frame busting code accesses top.location (now, it is
a local variable), the frame busting code is disabled due to secu-
rity violation. This evasion is specific to IE 7 or Safari 4.0.4.
restricting JavaScript: If JavaScript code is disabled, frame
busting code can be evaded because it is usually written in
JavaScript. If frame busting code is put in an iframe in Firefox
and Chrome, it can be disabled by specifying a sandbox attribute
in the iframe tag. Frame busting code can be also disabled by
setting a security attribute to “restricted” in IE or turning on a
designMode property in IE 8 and Firefox.
XSS filter: To disable frame busting code, an attacker’s page
can make use of XSS filters in IE 8 and Chrome. The XSS fil-
ters disable the script code included in a response of the HTTP
request. If an attacker’s page extracts the frame busting code and
embeds it in a URI of an iframe tag, the XSS filters disable the
frame busting code.

4. Clickjuggler
As shown in Sections 3.2 and 3.3, there are many words of

caution to implement the defenses against visual clickjacking.
We propose Clickjuggler, an automated tool to check the correct-
ness of implementation of defenses against visual clickjacking.
To check for the visual clickjacking vulnerabilities, Clickjuggler
performs actual attacks on web applications. The current version
of Clickjuggler covers basic clickjacking attack, cursorjacking at-
tack, and attacks based on six evasion techniques of frame bust-
ing. As shown in Section 4.3, Clickjuggler can cover other types
of visual clickjacking attack. Clickjuggler prepares some types
of attacker’s page to perform the visual clickjacking attacks, ma-
nipulates the attacker’s pages as a victim, and determines whether
the attacks are successful or not.

コンピュータシステム・シンポジウム
Computer System Symposium

ⓒ 2014 Information Processing Society of Japan 19

ComSys2014
2014/11/20

Fig. 2 Overview of Clickjuggler. In the data-collection phase, Clickjuggler collects information about the
target button (Step 1 to Step 3). In the attack phase, Clickjuggler crafts some types of attacker’s
page (Step 4) and emulates actual attacks (Step 5 to Step 8). In the analysis phase, Clickjuggler
determines whether the attack is successful or not (Steps 9 & 10).

4.1 Overview
Clickjuggler consists of three phases: 1) data-collection phase,

2) attack phase, and 3) analysis phase as shown in Figure 2. In
the data-collection phase, Clickjuggler collects information about
target buttons that will be needed to generate attacker’s pages for
clickjacking attacks. For example, a URI of a page which has
a target button, coordinates, width, and height of the target but-
ton, and events to activate the button are collected. Clickjuggler
collects these pieces of information while developers use target
buttons during the test phase of a web application. During the
test phase, the developer opens the target page and clicks on the
target buttons to confirm the buttons work well (Steps 1 & 2).
Clickjuggler collects necessary information through these opera-
tions (Step 3). The details are presented in the next section.

In the attack phase, Clickjuggler crafts some types of attacker’s
page (Step 4). Thereafter, Clickjuggler emulates actual attacks
(Step 5 to Step 8). Clickjuggler has the browser load the at-
tacker’s page. The attacker’s page uses the URI collected in the
data-collection phase to embed the target page in the attacker’s
page. Clickjuggler issues events to emulate victims’ behavior by
using the coordinates of the target button and the events collected
in the data-collection phase.

In the analysis phase, Clickjuggler determines whether the at-
tack is successful or not (Steps 9 & 10). To conclude the basic
clickjacking is successful, Clickjuggler confirms that the target
button is not displayed and the target button is clicked when a
click event is issued.

Clickjuggler requires developers to perform three operations
because it executes three phases. First, they manipulate the target
buttons in data-collection phase as shown in Section 4.2. Second,
they provide a special keyword in data-collection phase as shown
in Section 4.4. Third, they manipulate the confirmation dialog in
the attack phase as shown in Section 4.5.3. The details of three
operations are presented in each section.

Although the developers are required to perform three opera-
tions, the manual detection of visual clickjacking vulnerabilities
is automated by Clickjuggler. They need not to collect informa-

tion about the target buttons to craft attacker’s pages. They need
not to craft some types of attacker’s page for visual clickjacking
and perform actual attacks. They need not to conclude whether
each attack is successful or not.

4.2 Data-collection phase
Clickjuggler collects information about the target buttons while

a developer manipulates the target buttons. When a devel-
oper opens a target page to check for whether buttons on the
target page work well or not, Clickjuggler records a URI of
the opened page. Figure 3 illustrates what kind of informa-
tion Clickjuggler collects. The example used in this figure is
the same as that in Fig 1. In this example, when the devel-
oper opens the purchase page, Clickjuggler records the URI
“http://shopping.com/purchase” (Steps 1 & 2).

After opening the web page, the developer clicks on a target
button or inputs data to a target form. Clickjuggler obtains the
coordinates, the width and the height of the clicked button or the
clicked form, and events generated to perform the operations. In
Fig. 3, the developer clicks on the “Buy” button (Step 3). Click-
juggler records the coordinates of the “Buy” button (Step 4). To
reproduce the developer’s behavior, Clickjuggler maintains the
order in which objects are manipulated. For example, if an item
in a checkbox menu is clicked on, the order of the manipulated
objects is significant.

