IPSJ SIG Technical Report

Vol.2014-AL-150 No.8
2014/11/20

Online Steiner Trees on Outerplanar Graphs

AKIRA MATSUBAYASHI

1,a)

Abstract: This report addresses the classical online Steiner tree problem on edge-weighted graphs. It is known that a
greedy (nearest neighbor) online algorithm is O(log n)-competitive on arbitrary graphs with n nodes. It is also known
that no deterministic algorithm is better than Q(log n)-competitive even for series-parallel graphs. The greedy algo-
rithm is trivially 1- and 2-competitive for trees and rings, respectively, but Q(log n)-competitive even for outerplanar
graphs. No other nontrivial class of graphs that admits constant competitive deterministic Steiner tree algorithms has
been known. In this report, we propose an 8-competitive deterministic algorithm for outerplanar graphs. Our algorithm
connects a requested node to a previous node using a path that is constant times longer than a shortest path between

the nodes.

Keywords: Steiner Tree, outerplanar graph, online algorithm, competitive analysis

1. Introduction

This report addresses the classical online Steiner tree problem
on edge-weighted graphs. We are given a graph G = (Vg, E)
E; — R* and a subset R
of vertices of G. The (offline) Steiner tree problem is to find a

with non-negative edge-weights w :

Steiner tree, i.e., a subtree T = (Vr, E7) of G that contains all the
nodes in R and minimizes its cost ¢(T) = 3’ ,cg, w(e). In the on-
line version of this problem, vertices ry, ..., rjg € R are revealed
one by one, and for each i > 1, we must construct a tree contain-
ing r; by growing the previously constructed tree for ry, ..., r;_;
(null tree for i = 1) without information of i1, ..., rg.

It is known that a greedy (nearest neighbor) online algorithm
is O(log n)-competitive on arbitrary graphs with n nodes [6].
It is also known that no deterministic algorithm is better than
Q(log n)-competitive even for series-parallel graphs [6]. The
greedy algorithm is trivially 1- and 2-competitive for trees and
rings, respectively, but Q(log n)-competitive even for outerpla-
nar graphs. No other nontrivial class of graphs that admits con-
stant competitive deterministic Steiner tree algorithms has been
known. As for randomized algorithms, a probabilistic embed-
ding of outerplanar graphs into tree metrics with distortion 8, pre-
sented by Gupta, Newman, Rabinovich, and Sinclair [5], implies
an 8-competitive online Steiner tree algorithm against oblivious
offline adversaries. Various generalizations of the online Steiner
tree problem are also studied, such as generalized STP [2], node-
weighted STP [7], and asymmetric STP [1].

In this report, we propose an 8-competitive deterministic algo-
rithm for outerplanar graphs. Our algorithm connects a requested
node to a previous node using a path that is constant times longer
than a shortest path between the nodes. An interesting application
of the online steiner tree problem is the file allocation problem,

! Division of Electrical Engineering and Computer Science, Kanazawa

University Kakuma-machi, Kanazawa, 920-1192 Japan
¥ mbayashi @t.kanazawa-u.ac.jp

2014 Information Processing Society of Japan

in which we maintain a dynamic allocations of multiple copies of
data file on a network with servicing online read/write requests.
Bartal, Fiat, and Rabani [3] propose a file allocation algorithm
based on any online Steiner algorithm. With this result, our result
implies an 8(2 + V3)(» 29.86)-competitive randomized Steiner
tree algorithm against adaptive online adversaries.

2. Preliminaries

Let G = (Vg, Eg) be a planar graph with non-negative edge-
weights w : Eg — R*. The weak dual of G is a graph
H = (Vy, Ey), where Vy is the set of bounded faces of G, and
Ey is the set of two bounded faces F and F’ that have a common
edge. G is outerplanar if it can be drawn on the plane so that all
the vertices belong to the unbounded face, or equivalently, if H is
a forest [4].

Throughout the report, we assume that G is biconnected be-
cause a Steiner tree of G is the union of Steiner trees of bicon-
nected components of G. This assumption implies that H is a tree.
Moreover, we assume that G has no edge uv with w(uv) > dg(u, v),
where dg(u, v) is the distance (i.e., the length of shortest path) of
vertices u and v on G. This is justified because there exists a
Steiner tree not containing such an edge.

