
IPSJ SIG Technical Report

Online Steiner Trees on Outerplanar Graphs

AkiraMatsubayashi1,a)

Abstract: This report addresses the classical online Steiner tree problem on edge-weighted graphs. It is known that a

greedy (nearest neighbor) online algorithm is O(log n)-competitive on arbitrary graphs with n nodes. It is also known

that no deterministic algorithm is better than Ω(log n)-competitive even for series-parallel graphs. The greedy algo-

rithm is trivially 1- and 2-competitive for trees and rings, respectively, but Ω(log n)-competitive even for outerplanar

graphs. No other nontrivial class of graphs that admits constant competitive deterministic Steiner tree algorithms has

been known. In this report, we propose an 8-competitive deterministic algorithm for outerplanar graphs. Our algorithm

connects a requested node to a previous node using a path that is constant times longer than a shortest path between

the nodes.

Keywords: Steiner Tree, outerplanar graph, online algorithm, competitive analysis

1. Introduction

This report addresses the classical online Steiner tree problem

on edge-weighted graphs. We are given a graph G = (VG, EG)

with non-negative edge-weights w : EG → R+ and a subset R

of vertices of G. The (offline) Steiner tree problem is to find a

Steiner tree, i.e., a subtree T = (VT , ET) of G that contains all the

nodes in R and minimizes its cost c(T) =
∑

e∈ET
w(e). In the on-

line version of this problem, vertices r1, . . . , r|R| ∈ R are revealed

one by one, and for each i ≥ 1, we must construct a tree contain-

ing ri by growing the previously constructed tree for r1, . . . , ri−1

(null tree for i = 1) without information of ri+1, . . . , r|R|.

It is known that a greedy (nearest neighbor) online algorithm

is O(log n)-competitive on arbitrary graphs with n nodes [6].

It is also known that no deterministic algorithm is better than

Ω(log n)-competitive even for series-parallel graphs [6]. The

greedy algorithm is trivially 1- and 2-competitive for trees and

rings, respectively, but Ω(log n)-competitive even for outerpla-

nar graphs. No other nontrivial class of graphs that admits con-

stant competitive deterministic Steiner tree algorithms has been

known. As for randomized algorithms, a probabilistic embed-

ding of outerplanar graphs into tree metrics with distortion 8, pre-

sented by Gupta, Newman, Rabinovich, and Sinclair [5], implies

an 8-competitive online Steiner tree algorithm against oblivious

offline adversaries. Various generalizations of the online Steiner

tree problem are also studied, such as generalized STP [2], node-

weighted STP [7], and asymmetric STP [1].

In this report, we propose an 8-competitive deterministic algo-

rithm for outerplanar graphs. Our algorithm connects a requested

node to a previous node using a path that is constant times longer

than a shortest path between the nodes. An interesting application

of the online steiner tree problem is the file allocation problem,

1 Division of Electrical Engineering and Computer Science, Kanazawa

University Kakuma-machi, Kanazawa, 920–1192 Japan
a) mbayashi@t.kanazawa-u.ac.jp

in which we maintain a dynamic allocations of multiple copies of

data file on a network with servicing online read/write requests.

Bartal, Fiat, and Rabani [3] propose a file allocation algorithm

based on any online Steiner algorithm. With this result, our result

implies an 8(2 +
√

3)(≈ 29.86)-competitive randomized Steiner

tree algorithm against adaptive online adversaries.

2. Preliminaries

Let G = (VG, EG) be a planar graph with non-negative edge-

weights w : EG → R
+. The weak dual of G is a graph

H = (VH , EH), where VH is the set of bounded faces of G, and

EH is the set of two bounded faces F and F′ that have a common

edge. G is outerplanar if it can be drawn on the plane so that all

the vertices belong to the unbounded face, or equivalently, if H is

a forest [4].

