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Online scheduling of precedence-constrained jobs
on a single machine
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Abstract: We consider an online job scheduling problem of precedence-constrained jobs on a single machine. In this
problem, the player is supposed to determine a schedule of n fixed jobs at each trial, under the constraints that some
jobs have higher priority than other jobs in each permutation. The goal is to minimize the sum of completion times
over all jobs and T days, under precedence constraints. We propose an online job scheduling algorithm which predicts
almost as well as the best known offline approximation algorithms in hindsight. Furthermore, our algorithm runs in

O(n*) time for each trial.

1. Introduction

We consider an online version of job scheduling with a single
machine under some precedence constraints. Assume that there
is a single processor and # fixed jobs. Every day ¢, we determine a
schedule have to be consistent with precedence constraints. Then,
after processing all n jobs according to the schedule, the process-
ing time of each job is revealed. The goal is to minimize the sum
of the completion time over all jobs and T days, under the fixed
precedence constraints, where the completion time of job i at day
t is the sum of processing times of jobs prior to i and the process-
ing time of job i.

In this paper, we represent a schedule of jobs by a permu-
tation. For example, at day ¢, we process 4 jobs according to
a permutation (3,2, 1,4) and each processing time is given as
& = (b, 2,3, 64). Note that the component of permuta-
tion (3,2, 1,4) represents the priority of each job. That is, jobs
with higher priority are processed earlier. Therefore, jobs 4, 1,2,
and 3 are processed sequentially. The completion time of jobs
i=4,1,2,3are b4, (a+li1, Catl1+C0,and Ca+6 1 +60+C, 3,
respectively. So, an inner product (3,2, 1,4) - £, exactly corre-
sponds to the sum of the completion time at day ¢.

A permutation o over the set [n] = {1,...,n} of n fixed objects
is a bijective function from [#] to [#]. Another representation of a
permutation o over the set [n] is to describe it as an n-dimensional
vector in [n]", defined as o = (0(1),...,0(n)). E.g., (3,4,2,1)
is a representation of a permutation for n = 4. Let S, be the set
of all permutations over [n], i.e., S, = {o € [n]"| o is a permuta-
tion over [n]}. In particular, the convex hull of all permutations is
called permutahedron, denoted as P,.

We assume a set of precedence constraints in permutations.
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The set A of precedence constraints is given as A = {(ix, ji) €
[n] X [n] | ix # jk.k = 1,...,m}, meaning that object i is pre-
ferred to object ji. The set A induces the set defined by linear
constraints Precons(A) = {p € R} | p; > p; for(i,j) € A}.
We further assume that there exists a linear ordering consistent
with A. In other words, we assume there exists a permutation
o € §, N Precons(A).

In this paper, we consider the following online scheduling
problem over S, N Precons(A). For each trial # = 1,..., T, (i)
the player predicts a permutation o, € S, N Precons(A), (ii) the
adversary returns a loss vector £, € [0, 11", and (iii) the player in-
curs loss o, - £;. The goal of the player is to minimize the a-regret
for some small @ > 1:

T T
a-Regret = ; o -l,—a a'ES,,fglrlelz:lons(_ﬂ) ; o-{,.

In this paper, we propose an online scheduling algorithm over
P, NPrecons(A) whose a-regret is O(n> VT) for @ = 2-2/(n+1).
For each trial, our algorithm runs in O(n*) time. Further, we
show that the lower bound of the 1-regret is Q(n VT). In ad-
dition, we prove that there is no polynomial time algorithm with
a-regret poly(n,m) VT with @ < 2 — 2/(n + 1) unless there ex-
ists a randomized approximation algorithm with approximation
a < 2-2/(n+1) for the corresponding offline problem (which
we discuss later). So far, the state-of-the-art approximation algo-
rithms have approximation ratio 2 — 2/(n + 1) and it is an open
problem to find an approximation algorithm with better ratio [22].
Therefore, our algorithm is optimal among any polynomial algo-
rithms unless the open problem is positively solved.