During the data-collection phase, Clickjuggler takes screen
shots of the clicked button or the clicked form. These screen
shots are later used to determine whether the attack is success-
ful or not. In Fig. 3, Clickjuggler takes a screen shot of the “Buy”
button (Step 5).

4.3 Attack Phase
Clickjuggler crafts some types of attacker’s page for visual

clickjacking attacks. Clickjuggler prepares some template HTML
files to craft the attacker’s pages. In those templates the methods
to deceive victims or to evade the frame busting are implemented.
Clickjuggler fills in holes of the template HTML files, making use

コンピュータシステム・シンポジウム
Computer System Symposium

ⓒ 2014 Information Processing Society of Japan 20

ComSys2014
2014/11/20

Fig. 3 Data-collection phase. The developer accesses the target page (Step 1) and clicks on the target
button on the target page (Steps 3 & 6). Clickjuggler stores the URI of the target page (Step 2),
information about the target button (Step 4), and takes the screen shot of the target button (Step 5).
Finally, the developer provides the keyword to Clickjuggler (Step7).

of the information collected in the data-collection phase.
Clickjuggler prepares two template HTML files for basic click-

jacking and cursorjacking and six template HTML files for the
evasion techniques. The templates for basic clickjacking and cur-
sorjacking generate attacker’s pages that emulate basic clickjack-
ing and cursorjacking introduced in Section 2.1 and Section 2.2,
respectively. Each of the six templates generates an attacker’s
page that emulates one of the evasion techniques introduced in
Section 3.3. We show detail of the templates in Section 4.5.

These templates detect basic clickjacking vulnerability, cur-
sorjacking vulnerability, or incomplete countermeasures. If a
web page is not equipped with any defenses, the templates for
basic clickjacking and cursorjacking can detect the vulnerabili-
ties. If a web page implements incomplete frame busting code,
at least one of six templates can detect the vulnerability. If a
web page implements invalid X-Frame-Options or incomplete
element-customized defenses, the templates for basic clickjack-
ing and cursorjacking can detect the vulnerability.

Clickjuggler can cover other and new types of visual clickjack-
ing attacks by preparing new templates for the attacks. This is
because the methods to deceive victims and to evade the frame
busting are implemented in the templates. The method is the dif-
ference between visual clickjacking attacks.

The attack results of templates provide information to modify
the incomplete countermeasure to developers. This is because
the developers can identify the cause that the incomplete coun-
termeasure is evaded from the results. For example, if a template
of “double framing” as shown in Section 3.3 judges incomplete
frame busting code is vulnerable, a developer can identify that the
cause is the redirection with parent.location in the code. The
developer can correct parent.location in the code.

To initiate visual clickjacking attacks, Clickjuggler has the
browser connect to the attacker’s page generated from the tem-

plate and starts emulating the behavior of victims by replaying
the events recorded during the data-collection phase. Clickjug-
gler lets the browser emulate the behavior (e.g., a click event and
a mousemove event) to the attacker’s page.

Note that an attacker’s page must have an origin different from
that of a target page. This is important because some defenses
(e.g., X-Frame-Options) rely on the origins of web pages. Click-
juggler saves the attacker’s page as local files so that the origin of
the attacker’s page differs from the target page.

4.4 Analysis phase
To conclude visual clickjacking attacks are successful, Click-

juggler confirms conditions are met for each template. The con-
ditions for basic clickjacking differ from the ones for cursorjack-
ing. This is because basic clickjacking manipulates the target el-
ement on the target page and cursorjacking manipulates cursor
feedback. We describe the conditions for basic clickjacking in
next section and the ones for cursorjacking in Section 4.4.2.
4.4.1 Basic clickjacking

To conclude basic clickjacking is successful, Clickjuggler con-
firms two conditions are met. First, Clickjuggler confirms the
target button becomes transparent when it is embedded in the at-
tacker’s page. To confirm the first condition, Clickjuggler com-
pares the screen shots of the target button before and after the
button is loaded into the attacker’s page.

Second, Clickjuggler confirms the target button is clicked on
when a click event is sent to the location where a decoy button
is displayed. We consider three design alternatives to determine
whether the target button is clicked on or not.
Design 1: Clickjuggler checks to which site a request is sent
after the button is clicked on. If the request is sent to the site
to be framed, Clickjuggler concludes the button is clicked on.
This approach misjudges a button is vulnerable if the button im-

コンピュータシステム・シンポジウム
Computer System Symposium

ⓒ 2014 Information Processing Society of Japan 21

ComSys2014
2014/11/20

plements the defense in which cookies are deleted as shown in
Section 3.1.3.
Design 2: Clickjuggler checks contents of the HTML file re-
turned after the button is clicked on. If the contents of the HTML
file is the same as that obtained in the data-collection phase,
Clickjuggler concludes the target button is clicked on. This is
because the site returns the HTML file obtained in the data-
collection phase by clicking on the target button. This approach
does not work well if the response differs time to time.
Design 3: As with the design 2, Clickjuggler checks the con-
tents of the HTML file returned after the button is clicked on. To
deal with the buttons that return different pages, the developer
specifies a special keyword during the data-collection phase that
identifies the page to be returned (Step 7 in Fig 3). Clickjuggler
employs the design 3 because the design 1 and 2 cause false pos-
itives in some defenses and pages.
4.4.2 Cursorjacking

To conclude cursorjacking is successful, Clickjuggler confirms
two conditions. First, Clickjuggler confirms a fake cursor is dis-
played to force victims not to recognize the correct position of the
real cursor. Clickjuggler compares the screen shots of the decoy
button on the attacker’s page before and after the fake cursor is
moved. If the screen shots differ, the fake cursor is displayed.

