
IPSJ SIG Technical Report

Interference-free memory assignment in multi-core chips is
NP-hard

Yi-Jung Chen1,a) Matias Korman2,3,b) Marcel Roeloffzen4,c) Takeshi Tokuyama4,d)

Abstract: We study the problem of finding a memory assignment for multi-core systems with 3D-stacked reconfigu-
ration SRAMs. In this architecture, the SRAMs are partitioned into fixed sized tiles and are stacked on top of a layer of
IP cores. The SRAM tiles are connected by a 2D mesh network, and each IP core has a vertical access port connected
to the SRAM tile stacked on top of it. At run-time, the SRAM tiles can be divided into several memory areas, where
each of the memory area is composed of a set of contiguous SRAM tiles and is accessed by only a single IP core.
Targeting this architecture we study the problem of assigning memory tiles to processors. Given the capacity of the
SRAM tiles and the memory requirement of each IP core, we want to assign memory tiles to processors. Specifically
we wish to find an interference-free memory assignment. That is, a memory assignment where each processor has
the block containing its access port assigned to it, and for each processor all its memory blocks are orthogonally con-
nected on the memory grid. We show by a reduction from monotone planar 3-SAT that it is NP-complete to find an
interference-free memory assignment. That is, to find a memory assignment where the memory area of each core is
connected and contains its access port.

1. Introduction
For modern mobile devices that support a wide range of ap-

plications, e.g. smart phones and tablets, it is prevalent to utilize
a multi-core architecture. However, multiple cores working at
the same time also require a higher memory bandwidth [2]. To
solve this, the 3D integration technology that utilizes the low-
latency and high-density Through-Silicon Vias (TSVs) has been
considered a promising solution [3] for the memory bandwidth
issue. Compared to the traditional 2D ICs, the 3D technology in-
tegrates memory modules and multi-core processors in the same
chip by stacking the two types of active layers and utilizing
TSVs as the vertical links among the stacked devices. Among
various 3D-enabled processor-memory integrated architectures,
Multi-Processor System-on-Chip (MPSoC) with 3D-stacked re-
configurable Static Random Access Memories (SRAMs) pro-
posed in [4] provides a special capability of dynamic reconfig-
uration of the stacked memories.

Fig. 2 shows the architecture proposed in [4], where an SRAM
layer is stacked on top of a logic layer that is composed of a set
of processors or IP cores. The SRAM layer is partitioned into
a set of regular-sized SRAM tiles, which are interconnected by
a 2D-mesh network. Each IP core in the logic layer has at least

1 Department of Computer Science and Information Engineering, National
Chi Nan University. Nantou County, Taiwan

2 National Institute of Informatics. Tokyo, Japan
3 JST, ERATO, Kawarabayashi Large Graph Project.
4 Tohoku University. Sendai, Japan
a) yjchen@ncnu.edu.tw
b) korman@nii.ac.jp
c) marcel@dais.is.tohoku.ac.jp
d) tokuyama@dais.is.tohoku.ac.jp

Fig. 2 An MPSoC with 3D-stacked reconfigurable SRAMs.

one I/O port equipped with TSVs for accessing the SRAM layer
stacked on top of it. At run-time, according to the memory re-
quirement of each IP core, the SRAM layer is divided into sev-
eral memory areas. Each of the memory areas is composed of
a set of contiguous SRAM tiles and is accessed by only a sin-
gle core in the logic layer [4]. The configuration of memory ar-
eas is indicated by the configurable register associated with each
SRAM tile. So, reconfiguring the memory areas according to
systems run-time behavior is achieved by simply modifying the
corresponding configurable registers, which causes a 1-cycle de-
lay as shown in Fig. 3. However, unpredictable performance loss
may occur due to reconfigurations since all data requests to the
memory areas under reconfiguration must be postponed until the
reconfiguration is done. Therefore, avoiding unnecessary recon-
figurations is important for improving the performance.