The corresponding offline problem has been extensively in-
vestigated in the literature. The problem is, given a loss vector
¢ € [0,1]" and the set of precedence constraints A as inputs, to
output a permutation o € S, N Precons(A) which minimizes the
inner product o - £, i.e., the sum of completion times. More gen-
erally, the problem of minimizing the weighted sum of comple-
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tion times are typically considered. It is known that the problem
is NP-hard [14], [15]. Several 2 — O(1/n)-approximation algo-
rithms are proposed ( Schulz [19], Hall et al. [12], Chudak and
Hochbaum [6], Margot et al. [17], and Chekuri and Motwani [5]).
For further developments, see, e.g., [2], [8].

There are related researches on online scheduling over the per-
mutahedron. The first result without precedence constraints is
proposed by Yasutake et al. [23]. Ailon proposed another online
optimization algorithm with an improved regret bound[1]. Sue-
hiro et al. [21] extended Yasutake et al.’s result to the submodular
base polyhedron which can be used for not only permutations, but
also other combinatorial objects such as spanning trees.

It is possible to obtain online scheduling algorithms using
“offline-to-online” conversion techniques. By using conversion
method of Kakade et al. [13] or Fujita et al. [11], we can construct
online optimization algorithms with a-regret close to ours. But,
with the method of Kakade et al. [13], the resulting algorithm
takes time linear in 7', which is not desirable. With the method of
Fujita et al. [11], the runnning time per trial is poly(n, 1/¢), whih
is independent of 7" but depends on 1/ and its a-regret is proved
fora =2 —2/(n+ 1) + g, which is inferior to ours.

2. Preliminaries

For any fixed positive integer n, let [n] by the set {1,...,n}.
The permutahedron P, is the convex hull of the set of permuta-
tions S,. It is known that P, can be represented as the set of points
p € R satisfying Y;cs pi < Z'l.szll (n+1—1i) forany S c [n], and

*, pi = n(n+ 1)/2. For references of the permutahedron, see,
e.g., [10], [24].

We will use a geometric property of Bregman divergence
which is known as Generalized Pythagorean Theorem. We show
a version of the theorem adapted for Euclidean norm.

Theorem 1 (Bregman[3], [4]). Let C C R’ be any convex set.
Let q be any point in R, and let p = infpccllp’ — q||§. Then, it
holds for any r € C that

llr — qll3 = llr — pl3 +IIp — 4115.
Further, this inequality becomes an equality if C is an affine set.
3. Algorithm

In this section, we propose our algorithm PermLearnPrec and
prove its a-regret bound.

3.1 Main Structure

The description of PermLearnPrec is shown in Algorithm 1.
The algorithm maintains a weight vector p, in R}, which rep-
resents a “mixture” of permutations in §,. At each trial 7, it
“rounds” a vector p; into a permutation o so that o, < ap, for
some @ > 0. This procedure is done by Rounding, which we will
show the details in the next section. After the loss vector £; is
given, PermLearnPrec updates the weight vector p, in an additive
way and projects it onto the set of linear constraints represent-
ing precedence constraints Precons(:A) and the intersection of the
permutahedron P, and Precons(A) successively.

The main structure of our algorithm itself is built on a standard
online convex optimization algorithm Online Gradient Descent
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(OGD) [25] in online learning literature. OGD consists of the
additive update of weight vectors and the projection to some con-
vex set of interest. In our case, the convex set is P, N Precons(A).
Using these procedures, the regret bound of OGD can be proved
to be O(n* VT). So, apparently, our successive projections seem
redundant and only one projection to P, N Precons(A) would suf-
fice. The problem of the standard approach is that the projection
onto P, N Precons(A) looks not tractable since it deals exponen-
tially many linear constraints. Later, we will show that the suc-
cessive projections are the keys to an efficient implementation of
our algorithm. First, we prove an a-regret bound of the proposed
algorithm and then we show that our algorithm can be efficiently
realized.

Algorithm 1 PermLearnPrec
(1) Letp; =((n+1)/2,...,(n+1)/2) € [0,n]".
(2) Fort=1,...,T
(a) Run Rounding(p;) and get o, € S, such that o, < (2 -2/(n +
D)p:.
(b) Incuraloss o, - .
(¢) Update Pl 8Pyt =Pr— ;.
(d) Let p, +2 be the Euclidean projection onto the set Precons(A),
'i'e'a PH% = arg minpePrccons(?() ||P - PH% ||§
(e) Let p, be the projection of P 1 onto the set P, N Precons(A),

. _ . 2
that 1S, Pry1 = arg lnprP,,ﬂPrecnns(ﬂ) ”p - pH% ”2

We start the analysis of PermLearnPrec with the following
lemma. The lemma guarantees the “progress “ of p; towards any
vector in P, NPrecons(A), which is measured by Euclidean norm.
squared
Lemma 1. For any q € P, N Precons(A) and for any t > 1,

lig = pd3 = llg = Pestll5 = 2n(q — p) - & — 1.