It is possible that Clickjuggler causes false positive when the
target pages change dynamically. This is because the change in
the target pages affects the screen shots of the decoy button. To
prevent the screen shots from changing, Clickjuggler covers the
target page with an element and sets the decoy button on the ele-
ment as shown in Section 4.5.2.

Second, Clickjuggler confirms the target button on the at-
tacker’s page is clicked when the target button is issued a click
event to in a condition that the attacker’s page visually deceives a
victim. To confirm the condition Clickjuggler uses the same way
as basic clickjacking.

Clickjuggler does not confirm the real cursor is hidden to force
victims not to recognize the real cursor. This is because it is pos-
sible to succeed cursorjacking even if the real cursor is displayed.
The victims click on the target button if they focus on the fake
cursor when the real cursor and the fake cursor are displayed.

There are techniques [5] to let users pay attention to the cor-
rect position of the real cursor. These techniques do not prevent
cursorjacking completely. Clickjuggler determines that a target
button which implements these techniques is vulnerable. This is
because it is possible to succeed cursorjacking.

4.5 Implementation
Clickjuggler is implemented as a plug-in for Firefox 20.0.1 and

3.6.8. Our implementation makes use of Firefox plug-in inter-
face, but we believe Clickjuggler can be ported easily to other
browsers such as IE, Chrome, and Safari because our implemen-
tation uses only the common API functions. Table 1 lists the API
that Clickjuggler uses.

Attackers can abuse Clickjuggler to scan vulnerable web ap-
plications. We can consider some approaches to prevent attackers
from abusing Clickjuggler. For example, Clickjuggler performs
authentication between the developers and the target sites. How-

Table 1 Web API interfaces

Web API interface Summary [20]
window.content Returns a reference to the content element

in the current window
document.URL Returns the string URL of the HTML

document
Element.getBoundingClientRect Returns a text rectangle object that encloses

a group of text rectangles
document.createEvent Creates an event of the type specified
event.initMouseEvent Initializes the value of a mouse event once

it’s been created
EventTarget.dispatchEvent Dispatches an Event at the specified

EventTarget, invoking the affected
EventListeners in the appropriate order

EventTarget.addEventListener Registers the specified listener on the
EventTarget it’s called on

1 <IFRAME style="opacity:0;" src="URI">
2 </IFRAME>

3 <BUTTON style="left:X; top:Y; width:WIDTH; height:HEIGHT;
4 position:absolute; z-index:-1;">Decoy

5 </BUTTON>

Fig. 4 Template for basic clickjacking

ever, Clickjuggler does not incorporate such approaches because
the purpose of this paper is to detect some types of visual click-
jacking vulnerability.

Clickjuggler uses the templates for basic clickjacking and cur-
sorjacking, and the six templates to craft the attacker’s pages as
shown in Section 4.3. Clickjuggler generates all attacks intro-
duced in Section 3.3 except for the evasion techniques of restrict-
ing JavaScript with security attribute, clobbering location vari-
able, and XSS filter. These evasion techniques are not supported
because these evasion techniques are the attack specific to IE,
Chrome, and Safari. We introduce the templates for basic click-
jacking and cursorjacking, and the six templates, and discuss the
evasion techniques for IE, Chrome, and Safari.
4.5.1 Template for basic clickjacking

As shown in Figure 4, attacker’s pages, crafted from the tem-
plate for basic clickjacking, display a decoy button that is overlaid
with a target page which is made transparent. In the template, an
iframe tag is used to load a target page from a URI (line 1).
To make the loaded page transparent, an opacity is set in the
style attribute of the iframe tag. A decoy button is displayed at
coordinates (X,Y) with height HEIGHT and width WIDTH (line
3); i.e. precisely at the location of the target button on the target
page. To craft an attacker’s page, Clickjuggler fills in URI, X,
Y, HEIGHT, and WIDTH, using the information obtained in the
data-collection phase.
4.5.2 Template for cursorjacking

As shown in Figure 5, attacker’s pages, crafted from this tem-
plate for cursorjacking, hides a real cursor, displays a fake cursor,
and covers a target page to prevent false positive. To hide a real
cursor, cursor:none is set in the style attribute of the body tag
(line 1). The Img tag is used to load a bitmap of a fake cursor to be
displayed (line 2). JavaScript code in the script tag moves the
fake cursor at coordinates (x coordinate of the real cursor +200,
y coordinate of the real cursor) (line 3 to line 11). The Button
tag sets a decoy button at coordinates (X + 200,Y) with width
WIDT H and height HEIGHT (line 12 to line 14). The iframe
tag is used to load a target page from “URI” in the iframe (line
15). The Div tags overlay the target page without covering the