From the memory access behavior of the target architecture, we
observe that the number of reconfigurations can be minimized by

ⓒ 2014 Information Processing Society of Japan 1

Vol.2014-AL-150 No.18
2014/11/21



IPSJ SIG Technical Report

x1 x2 x3 x4 x5

(x1 ∧ x2 ∧ x3)

(x1 ∧ x3 ∧ x5)

(x2 ∧ x3 ∧ x4)

(x1 ∧ x2 ∧ x5)

(x2 ∧ x4 ∧ x5)

(x3 ∧ x4 ∧ x5)

Fig. 1 Monotone planar 3-SAT-graph corresponding to the following formula. (x1 ∧ x2 ∧ x3) ∨
(x1 ∧ x3 ∧ x5) ∨ (x3 ∧ x4 ∧ x5) ∨ (x2 ∧ x3 ∧ x4) ∨ (x2 ∧ x4 ∧ x5) ∨ (x1 ∧ x2 ∧ x5)

proper data placement. In the target architecture, the reconfigu-
ration process can be triggered by (1) adapting memory area for
the change of system behavior, or (2) an IP requesting data that
reside in the SRAM tile belonged to another IP core’s memory
area. When the second case happens, the reconfiguration process
must be invoked to include the target SRAM tile to the request-
ing IP’s memory area [4]. The second case may happen when a
data block is shared by two or more IP cores, or when the target
SRAM tile was previously included to the other memory area just
for guaranteeing the contiguity of that memory area. We call this
the interference among memory areas. As illustrated in Fig. 4,
data placement of Fig. 4(a) causes one more reconfiguration than
the one of Fig. 4(b) since the data placement of Fig. 4(a) causes
interference between the memory areas of core B and core C.
From the illustration, we can observe that the number of recon-
figurations can be minimized by selecting the data assignment
that achieves the least interference among memory areas.

Unfortunately, it is very difficult to find the assigning of data
blocks to achieve the minimum number of reconfigurations. In-
deed, we show that the problem is NP-complete, even if all data
blocks are private, i.e. a data block is accessed by one and only
one IP, and our only objective is to place them so as to minimize
interference.

1.1 Problem Formalization
This particular case formalizes as follows: the input is an n×m

grid where each cell of the grid contains a small amount of mem-
ory. For each IP-core in the architecture we are given the coordi-
nates of its I/O port (within the grid), and the number of memory
blocks that must be assigned to it. Our aim is to assign each data
block to one of the IP-cores so that (i) each IP-core is assigned
as many memory blocks as requested and (ii) each data block can
be reached from the I/O port of its assigned IP-core by traversing
only data blocks that are assigned to the same IP-core. Equiva-

Fig. 3 Formation and reconfiguration of memory areas.

lently, we can ask that the set of blocks assigned to any IP-core is
connected to the I/O port under the four-neighbor topology. From
now on we assume that the sum of memory requirements does
not exceed nm, since otherwise the problem is unfeasible. Any
assignment that satisfies these properties is called an interference
free assignment. The main property of such an assignment is that
each IP core can access its data independent from the other pro-
cessors.

2. Reduction
As mentioned above, in this paper we show that it is NP-

complete to determine if there is an interference free memory
assignment for a given problem instance. Our reduction will
be from monotone planar 3-SAT. This a variant of the well-
known planar 3-SAT problem, shown to be NP-hard by de Berg
and Khosravi [1]. In monotone planar 3-SAT clauses are either
positive or negative, where a positive clause contains only non-
negated literals, whereas a negative clause contains only negated
literals. Additionally, there is an embedding where the variables
are drawn on a horizontal line with all positive clauses above it
and all negative clauses below it, see Fig. 1. We assume the em-
bedding is given as the problem is still NP-hard in this case.

Fig. 4 Example of memory area interferences. Data placement causes (a)
memory area interferences, and (b) no memory area interference.