Proof. By using Generalized Pythagorean Theorem in Theo-
rem 1,

2 2 2
lg = przll; 2 llg = Praally + [1Pr1 = P2l

and

lg =Py B 2 1lg =22 B + s = D 2
So, by combining these, we have
g — 23 = llg = P i3
2llq = pilly = g = Pl + 1Pt = Pzl + D2 = Pt
>llg ~ pill; - llg ~ P11, (1)

where the last inequality follows since Euclidean distance is non-
negative.

Then, by the fact that p, S nf, the right hand side of
inequality (1) is

g = Pz = lg = Prtlz = 20(q = p) - & = PIENS. (2)

By combining (1),(2), we complete the proof. O

Lemma 2 (Cf. Zinkevich [25]). For any T > 1 and n
(n+1)/2NT),
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T T
. n(n+1)
Ll < . VT.
Z P [t - peP,,ﬂrlgg:lons(ﬂ) Z p [t * 2 T

=1 t=1

Proof. By Lemma 1, summing the inequality up from ¢ = 1 to
T and arranging them, we get that for any ¢ € P,, N Precons(A),

T T T
1 2 2 n 2
;(pt 9 lis g ;(nq =Pl = llg = peatl}) + 3 Z] 16,12

T
1
= 5 g =plis =l = prif) + 3 31613
t=1

gnT

1 n+l,
< —n(——) +
< an( 7 )
where the last inequality holds since for any i € [1] (¢;—pi1)? is at
most p?, = (%51)? and £, € [0,1]". By setting n = (n + 1)/(2VT)

we have the cumulative loss bound as desired. )

4. Efficient Implementations of Projection and
Rounding

In this section, we propose efficient algorithms for successive
projections onto Precons(A) and P, NPrecons(A). Then we show
an implementation of the procedure Rounding.

4.1 Projection onto the Set Precons(A) of Precedence Con-
straints
The problem of projection onto Precons(A) is described as fol-
lows:

T
gég;llp qll;
sub.to: p; > p;, for (i, j) € A.

This problem is known as the isotonic regression problem [16],
[18], [20]. Previously known algorithms for the isotonic regres-
sion run in O(mn?logn) or O(n*) time see [16], [18], [20] for
details.

4.2 Projection onto P, N Precons(A)

Now we show an efficient algorithm Projection for computing
the projection onto the intersection of the permutahedron P, and
the set Precons(A) of precedence constraints. In fact, we will
show that the problem can be reduced to projection onto P, only.
So, we will just use the algorithm of Suehiro et al. [21] for finding
the projection onto P,,.

Formally, the problem is stated as follows:

: )
glgﬁlﬂllp qll;
IS1
sub. to: ij < Z(n +1—), forany S C [n],

Jjes Jj=1

- n(n+1)
3= rh
J=1

pi=p; for(i,j)e A

For simplicity, we assume that elements in ¢ are sorted in de-
scending order, i.e., ¢; > g2 > --- > g,. This can be achieved in
time O(n logn) by sorting ¢. First, we show that this projection
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preserves the order in ¢.
Lemma 3 (Order Preserving Lemma (Suehiro et al.[21])). Let p*
be the projection of q s.t. q1 > q2 > ... > q, and A’ is the set of
violating constraints w.r.t. q. Then the projection p* satisfies that
JA ey

Further, we show that the projection onto P, preserves equality
as well.
Lemma 4 (Equality Preserving Lemma). Let p* be the projection
of q. Then the projection p* satisfies that p; = p; if q; = q;.

Proof.  Assume that the lemma is false. Then there exists a pair i
and j such that ¢; = g; and p; < p}‘.. Let p’ be the vector obtained
by letting p; = p} = (p; + p_’/‘.)/2 and p; = p; for k # i, j. It can
be easily verified that p’s € P,. Now observe that

Ip* - 4l = lIp’ - qll>
=p+pl-pS—p+20 - q-2p" ¢
=p;> +p = (0] + P12+ 20} - p)ai + 20 - P
1 * * / / * *
=§(pi - p_,')2 +2(p; + P — pi — Py
1 £ Sk
:5(10[ _pj)z > 0’
which contradicts the fact that p* is the projection. O

Now we are ready to show one of our main technical lemmas.
Lemma 5. For any ¢ € Precons(A),

arg min llp — gll = arg pep, MDA lip — 4ll.