コンピュータシステム・シンポジウム
Computer System Symposium

ⓒ 2014 Information Processing Society of Japan 22

ComSys2014
2014/11/20

1 <BODY style="cursor: none;">

2

3 <SCRIPT>

4 var move = function(e){

5 a = coordinate x of the real cursor + 200;

6 b = coordinate y of the real cursor;

7 // move a fake cursor on coordinates (a, b);

8 };

9 //Continuously catch mousemove event

10 document.body.addEventListener(’mousemove’, move, true);

11 </SCRIPT>

12 <BUTTON style="left:X+200; top:Y;
13 width:WIDTH; height:HEIGHT;
14 position:absolute; z-index:-1;">Decoy<BUTTON>

15 <IFRAME src="URI"></IFRAME>
16 <DIV style="..."></DIV>...<DIV style="..."></DIV>

17 </BODY>

Fig. 5 Template for cursorjacking

1 var prevent_bust = 0;

2 // Event handler to catch execution of redirection

3 window.onbeforeunload = function(){

4 prevent_bust++

5 };

6 // Continuously monitor whether redirection is

7 // executed or not

8 setInterval(function(){

9 if(prevent_bust > 0){

10 prevent_bust -= 2;

11 // Get "No Content"

12 window.top.location = ’http://no-content-204.com/’;

13 }

14 }, 1);

Fig. 6 Template for No-Content Flushing

target button (line 16).
4.5.3 Six templates for evasion techniques

Each template extends the template for basic clickjacking to
generate each of the evasion techniques. The first template, dou-
ble framing, consists of two template files because a target page is
nested in two attacker’s pages. The one template loads the other
template in a frame, the other template is the same as the template
for basic clickjacking.

The second template, the onBeforeUnload event, cancels
redirection requested by the frame busting code. To cancel
the redirection an attacker’s page registers an onBeforeUnload
handler. This handler asks the developer to cancel the redirection
with a confirmation dialog. Clickjuggler requires developers to
select the cancel of the redirection in attack phase. Clickjuggler
can not select the cancel of the redirection because Clickjuggler
implemented in JavaScript can not manipulate the confirmation
dialog. In the second template, the code is added as follows.
window.onbeforeunload=function(){return "Do you want to exit?";}

The third template, No-Content flushing, cancels redirection
requested by the frame busting code as shown in Figure 6. To
cancel the redirection an attacker’s page registers an onBefore-
Unload handler. This handler catches the redirection requested
by the frame busting code (line 3 to line 5). This template con-
tinuously monitors whether the redirection is executed or not and
issues a request to a server which responds with a HTTP/1.1 204
No Content (line 8 to line 14).

The fourth template, manipulating Referrer, manipulates
document.referrer. Clickjuggler checks for whether
the frame busting code uses simple string search to check
document.referrer or not. To check the frame busting code
Clickjuggler manipulates a URI of the fourth template because

the URI is assigned to document.referrer. Clickjuggler
embeds a URI of a target page into the URI of the fourth
template. This is because we assume that developers allow pages
in the target site to embed pages in the target site.

The fifth template, restricting JavaScript with sandbox, pro-
hibits the execution of JavaScript code. An attacker’s page
specifies a sandbox attribute in an iframe tag to prevent the
JavaScript code from running. In the fifth template, the sandbox
attribute is added as follows. “allow-forms” allows form submis-
sion in the iframe.
<IFRAME style="opacity:0;"

sandbox=”allow-forms” src="URI"></IFRAME>

The sixth template, restricting JavaScript with designMode,
prohibits the execution of JavaScript code. An attacker’s page
can prevent the frame busting code in an iframe from working
by setting “on” as a value of the designMode property of the
iframe tag. In the sixth template, the designMode property is
added as follows.
<IFRAME style="opacity:0;" id="tgt" src="URI"></IFRAME>

document.getElementById("tgt").contentDocument.designMode="on";

4.5.4 Evasion techniques for Chrome, IE, or Safari
We believe Clickjuggler can check for the visual click-

jacking vulnerabilities with two evasion techniques (clobbering
location variable and restricting JavaScript with security at-
tribute) by making Clickjuggler as Chrome, IE, or Safari plug-in.
Clickjuggler can craft the attacker’s pages which make use of two
techniques from two templates.

Two templates extend the template for basic clickjacking as
with the six templates. The template, clobbering location vari-
able, manipulates the location variable. An attacker’s page re-
defines the location variable as a local variable to disable the
frame busting code due to security violation. In this template, the
script code is added as follows.
<SCRIPT> var location="clobbered" </SCRIPT>

The template, restricting JavaScript with security attribute,
prohibits the execution of JavaScript code in an iframe. An at-
tacker’s page prevents the frame busting code in the iframe from
working by setting “restricted” as a value of security attribute
of the iframe tag. In this template, the security attribute is
added as follows.
<IFRAME style="opacity:0;"

security=”restricted” src="URI"></IFRAME>

Clickjuggler which is implemented as Chrome and IE plug-in
can not check for the visual clickjacking vulnerabilities with the
evasion technique of XSS filter because the current version of
Clickjuggler can not craft the attacker’s pages which make use of
XSS filters. We discuss the reason in Section 5.3.