ⓒ 2014 Information Processing Society of Japan 2

Vol.2014-AL-150 No.18
2014/11/21



IPSJ SIG Technical Report

4 18

20

222

2

2

2

2

2

2 2 2 2

2 2 2 2 2

a)

b)

c)

Fig. 5 a) variable, b) channel and c) clause gadget used for reducing monotone 3-SAT to the memory al-
location problem. Gray cells indicate where the gadgets are connected to other and arrows indicate
the direction of the attached channel.

2.1 Construction
Our construction consists of three gadgets. One for variables,

one for clauses and one for the channels or lines that connect
them. The gadgets cover only a portion of the entire grid, all
other cells will contain an IP-core with a memory requirement of
one. These block any other IP-core from using this memory cell.
To avoid unnecessary clutter we will not draw these cells. Next
we describe the gadgets as shown in Fig. 5 in more detail.

Variable gadget. Each variable gadget contains two non-
trivial IP-cores IPblock and IPvar both contained in a 2 × 3 region,
see Fig. 5a. From this region there is a 1-block connection to
two horizontal regions, from which channels will go up or down
towards the clause gadgets. The horizontal width of the region
for variable xi is width(xi) = 2 max(pos(xi), neg(xi)) − 1), where
pos(xi) and neg(xi) denote the number of occurrences of xi in
positive and negative clauses. Without loss of generality we as-
sume each variable occurs in at least one clause, so the minimum
width for a variable is 2. From these horizontal segments there
are 1-block extrusions up or down on which channels can be con-
nected. The weight of IPvar is width(xi)+max(pos(xi), neg(xi))+3,
enough to completely fill the available free cells above or below
IPvar—including those directly above or below IPblock and IPvar.
The memory requirement of IPblock is four, which means it must
occupy the block just above or just below IPvar, forcing IPvar to
occupy either all blocks above it or all blocks below it.

Channel gadget. All channels are vertical and have an odd
number of blocks. Each channel alternatingly contains an IP-
core with a memory requirement of two and a free block, starting
and ending with an IP-core as shown in Fig. 5b. This implies that
each channel is short one memory block, which has to be claimed
from its connection at the variable gadget or its connection at the
clause gadget.

Clause gadget. The clause gadget is simply a rectangle with
a height of two. The width is such that is can just span the fur-
thest two channels it has to connect to, see Fig. 5c. Each clause
gadget contains one IP-core that is in the top right corner for pos-
itive clauses and bottom right corner for negative clauses. The

memory requirement is the number of blocks in the rectangle mi-
nus two. Each clause has three incoming channels, so the clause
IP-core cannot claim enough space if all three incoming channels
claim one of its blocks. However, if at most two channels claim a
block it has enough space within the clause gadget.

2.2 Correctness
Next we prove NP-hardness by showing that an instance of

the interference-free memory-assignment problem create as de-
scribed above has a solution if and only if the original monotone-
planar-3-SAT instance has a solution.

Lemma 1 A given instance of monotone planar 3-SAT is sat-
isfiable if and only if the corresponding instance of the allocation
problem, generated as described above, has a interference-free
solution.
Proof. If the given 3-SAT formula is satisfiable, an assignment of
truth-values to the variables exists such that each clause is true.
Given such an assignment we can assign memory cells as follows.
First, for each variable IP-core, we assign to it all memory cells
in the region above it if the variable is false in the satisfying as-
signment. If the the variable is true we assign all cells below the
variable IP-core to it. The blocking IP-core simply claims cells in
the other direction, since it requires only four and we assume each
variable is used in at least one clause, there are always enough
cells that are not needed by channel connections. Next we assign
memory cells in each channel towards the variable when possible
and towards the clause otherwise. Lastly, each clause has at least
one true literal. The channel representing this literal must have
had space to claim its extra cell on the variable side and, hence,
cannot have claimed a cell from the clause gadget. This means
that at most two channels claim a cell inside the clause gadget
and there are enough cells inside the clause gadget for the clause
IP-core. This shows that for every satisfiable monotone planar
3-SAT formula, there is an interference-free memory assignment.