Proof. Let p* = argmingep, [lp — qll. By definition of the pro-
jection, for any p € P, N Precons(A) C P,, llp — qll = |Ilp* — 4ll-
Further, by Lemma 3 and 4, p* preserves the order and equality in
q. That is, p* also satisfies the constraints defined by Precons(A).
Therefore we have p* € Precons(A). These fact implies that p*

is indeed the projection of ¢ onto P, N Precons(A). O

So, by Lemma 5, when a vector ¢ € Precons(A) is given, we
can compute the projection of g onto P, NPrecons(:A) by comput-
ing the projection of ¢ onto P, only. By applying the projection
algorithm of Suehiro et al. [21] for the base polyhedron (which
generalizes the permutahedron), we obtain the following result.
Theorem 2. There exists an algorithm, with input q €
Precons(A), outputs the projection of q onto P, N Precons(A)
in time O(n*) and space O(n).

4.3 Rounding

We show an algorithm for Rounding in Algorithm 2. The al-
gorithm is simple. Roughly speaking, if the input p € P, N
Precons(A) is sorted as p; > --- > p,, the algorithm outputs
o suchthatoy > --- > 0, 1e.,, 0 = (n,n—1,...,1). Note that
we need to break ties in p to construct o. Let A* be the tran-
sitive closure of A. So, given an equivalence set {j | p; = p;},
we break ties so that if (i, j) € A", o7 > o;. This can be done
by, e.g., quicksort. First, we show that the rounding guarantees
that o < (2 —2/(n + 1)). Then we discuss time complexity of
Rounding.

We prove the following lemma on Rounding.
Lemma 6. For any p € P, N Precons(A) s.t. p; > -+ > p,,
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Algorithm 2 Rounding
Input: p € P, N Precons(A) satisfying that p; > p, > ---

> p, and the

transitive closure A" of A

OQutput: Permutation o € S, N Precons(A)

(1) Sort elements of p in the descending order, where for elements i, j such
that p; = p;, i is larger than j if (i, /) € A", otherwise beak the tie
arbitrarily.

(2) Output the permutation o s.t. o; = (n + 1) — r;, where 7; is the ordinal
of i in the above order.

the output o of Rounding given p satisfies that for any i € [n],
o <2-2/(n+1)p:

Proof. For any i € [n], by definition of the permutahedron, we
have

i—1
- =2 3

J=

By the assumption that p; > --- > p,, the average of p; + piy1 +

-+ + p, is not larger than p;. Thus we get that,

_ d :Zﬁzlj—zj;‘1j>(n+i)(n+1—i):n+i

T n+1-i n+1l-i 2(n+1-1) 2

Also, since the rounding algorithm outputs o s.t. o; according

to decreasing order of p; we have that oy > 0, > -+ > 0, and
oi=n—i+1fori=1,2,...,n Thus, foranyi € [n],
o _n—i+l 2(n+1—1) _, 4i -2
pi S+ n+i n+i’
4i-2
oi/pi £2—2/(n+ 1), as claimed. O

For computing Rounding, we need to construct the transitive
closure A" of A before the protocol starts. It is well known that
a transitive closure can be computed by using algorithms for all-
pairs shortest pathes. For this problem, Floyd-Warshall algorithm
can be used and it runs in time O(n*) and space O(n?) (see, e.g.,

2 we can use John-

[7]). When A is small, for example, m << n
son’s algorithm running in time O(n? log n+nm) and space O(m?).

The time complexity of Rounding is O(n?), which is due to the
sorting. The space complexity is O(n?), if we use Floyd-Warshall
algorithm with a adjacency matrix. The space complexity can
be reduced to O(m?) if we employ Johnson’s algorithm, which
uses an adjacency list. On the other hand, we need an extra
O(log m) factor in the time complexity since we need O(logm)

time to check if (i, j) € A* when A* is given as an adjacency list.