5. Experiments
We evaluate the accuracy and the performance of Clickjuggler

to demonstrate the usefulness of Clickjuggler. To evaluate the ac-
curacy, we confirm that Clickjuggler can detect correctly visual
clickjacking vulnerabilities in real-world web applications in next
section. To evaluate the performance, we compare the detection
time of Clickjuggler with existing tools in Section 5.2. Moreover,
we discuss about limitation of Clickjuggler in Section 5.3.

コンピュータシステム・シンポジウム
Computer System Symposium

ⓒ 2014 Information Processing Society of Japan 23

ComSys2014
2014/11/20

Table 2 Detection result of visual clickjacking
Web Application target button Vulnerability Detection results of Clickjuggler

Template* Result
basic 1 2 3 4 5 6 cursor

Joomla 1.6.1 Normal link vul. vul. vul. vul. vul. vul. vul. vul. vul. vul.
Edit profile vul. vul. vul. vul. vul. vul. vul. vul. - vul.

Normal link (admin page) vul. vul. vul. vul. vul. vul. vul. vul. vul. vul.
Edit article (admin page) vul. vul. vul. vul. vul. vul. No vul. No vul. - vul.

Edit user’s info (admin page) vul. vul. vul. vul. vul. vul. No vul. No vul. - vul.
Joomla 2.5.7 Normal link vul. vul. vul. vul. vul. vul. vul. vul. vul. vul.

Edit profile vul. vul. vul. vul. vul. vul. vul. vul. - vul.
Normal link (admin page) vul. vul. vul. vul. vul. vul. vul. vul. vul. vul.
Edit article (admin page) vul. vul. vul. vul. vul. vul. No vul. No vul. - vul.

Edit user’s info (admin page) vul. vul. vul. vul. vul. vul. No vul. No vul. - vul.
Joomla 3.0.2 Normal link vul. vul. vul. vul. vul. vul. vul. vul. vul. vul.

Make article vul. vul. vul. vul. vul. vul. No vul. No vul. - vul.
Edit profile No vul. No vul. No vul. No vul. No vul. No vul. No vul. No vul. - No vul.

Normal link (admin page) vul. vul. vul. vul. vul. vul. vul. vul. vul. vul.
Edit article (admin page) vul. vul. vul. vul. vul. vul. No vul. No vul. - vul.

Edit user’s info (admin page) vul. vul. vul. vul. vul. vul. No vul. No vul. - vul.
Roundcube 0.4.1 Normal link vul. vul. vul. vul. vul. vul. No vul. No vul. vul. vul.

Edit setting vul. vul. vul. vul. vul. vul. No vul. No vul. - vul.
Roundcube 0.7.0 Normal link No vul. No vul. No vul. No vul. No vul. No vul. No vul. No vul. No vul. No vul.

Edit setting No vul. No vul. No vul. No vul. No vul. No vul. No vul. No vul. - No vul.
Roundcube 0.7.0 Normal link No vul. No vul. No vul. No vul. No vul. No vul. No vul. No vul. No vul. No vul.
(Firefox 3.6.8) Edit setting No vul. No vul. No vul. No vul. No vul. No vul. No vul. No vul. - No vul.

MediaWiki 1.16.0 Normal link vul. vul. vul. vul. vul. vul. vul. vul. vul. vul.
Edit article vul. vul. vul. vul. vul. vul. No vul. No vul. - vul.

Normal link (admin page) vul. vul. vul. vul. vul. vul. vul. vul. vul. vul.
Edit article (admin page) vul. vul. vul. vul. vul. vul. No vul. No vul. - vul.

Edit user’s info (admin page) vul. vul. vul. vul. vul. vul. No vul. No vul. - vul.
WordPress 3.1.2 Normal link vul. vul. vul. vul. vul. vul. vul. vul. vul. vul.

Post comment vul. vul. vul. vul. vul. vul. vul. vul. - vul.
Normal link (admin page) vul. vul. vul. vul. vul. vul. vul. vul. vul. vul.

Add user (admin page) vul. vul. vul. vul. vul. vul. No vul. No vul. - vul.

Template*: basic is Template for basic clickjacking, 1 is double framing, 2 is The onBeforeUnload event, 3 is No-Content flushing, 4 is manipulating Referrer, 5
is restricting JavaScript with sandbox, 6 is restricting JavaScript with designMode, and cursor is Template for cursorjacking as shown in Section 4.5.
“-” means “not checked by Clickjuggler because the template for the cursorjacking targets normal links and buttons.”