Throughout the report, we assume that G is biconnected be-

cause a Steiner tree of G is the union of Steiner trees of bicon-

nected components of G. This assumption implies that H is a tree.

Moreover, we assume that G has no edge uvwith w(uv) ≥ dG(u, v),

where dG(u, v) is the distance (i.e., the length of shortest path) of

vertices u and v on G. This is justified because there exists a

Steiner tree not containing such an edge.

3. Algorithm and Analysis

3.1 Algorithm α-Detour

Suppose that we are given an outerplanar graph G = (VG, EG)

with edge-weights w : EG → R+, and a sequence r1, r2, . . . , r|R| ∈
R ⊆ VG. Our algorithm, denoted by α-Detour (α > 1), constructs

trees T1,T2, . . . as follows:

For the first vertex r1, we construct the tree T1 consisting of the

single vertex r1. We suppose that the weak dual H = (VH , EH) of

G is a tree rooted by a face containing r1. For the ith vertex ri

with r ≥ 2, α-Detour performs the following steps:

ⓒ 2014 Information Processing Society of Japan 1

Vol.2014-AL-150 No.8
2014/11/20

IPSJ SIG Technical Report

α-Detour

(1) Find a shortest path P = (p1, p2, · · · , p|P|) from a vertex p1

in Ti−1 to p|P| = ri.

(2) Let Ti := Ti−1.

(3) For j = 1 to |VP| − 1, if p j+1 < VTi
, then call Detour-

edge(α, p j, p j+1) defined below.

(4) Return Ti.

Detour-edge(x, u, v) is a procedure with arguments x ≥ 1 and

an edge uv with u ∈ VT1
, v < VT1

, and w(uv) ≤ dG(Ti, v). The

procedure is defined as follows:

Detour-edge(x, u, v)

(1) If uv is an outer edge, i.e., an edge contained in the un-

bounded face, then add uv to Ti, and returrn.

(2) If uv is an inner edge, then it corresponds a face F and its

child F′ that have uv in common. Let G′ be the subgraph of

G induced by descendant edges of uv in H, i.e., edges con-

tained in F \ uv or the descendant faces of F in H.

(3) Find a shortest path Q = (q1, . . . , q|Q|) in G′ from a vertex q1

in Ti to q|Q| = v.

(4) If c(Q)/w(uv) > x, then add uv to Ti, where c(Q) is the sum

of weights of edges in Q.

(5) Otherwise, call Detour-edge(x · w(uv)/c(Q), q j, q j+1) for j =

1 to |Q| − 1.

(6) Return.

3.2 Correctness

Since α-Detour and Detour-edge only add edges to Ti−1, Ti

contains Ti−1 as a subgraph. Therefore, it suffices to show that

α-Detour connects ri to Ti.

Lemma 1 Detour-edge(x, u, v) adds a path of length at most

x · w(uv) that connects a vertex of Ti and v.

Proof We prove this lemma by induction of the level of uv in H,

where the level of uv is the distance in H between the roof and

the face containing uv. If uv is an outer edge, then the procedure

choose uv as a path connecting u and v. Therefore, this path has

length w(uv) ≤ x · w(uv).

Assume that uv is an inner edge, and that the lemma holds

for a higher level than that of uv. If c(Q)/w(uv) > x in

Step 4, then the lemma is proved in a similar way to the case

that uv is an outer edge. Otherwise, by induction hypothesis,

Detour-edge(x · w(uv)/c(Q), q1, q2) adds a path of length at most

x · w(uv)w(q1q2)/c(Q) that connects a vertex in Ti and q2 in the

subgraph of G induced by the descendant edges of q1q2. For

1 < j < |Q|, q jq j+1 is not a descendant edge of other edges

of Q, because uv is an ancestor edge of all the edges of Q, and

because Q connects both q j and q j+1 to v with the shortest dis-

tance. Therefore, q j is a unique vertex of Ti in the subgraph

of G induced by the descendant edges of q jq j+1, and hence,

Detour-edge(x ·w(uv)/c(Q), q j, q j+1) adds a path of length at most

x · w(uv)w(q jq j+1)/c(Q) that connects q j and q j+1. Concatenating

the paths for all 1 ≤ j < |Q|, we conclude that Detour-edge(x, u, v)