4.4 Main Result

Now we are ready to prove the main result. By Lemma 5, 6
and Theorem 2, we get the following theorem immediately.
Theorem 3. There exists an online scheduling algorithm over
P,, N Precons(A) such that
(1) its (2 = 2/(n + 1))-regret is O(n> VT), and
(2) its running time is O(n*) time per trial.
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5. Lower Bound

In this section, we derive a lower bound of the regret for our
online scheduling problem over the permutahedron P,. Here we
consider the special case where no precedence constraint is given.
Theorem 4. For our online scheduling problem over the permu-
tahedron P, for sufficiently large T, the 1-regret is Q(n> VT).

Proof.  We consider the adversary which plays randomly. More
precisely, at each trial ¢, the adversary chooses a loss vector £,
randomly from £°, £!, where £° (£') be the loss vector in which
the first 5 elements are Os (1s) and the remaining elements are
1s (0s). Then for any online scheduling algorithm which outputs
o, €S;attrial 7,

1T
Zaz f] _n(n+ )

Now, let us consider the best fixed permutation. Let o° =
= (1,2,3,4,...
Suppose that £° appears more frequently than £' by k. Then the

(m,n—1,n-2,...,1) and o' ,n), respectively.

best permutation is o® and its cumulative loss is

n

S 64

i=1

+1
n(n + 1T (2§(§ +1) _n(n+ 1))1_(
4 2 2 2 2
nn+ DTk (n+1 5+1
T3 _5”( 2 2 )
_n(n+ 1T k n?
T4 24

The same argument follows the opposite case where £' is more
frequent by k. In fact, k can be expressed as k = Zthl o, where
each ¢, is a random variable which takes values +1 equally ran-
domly. Then the expected regret of any online scheduling al-
gorithms is at least %E[lztrzl 5,”. By the central limit theo-
rem, the distribution of 2;7-:1 o, converges to Gaussian distribu-
tion with mean 0 and variance VT. So, for sufficiently large T,
Pr[lZ,T:1 5, > VT] is constant, say, ¢ (0 < ¢ < 1). Therefore
, the expected regret bound is further lower bounded as %c VT.
This implies that there exists a sequence of loss vectors that en-
forces any online scheduling algorithm to incur regret is at least

Qn* \T). O

In fact, this lower bound on 1-regret is tight in general, since
there are online algorithms which achieve 1-regret O(n* VT)
((11, [21D).

Now it is natural to ask if the (2 — 2/(n + 1))-regret O(n® VT)

is tight under precedence constraints. So far, we have no lower
bound for this case. But, we give an alternative argument that our
algorithm is optimal unless there are an offline algorithm with
approximation ratio a < 2.
Theorem 5. [f there exists a polynomial time online scheduling
algorithm with a-regret poly(n,m)NT, then there also exists a
randomized polynomial time algorithm for the offline problem
with approximation ratio «.



IPSJ SIG Technical Report

Proof. The proof is based on standard online to offline conver-
sion methods in the online learning literature (see,e.g,[9]). Let 4
be such an online scheduling algorithm and its output at each trial
t is denoted as o,. Let £ € [0, 1]” be the loss vector in the offline
problem. We consider the adversary which returns ¢, = £ at each
trial #. Then the the cumulative loss of 4 divided by T is bounded
as

el

1 & oly(n, m)
Zo-,-t’ﬁa min o ¢+ 220
‘= o €S ,NPrecons(A) T

Now, let & be a uniformly and randomly chosen permutation

from {o,...,or}. Then,

— . ly(n,
EG fl<a min o £+ 22T
oS, ,NPrecons(A) T

By setting T = poly(n, m), the expected cumulative loss of & is
at most a times the cumulative loss of the best permutation (with
a constant additive term), which completes the proof. O

6. Conclusion and Open Problems

In this paper, we propose a polynomial time online job schedul-
ing algorithm over Permutahedron under precedence constraints.
Our algorithm achieves (2 — O(n))-regret O(n* VT), which means
that ours can predict as well as the state-of-the art offline approx-
imation algorithms in hindsight. In fact, the ratio @ = 2 — O(n)
is tight if there is no offline approximation algorithm whose ap-
proximation ratio is strictly less than 2 — 2/(n + 1).

An interesting open question is extending our online frame-
work for minimizing the sum of weighted completion times.
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