Table 3 Detection time of Clickjuggler, CJTool, and BeEF plug-in
Web Application Clickjuggler CJTool BeEF plug-in

preparatory (s) test (s) total (s) preparatory (s) test (s) total (s) preparatory (s) test (s) total (s)
Joomla 1.6.1 9.78 10.7 20.5 11.5 15.9 27.4 11.5 26.3 37.8
Joomla 2.5.7 9.44 10.7 20.1 11.5 15.9 27.4 11.5 25.4 36.9
Joomla 3.0.2 9.41 10.7 20.1 10.5 15.4 25.9 11.3 24.7 36.0

Roundcube 0.4.1 12.6 14.6 27.2 19.7 28.9 48.6 19.7 36.2 55.9
Roundcube 0.7.0 12.8 14.4 27.2 19.7 21.2 40.9 19.7 28.0 47.7

Roundcube 0.7.0 (Firefox 3.6.8) 12.8 14.5 27.3 19.5 31.3 50.8 19.5 36.1 55.6
MediaWiki 1.16.0 8.14 10.7 18.8 10.8 15.0 25.8 10.8 24.3 35.1
WordPress 3.1.2 9.18 10.6 19.8 10.3 15.0 25.3 10.3 22.8 33.1

5.1 Accuracy of detection results
We evaluate Clickjuggler using four real-world web applica-

tions: Joomla [14], Roundcube [17], MediaWiki [16], and Word-
Press [15]. All of these applications are widely used. For exam-
ple, Joomla is downloaded over 35 million times, Roundcube is
downloaded over 2 million times, WordPress is used in over 70
million users. To check for the clickjacking vulnerabilities, we
use two versions of Firefox (20.0.1 and 3.6.8) because the for-
mer (20.0.1) supports X-Frame-Options HTTP response header
but the letter (3.6.8) does not. We select normal links in the four
web applications as target buttons to check for the cursorjacking
vulnerabilities. This is because the template for the cursorjacking
targets normal links and buttons.

Table 2 lists the summary of those experiments. The names and
versions of the tested web applications are listed in (Web Appli-
cation). (target button) lists target links, buttons, or forms in the
experiments. (Vulnerability) shows if the target links, buttons, or
forms are vulnerable or not. We manually investigate each link,
button, or form to find out the visual clickjacking vulnerabili-

ties. We have confirmed the results of our manual investigation
by searching for the clickjacking vulnerabilities of tested web
applications in vulnerability repositories such as [21] and [22],
wiki [23], and release note [24]. (Result) shows the test results
obtained from Clickjuggler.

From Table 2, we can say that Clickjuggler detects visual click-
jacking vulnerabilities without any false positives and any false
negatives. For all the vulnerable elements (vul. in the Vulnerabil-
ity column), at least one of the Clickjuggler templates judges they
are vulnerable. For all the non-vulnerable elements (no vul. in the
Vulnerability column), all the Clickjuggler templates judge they
are not vulnerable. (basic), (1) to (6), and (cursor) in (Template)
of Table 2 show the Clickjuggler templates’ results.

Clickjuggler can check the defenses against visual clickjack-
ing attacks introduced in Section 3. Clickjuggler concludes
that X-Frame-Options and the element-customized defense in
Roundcube 0.7.0 are not vulnerable. As you can see from Ta-
ble 2, Roundcube 0.7.0 is not vulnerable in Firefox 20.0.1 (sup-
porting X-Frame-Options) because Roundcube 0.7.0 implements

コンピュータシステム・シンポジウム
Computer System Symposium

ⓒ 2014 Information Processing Society of Japan 24

ComSys2014
2014/11/20

X-Frame-Options correctly. In addition to X-Frame-Options,
Roundcube 0.7.0 implements another element-customized de-
fense so that Firefox 3.6.8 (not supporting X-Frame-Options) can
not be compromised as shown Table 2. If a page is embedded in
another page, a code of the element-customized defense exam-
ines the origin of the page in which the page is embedded. If the
origin of the page differs, this code disables all the form elements.

As shown in Table 2, Clickjuggler concludes that a page to
edit user’s profile in Joomla 3.0.2 is not vulnerable to basic click-
jacking and evasion techniques of frame busting. This is because
this page exceptionally implements the frame busting code and its
implementation is perfect. The frame busting code is in the head
tag of the page. Even if JavaScript is disabled, it does not dis-
play the page. Subtle variables such as parent.location and
document.referrer are not used in the code.

5.2 Performance
We compare the detection time using CJTool [12] and BeEF

plug-in [13]. These tools help the developers to craft the at-
tacker’s pages of visual clickjacking. In those experiments Click-
juggler and these tools detect basic clickjacking vulnerability in
normal links of four web applications used in Section 5. This is
because CJTool targets only basic clickjacking vulnerability and
BeEF plug-in does not target forms which require users to input
data. We repeatedly measure the time to test the normal links with
each tool 5 times and calculate the average time.

Table 3 lists the summary of those experiments. The names and
versions of the targeted web applications are listed in (Web Ap-
plication). (total) shows the total time of the (preparatory) time
and the (test) time. (preparatory) shows the time to prepare in-
formation to check for vulnerabilities and perform operations for
each tool. (test) shows the time to craft the attacker’s pages and
test the normal buttons.

Table 3 shows that Clickjuggler detects the vulnerabilities in a
shorter time than the existing tools in all cases. The test time is
the cause of the difference between the total time of Clickjuggler
and the existing tools. This is because Clickjuggler automates
the processes to craft the attacker’s pages and to perform visual
clickjacking attacks. CJTool and BeEF plug-in do not automate
those processes as shown in Section 6.