adds a path of length at most
∑

j(x · w(uv)w(q jq j+1)/c(Q)) =

x · w(uv) that connects a vertex in Ti and v. �

Since α-Detour calls Detour-edge(α, p j, p j+1) unless p j+1 has

already contained in Ti, by Lemma 1, we have the following

lemma:

Lemma 2 For i ≥ 2, α-Detour connects ri to Ti with a path of

length at most α · dG(Ti−1, ri).

3.3 Competitiveness

To analyze competitiveness of α-Detour, we introduce a for-

est structure among edges of G obtained by modifying H as the

Steiner tree grows. Then, we subdivide a planar drawing of G

according to the structure.

Forest Structure

Let Pi be the path P constructed in Step 1 of α-Detour for ri.

For the first and second vertices p1 = r1 and p2 of P2, we de-

fine F as the subtree of H rooted by p1 p2. Thereafter, every time

Detour-edge(x, u, v) is called, we perform the following: If uv is

an ancestor of one or more subtrees of F, then we cut the links be-

tween the roots of the subtrees and the parents of the roots. This

means that the subtrees become connected components in the up-

dated F, and that uv has no descendant in the subtrees in F, while

it may have a descendant in the subtrees in H. Moreover, if uv has

no parent in F, then the new connected component rooted by uv

and consisting of descendants of uv in H is added to F. Note that

edges of Q constructed in Step 3 of Detour-edge are descendants

of uv in F, and that the links between uv and the edges of Q will

never be cut. The latter is because if uv and an edge of Q would be

cut, then Detour-edge(·, u′, v′) must be called for an edge u′v′ that

is both an ancestor of the edge of Q and a descendant of uv. Since

such u′ and v′ are contained in Ti, however, Detour-edge(·, u′, v′)
should never be called later.

Subdivision

Suppose that we finished constructing T := T |R|. For every

edge uv such that Detour-edge(·, u, v) is called in the construction

of T , let Duv be the set of edges in Q constructed in Step 3. We

want to define a similar edge set Duv for any inner edge uv in

some Du′v′ such that Detour-edge(·, u, v) is not called. For this

purpose, we perform the following procedure for such an edge uv

and define Duv as the set of edges in Q constructed in Step 3 as

well.

Extend-edge(u, v)

(1) If uv is an outer edge, then let Q be the path consisting of uv,

and return.

(2) Let G′ be the subgraph of G induced by descendant edges of

uv in H.

(3) Find a shortest path Q in G′ connecting;

(a) u and v if {u, v} ∩ VT = ∅,
(b) a vertex in the subtree of T in G′ containing u, and v if

{u, v} ∩ VT = {u},
(c) u, and a vertex in the subtree of T in G′ containing v if

{u, v} ∩ VT = {v},
(d) a vertex in the subtree of T in G′ containing u, and a ver-

tex in the subtree of T in G′ containing v if {u, v}∩VT =

{u, v}.
(4) Call Extend-edge(u′ , v′) for each edge u′v′ in Q.

We regard each edge uv in G as a line segment L(uv) of length

w(uv). A path Q is regarded as the concatenation L(EQ) :=

ⓒ 2014 Information Processing Society of Japan 2

Vol.2014-AL-150 No.8
2014/11/20

IPSJ SIG Technical Report

⋃
e∈EQ

L(e). If uv has Duv, then we define a mapping muv

that linearly maps L(Duv) to L(e), such that for any line seg-

ment s ⊆ L(Duv), muv(s) is a line segment in L(uv) of length

w(uv)w(s)/w(Duv), where w(s) is the length of s and w(Duv) =∑
e∈Duv
w(e).