Similarly we show that if there is an interference free memory
assignment, then this corresponds to a satisfying assignment
in the original formula. First we note that due to the memory

ⓒ 2014 Information Processing Society of Japan 3

Vol.2014-AL-150 No.18
2014/11/21



IPSJ SIG Technical Report

requirement of the blocking IP-core in the variable gadget, there
are only two possible valid assignments inside a variable gadget.
We claim that assigning a variable IP-core the cells above it
corresponds to the variable being false and assigning the IP-core
the cells below it corresponds to the variable being true. It is
easy to see that this assignment of variables corresponds to a
satisfying assignment. As each clause IP-core can claim enough
memory within its own region, not all three incoming channels
claim a cell from the clause gadget. This implies that at least one
of them claims a cell from the variable, which must imply the
variable claimed cells only on the other side and, hence, has a
value such that the literal is true. �

Note that the problem is trivially in NP, hence completeness
follows.

Theorem 2 Finding an interference-free memory assignment
for a given set of IP-cores on a memory grid is NP-complete.

3. Conclusions
It is worth mentioning that the gadgets used in our construc-

tion do not use up all available memory. That is, some portions
of the on-chip memory will not be assigned to any IP-core. From
the original application it makes more sense to assume that the
total memory requirement of all IP-cores is equal to the amount
of available memory cells (since granting additional space to the
IP-cores should help improve their performance). Our conjecture
is that the problem remains NP-complete even if with this extra
assumption. However, we have been unable to modify our con-
struction so that this assumption is satisfied.

References
[1] M. de Berg and A. Khosravi. Optimal binary space partitions for seg-

ments in the plane. International Journal of Computational Geometry
& Applications 22:187-206, 2012.

[2] B. Rogers, A. Krishna, G. Bell, K. Vu, X. Jiang and Y. Solihin. Scal-
ing the bandwidth wall: challenges in and avenues for CMP Scaling.
Proceedings of the 36th International Symposium of Computer Archi-
tecture(ISCA’09), 2009.

[3] T. Kgil, S. D’Souza, A. Saidi, N. Binkert, R. Dreslinski, T. Mudge, S.
Rainhardt and K. Flautner. PicoServer: using 3D stacking technology
to enable a compact energy efficient chip multiprocessor. Proceedings
of the 12th Architectural Support for Programming Languages and
Operating Systems(ASPLOS’06), 2006.

[4] H. Saito, M. Nakajima, T. Okamoto, Y. Yamada, A. Ohuchi and
N. Iguchi. A Chip-Stacked Memory for On-Chip SRAM-Rich SoCs
and Processors. IEEE JOURNAL OF SOLID-STATE CIRCUITS,
45(1):15–22, 2010.

ⓒ 2014 Information Processing Society of Japan 4

Vol.2014-AL-150 No.18
2014/11/21



IPSJ SIG Technical Report

4 4 4 4 4

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2222 2 22

2 2 2

1620

52

20

34

48

9 9 91212x1 x2 x3 x4 x5

(x1 ∧ x2 ∧ x3)

(x1 ∧ x3 ∧ x5)

(x2 ∧ x3 ∧ x4)

(x1 ∧ x2 ∧ x5)

(x2 ∧ x4 ∧ x5)

(x3 ∧ x4 ∧ x5)

Fig. 6 The memory assignment instance generated from the monotone planar 3-SAT formula of Fig. 1.
Access ports of IP-cores are indicated in gray.

ⓒ 2014 Information Processing Society of Japan 5

Vol.2014-AL-150 No.18
2014/11/21



IPSJ SIG Technical Report

x1 x2 x3 x4 x5

(x1 ∧ x2 ∧ x3)

(x1 ∧ x3 ∧ x5)

(x2 ∧ x3 ∧ x4)

(x1 ∧ x2 ∧ x5)

(x2 ∧ x4 ∧ x5)

(x3 ∧ x4 ∧ x5)

Fig. 7 A solution that corresponds to setting settings x1 and x4 to false and x2, x3 and x5 to true.

ⓒ 2014 Information Processing Society of Japan 6

Vol.2014-AL-150 No.18
2014/11/21