5.3 Limitation
Clickjuggler causes false positives when the defense uses CSS

because even if a mouse event is issued to a button for which
a CSS effect is written, this event does not trigger the CSS ef-
fect. Developers discuss that the CSS effect is not triggered with
JavaScript [25]. When Clickjuggler issues a mouse event to a
button for which a defense is written in CSS, this defense does
not work. Clickjuggler determines that this button is vulnerable
because all attacks are successful. We believe that Clickjuggler
can detect the defense written in CSS by modifying the browsers.
This is because JavaScript does not trigger the CSS effect due to
the browsers. However, we do not modify Firefox because as far
as we know, there is not the defense written in CSS.

Clickjuggler can not craft attacker’s pages which make use of
XSS filters in IE and Chrome. To make use of XSS filters, Click-

juggler must embed part of the frame busting code in the URI
of the protected page. The current version of Clickjuggler can-
not identify the frame busting code in the protected page. This
is because each developer can write different frame busting code.
Clickjuggler can identify the frame busting code by a slight ex-
tension. For example, Clickjuggler requires the developers to
provide the frame busting code. However, this extension is not
implemented because Clickjuggler is implemented as a Firefox
plug-in.

6. Related work
Some countermeasures against visual clickjacking have been

proposed. Frame busting [6] and X-Frame-Options [7] have been
already discussed in Section 3.1. In this section, we address other
defenses against visual clickjacking.

Several existing tools help developers to check for a clickjack-
ing vulnerability in web applications. CJTool [12] and a plug-
in [13] for BeEF (the Browser Exploitation Framework [26]) help
to craft an attacker’s page for basic clickjacking. The vulnerabil-
ities which these tools focus on and the detection time of these
tools are discussed in Section 1 and Section 5.2, respectively. We
address the architecture of these tools in this section.

It is difficult that these tools craft always exhaustively the at-
tacker’s pages. These tools craft the attacker’s page according to
the developers’ setting. This is because these tools do not use
templates to craft the attacker’s page. Clickjuggler crafts exhaus-
tively the attacker’s pages because it uses templates.

These tools can not perform three processes because they are
not implemented in the browsers. First, they can not obtain infor-
mation about the target buttons from the browsers. Second, they
can not issue the event via the browsers to perform visual click-
jacking. Third, they can not determine wether the attack is suc-
cessful or not because they can not obtain information from the
browsers in the attack. Clickjuggler automates those processes.

InContext [5], CSP [27], and [28] offer the defenses against vi-
sual clickjacking in which the client and the server cooperate. The
server indicates behavior of each element on a page in InContext
and behavior of each content and page in CSP and [28] on the
client’s browser. Clickjuggler is useful to check for whether or
not the behavior indicated by the server are complete and correct.

ProClick [29] is a client-side defense to detect basic clickjack-
ing attacks in a proxy-level framework. To identify symptoms
of basic clickjacking, ProClick examines parameters of requests
and responses according to a policy crafted by users. To set up
the policy, ProClick users need to have intimate knowledge about
the evasion techniques of frame busting. Clickjuggler does not
require users to have the intimate knowledge.

ClearClick [30], Clicksafe [31], and CSCP [32] are browser’s
extensions to defend against the basic clickjacking. To detect a
button to be disguised, ClearClick compares the bitmap of the
clicked element with that rendered without inheriting properties
from the parent element. If the bitmaps differ, ClearClick con-
cludes the button suffers from basic clickjacking and alerts users.
The users choose between sending the request or not. The choice
is not easy for the users which do not have knowledge about click-
jacking. Clickjuggler users do not need the knowledge.

コンピュータシステム・シンポジウム
Computer System Symposium

ⓒ 2014 Information Processing Society of Japan 25

ComSys2014
2014/11/20

To safely choose between sending the request or not, Clicksafe
provides the user with other users’ ratings about the choice. For
example, the user obtains a percentage of the users that chose to
send the request. The ratings are created from feedback on the ac-
tion which users of Clicksafe choose. Clicksafe does not ensure
that the ratings are correct because malicious users can give in-
correct feedback on the choice. Detection results of Clickjuggler
is not affected by the malicious users.

CSCP employs an existing method to detect hidden Facebook
widgets and warns users. CSCP does not detect basic clickjacking
on web applications other than Facebook. In contrast, Clickjug-
gler can test these web applications.

[33] is a technique for automatically searching for basic click-
jacking attacks in the wild. This technique automatically clicks
on buttons on a target page, analyzes the page, and determines
whether or not the page is an attacker’s page. This technique can
not confirm the correctness of the defenses.

7. Conclusion
This paper has presented Clickjuggler, an automated tool for

checking defenses against visual clickjacking during the develop-
ment phase. Web developers must carefully write the code for de-
fending against visual clickjacking, but it is not easy to implement
the defending code correctly. Clickjuggler releases the developers
from the burden of checking the correctness of the implementa-
tion. Our experimental results demonstrate that Clickjuggler can
detect the visual clickjacking vulnerabilities in 4 real-word web
applications and in a shorter time than the existing tools.

References
[1] Hansen, R. and Grossman, J.: Clickjacking,

http://www.sectheory.com/clickjacking.htm (2008).
[2] Sophos: Viral clickjacking ‘Like’ worm hits Facebook users,

http://nakedsecurity.sophos.com/2010/05/31/viral-clickjacking-like-
worm-hits-facebook-users/.