There are two possibilities that an inner edge u′v′ has no Du′v′ .

One is that u′v′ has no ancestor in F. For this case we de-

fine muv(s) := ∅ for any edge uv and s ⊆ L(u′v′). The other

case is that there exists an ancestor edge uv of u′v′ such that

some edges D∗u′v′ ⊆ Duv are descendant of u′v′ in F, and that

w(u′v′) > w(Duv). For this case, we define that muv linearly maps

L(u′v′) to muv(L(D∗u′v′)). Moreover, we define that mu′v′ linearly

maps L(D∗u′v′) to L(u′v′).

We recursively extend me in such a way that me(s) :=

me(me′ (s)) for any e with De, a descendant edge e′ with De′ of

e in F, and any line segment s on a descendant edge of e′ in F.

Lemma 3 For an edge e with De, e′ ∈ De, and e′′ with e′ ∈
D∗e′′ ⊆ De, it follows that w(me(L(e′))) ≤ w(e′) ≤ w(me′′ (L(e′))).

Proof By the definition of the shortest path in Step 3 of Detour-

edge or Extend-edge, if w(uv) > w(De), then De instead of uv

should have been chosen in the parent procedure. Therefore,

w(uv) ≤ w(De), implying that w(me(L(e′))) ≤ w(e′). Similarly,

if w(e′′) < w(D∗e′′), then e′′ instead of D∗uv should have been cho-

sen in the parent procedure. Therefore, w(e′′) ≥ w(D∗e′′), implying

that w(me′′ (L(e′))) ≥ w(e′). �

Lemma 4 Suppose that uv ∈ EPi
for some i, and that P̄i is the

path connecting a vertex of Ti and v that is constructed by Detour-

edge(α, u, v) in Step 3 of α-Detour. If e is a descendant edge of

e′ ∈ EP̄i
, then it follows that w(e) > α · w(muv(L(e))).

Proof By Lemma 3, it suffices to show the lemma for the case

of e ∈ De′ . We prove the lemma by induction on the number of

recursive depths for Detour-edge(α, u, v) to output e′. If there is

no recursive calls, then uv = e′ and w(Duv)/w(u, v) > α, implying

w(e) > α · w(muvL(e)). Assume that α-Detour(α, u, v) invoke re-

cursive calls and that the lemma holds for the smaller number of

recursive calls. From this assumption, Detour-edge is recursively

called with x = α · w(u, v)/w(Duv) and some edge u′v′ ∈ Duv.

By induction hypothesis, we have w(e) > x · w(mu′v′ (L(e))) =

(α · w(u, v)/w(Duv)) · w(mu′v′ (L(e))) = α · w(muv(L(e))). Thus, we

have the lemma. �

For any outer edge o, we define S (o) =
⋃

e me(L(o)) overall an-

cestor edges of o in F. S (o) contains line segments of a sequence

of edges from the root to the leaf o of a connected component of

F. Let eo be the last edge in the sequence that is contained in Pi

for some i.

Lemma 5 Suppose that O is the set of edges of the path con-

necting r, r′ ∈ R on the unbounded face, and that no other vertex

of R is contained in the path. Then, any path Z connecting r and

r′ has length at least
∑

o∈O w(meo
L(o)).

Proof S is a partition of a planar drawing of G as well as a sub-

division of edges of G. Therefore, for each o ∈ O, there is an edge

z ∈ EX such that me(o) ∩ S (o) , ∅. Either z is a descendant of eo,

or z is an ancestor of eo. If z is a descendant of eo, then Lemma 3

implies that w(meo
(L(o))) ≤ w(mz(L(o))).