[3] US-CERT: CVE-2008-4503: Adobe Flash Player Clickjacking
Vulnerability, http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2008-4503 (2008).

[4] Yang, D.: Clickjacking: An Overlooked Web Security Hole,
https://community.qualys.com/blogs/securitylabs/2012/
11/29/clickjacking-an-overlooked-web-security-hole.

[5] Huang, L.-S., Moshchuk, A., Wang, H. J., Schechter, S. and Jack-
son, C.: Clickjacking: attacks and defenses, Proc. of USENIX Security
Symp., pp. 22–22 (2012).

[6] OWASP: Clickjacking Defense Cheat Sheet,
https://www.owasp.org/index.php/Clickjacking Defense Cheat Sheet.

[7] Microsoft: IE8 Clickjacking Defense,
http://blogs.msdn.com/b/ie/archive/2009/01/27/ie8-security-part-
vii-clickjacking-defenses.aspx.

[8] Rydstedt, G., Bursztein, E., Boneh, D. and Jackson, C.: Busting frame
busting: a study of clickjacking vulnerabilities at popular sites, in
IEEE Oakland Web 2.0 Security and Privacy (2010).

[9] OWASP: Clickjacking Defense Cheat Sheet,
https://www.owasp.org/index.php/Clickjacking Defense Cheat Sheet.

[10] Lekies, S., Heiderich, M., Appelt, D., Holz, T. and Johns, M.: On the
Fragility and Limitations of Current Browser-provided Clickjacking
Protection Schemes, Proc. of USENIX Conf, on Offensive Technolo-
gies, pp. 6–6 (2012).

[11] Brackebusch, T.: Typo in header makes header useless,
http://joomlacode.org/gf/project/joomla/tracker/?
action=TrackerItemEdit&tracker item id=30790.

[12] Stone, P.: Clickjacking Tool, http://www.contextis.com/research/tools/
clickjacking-tool/.

[13] Lundeen, B. and Alves-Foss, J.: Practical clickjacking with BeEF,
IEEE Conf. on Technologies for Homeland Security, pp. 614–619
(2012).

[14] Joomla: Joomla, http://www.joomla.org/.

[15] WordPress: WordPress, http://wordpress.org/.
[16] MediaWiki: MediaWiki, http://www.mediawiki.org/wiki/MediaWiki.
[17] Roundcube: Roundcube, http://roundcube.net/.
[18] Ruby on Rails: Ruby on Rails Security Guide,

http://guides.rubyonrails.org/security.html.
[19] django: Clickjacking Protection,

https://docs.djangoproject.com/en/1.6/ref/clickjacking/.
[20] Mozilla: Mozilla Developer Network “Web API interfaces”,

https://developer.mozilla.org/en-US/docs/Web/API.
[21] National Institute of Standards and Technology: National Vulnerabil-

ity Database, http://web.nvd.nist.gov/.
[22] SECLISTS: SECLISTS.ORG, http://seclists.org/.
[23] Roundcube: Roundcube(wiki), http://trac.roundcube.net/wiki/Chang-

elog.
[24] Joomla: Joomla 3.0.2 Released,

http://www.joomla.org/announcements/release-news/5471-joomla-3-
0-2-released.html.

[25] stackoverflow: Trigger css hover with JS,
http://stackoverflow.com/questions/4347116/.

[26] BeEF: BeEF: The Browser Exploitation Framework Project,
http://beefproject.com/.

[27] Stamm, S., Sterne, B. and Markham, G.: Reining in the web with
content security policy, Proc. of Int’l Conf. on World Wide Web, pp.
921–930 (2010).

[28] Nepomnyashy, M.: Protecting applications against Clickjacking with
F5 LTM, SANS Institute InfoSec Reading Room (2013).

[29] Shahriar, H., Devendran, V. K. and Haddad, H.: ProClick: A Frame-
work for Testing Clickjacking Attacks in Web Applications, Proc. of
Int’l Conf. on Security of Information and Networks, pp. 144–151
(2013).

[30] Maone, G.: Hello ClearClick, Goodbye Clickjacking!, In Black Hat
Europe (2012).

[31] Shamsi, J. A., Hameed, S., Rahman, W., Zuberi, F., Altaf, K. and
Amjad, A.: Clicksafe: Providing Security against Clickjacking At-
tacks, Proc. of Int’l Symp. on High-Assurance Systems Engineering,
pp. 206–210 (2014).

[32] Rehman, U., Khan, W., Saqib, N. and Kaleem, M.: On Detection and
Prevention of Clickjacking Attack for OSNs, Proc. of Int’l Conf. on
Frontiers of Information Technology, pp. 160–165 (2013).

[33] Balduzzi, M., Egele, M., Kirda, E., Balzarotti, D. and Kruegel, C.: A
solution for the automated detection of clickjacking attacks, Proc. of
ACM Symp. on Information, Computer and Communications Security,
pp. 135–144 (2010).

コンピュータシステム・シンポジウム
Computer System Symposium

ⓒ 2014 Information Processing Society of Japan 26

ComSys2014
2014/11/20