Suppose that O′ ⊆ O be the set of edges o such that z is an

ancestor of eo. Because no vertex of R \ {r, r′} are between r and

r′, eo must go into and out of
⋃

o∈O′ S (o) using a part of a path Pi

for some i. Since G is planar, and by the assumption that z is an

ancestor of eo, a part of Z passes outside of the path Pi. Since Pi

is a shortest path, the length of part of Pi is at most the length of

the part of Z. In this way, we can see that for any edges eo with

o ∈ O′, there are parts of Pis and parts of Z such that the length

of parts of Pis are at most the length of parts of Z. Therefore, we

have the lemma. �

Lemma 6 For any o ∈ O, it follows that

∑

e∈⋃i EPi
,L(e)∩S (o),∅

w(me(L(o))) <
α

α − 1
w(meo

(L(o))).

Proof By Lemma 4, for any edge e ∈
⋃

i EPi
and its descendant

e′ ∈
⋃

i EPi
in F, it follows that w(e′) > α · w(me(L(e′))). This

implies that if e1 = eo, . . . , ek are the sequence of edges in
⋃

i EPi

in the order from the leaf o to the root of a connected component

of F, it follows that w(me j+1
(L(o))) > α ·w(me j

(L(o))). Solving the

recurrence, we have the lemma. �

Lemma 7 For any tree Z containing vertices R, c(T)/c(Z) <

2α2/(α − 1).

Proof Suppose that O1,. . . , O|R| be the set of edges of paths on

the unbounded face of G such that the ends of each O j are nodes

of R. Let Z j be the subpath of Z connecting ends of O j. Then, it

follows from that

c(T) ≤ α
∑

o∈O

∑

e∈⋃i EPi
,L(e)∩S (o),∅

w(me(L(o))) (Lemma 1)

<
α2

α − 1

∑

o∈O
w(meo

(L(o))) (Lemma 6)

≤ α2

α − 1

∑

j

c(Z j) (Lemma 5)

≤ 2α2

α − 1
c(Z).

�

Setting α = 2, we have the following theorem:

Theorem 8 Algorithm 2-Detour is 8-competitive.

4. Concluding Remarks

Previously known lower bounds to be applied to outerplanar

graphs is 2 for rings. We will present a lower bound of 4 in the

future version of this report. We believe that the competitive ratio

of 8 of our algorithm can be still improved, probably, to 4.

ⓒ 2014 Information Processing Society of Japan 3

Vol.2014-AL-150 No.8
2014/11/20

IPSJ SIG Technical Report

References

[1] Angelopoulos, S.: On the Competitiveness of the Online Asymmetric
and Euclidean Steiner Tree Problems, WAOA 2009, pp. 1–12 (2010).

[2] Averbuch, B., Azar, Y. and Bartal, Y.: On-Line Generalized Steiner
Problem, Theoret. Comput. Sci., Vol. 324, pp. 313–324 (2004).

[3] Bartal, Y., Fiat, A. and Rabani, Y.: Competitive Algorithms for Dis-
tributed Data Management, J. Comput. Sys. Sci., Vol. 51, No. 3, pp.
341–358 (1995).

[4] Fleischner, H. J., Geller, D. P. and Harary, F.: Outerplanar Graphs and
Weak Duals, J. Indian Math. Soc., Vol. 38, pp. 215–219 (1974).

[5] Gupta, A., Newman, I., Rabinovich, Y. and Sinclair, A.: Cuts, Trees,
and ℓ1-Embedding of Graphs, Combinatorica, Vol. 24, No. 2, pp. 233–
269 (2004).

[6] Imase, M. and Waxman, B. M.: Dynamic Steiner Tree Problem, SIAM
J. Discrete Math., Vol. 4, No. 3, pp. 369–384 (1991).

[7] Naor, J. S., Panigrahi, D. and Singh, M.: Online Node-Weighted Steiner
Tree and Related Problems, Proc. 52nd Annual Symposium on Founda-
tions of Computer Science, pp. 210–219 (2011).

ⓒ 2014 Information Processing Society of Japan 4

Vol.2014-AL-150 No.8
2014/11/20