3. Algorithm and Analysis

3.1 Algorithm a-Detour

Suppose that we are given an outerplanar graph G = (Vg, Eg)
with edge-weights w : Eg — R*, and a sequence ry, 75, ...,7g €
R € V. Our algorithm, denoted by a-Detour (@ > 1), constructs
trees T, 75, ... as follows:

For the first vertex r;, we construct the tree 7'} consisting of the
single vertex r;. We suppose that the weak dual H = (Vy, Ep) of
G is a tree rooted by a face containing r;. For the ith vertex r;
with r > 2, @-Detour performs the following steps:

IPSJ SIG Technical Report

a-Detour

(1) Find a shortest path P = (py, p2,--- , pjp) from a vertex p;
inTi_j to pjp| = 1.

(2) LetT; :=T;.

(3) For j = 1to [Vp| = 1, if pjy1 & Vg, then call Detour-
edge(a, pj, pj+1) defined below.

(4) Return T;.

Detour-edge(x, u, v) is a procedure with arguments x > 1 and
an edge uv with u € Vr, v ¢ Vr, and w(uv) < dg(T;,v). The
procedure is defined as follows:

Detour-edge(x, u, v)

(1) If uv is an outer edge, i.e., an edge contained in the un-
bounded face, then add uv to T;, and returrn.

(2) If uv is an inner edge, then it corresponds a face F and its
child F’ that have uv in common. Let G” be the subgraph of
G induced by descendant edges of uv in H, i.e., edges con-
tained in F'\ uv or the descendant faces of F in H.

(3) Find a shortest path Q = (¢, ..
in T; to gjo| = v.

(4) If c(Q)/w(uv) > x, then add uv to T;, where c(Q) is the sum
of weights of edges in Q.

.»q)0) in G’ from a vertex ¢,

(5) Otherwise, call Detour-edge(x - w(uv)/c(Q),q,, q 1) for j =
1to|Q|-1.
(6) Return.

3.2 Correctness

Since a-Detour and Detour-edge only add edges to T;_y, T;
contains 7;_; as a subgraph. Therefore, it suffices to show that
a-Detour connects r; to 7.

Lemma 1 Detour-edge(x, u,v) adds a path of length at most
x - w(uv) that connects a vertex of T; and v.

Proof We prove this lemma by induction of the level of uvin H,
where the level of uv is the distance in H between the roof and
the face containing uv. If uv is an outer edge, then the procedure
choose uv as a path connecting u and v. Therefore, this path has
length w(uv) < x - w(uw).

Assume that uv is an inner edge, and that the lemma holds
If ¢(Q)/w(uv) > x in
Step 4, then the lemma is proved in a similar way to the case

for a higher level than that of wuv.

that uv is an outer edge. Otherwise, by induction hypothesis,
Detour-edge(x - w(uv)/c(Q), q1,q>) adds a path of length at most
x - w(uv)w(qq92)/c(Q) that connects a vertex in 7; and g, in the
subgraph of G induced by the descendant edges of g;q,. For
I < j < |0l ¢g;qj+1 is not a descendant edge of other edges
of O, because uv is an ancestor edge of all the edges of Q, and
because Q connects both g; and g, to v with the shortest dis-
tance. Therefore, g; is a unique vertex of T; in the subgraph
of G induced by the descendant edges of g;g;.;, and hence,
Detour-edge(x - w(uv)/c(Q), g, qj+1) adds a path of length at most
x - w(uv)w(q,;q;+1)/c(Q) that connects g; and g, . Concatenating
the paths for all 1 < j < |Q|, we conclude that Detour-edge(x, u, v)
adds a path of length at most 3’ ;(x - w(uv)w(q;q;+1)/c(Q)) =
x - w(uv) that connects a vertex in 7; and v.]

Since a-Detour calls Detour-edge(a, pj, pj+1) unless pj.; has

2014 Information Processing Society of Japan

Vol.2014-AL-150 No.8
2014/11/20

already contained in 7;, by Lemma 1, we have the following
lemma:

Lemma 2 Fori > 2, a-Detour connects r; to T; with a path of
length at most « - dg(T-1, 1;).

3.3 Competitiveness
To analyze competitiveness of a@-Detour, we introduce a for-
est structure among edges of G obtained by modifying H as the
Steiner tree grows. Then, we subdivide a planar drawing of G
according to the structure.
Forest Structure
Let P; be the path P constructed in Step 1 of a-Detour for r;.
For the first and second vertices p; = r; and p, of P,, we de-
fine F as the subtree of H rooted by p p,. Thereafter, every time
Detour-edge(x, u, v) is called, we perform the following: If uv is
an ancestor of one or more subtrees of ', then we cut the links be-
tween the roots of the subtrees and the parents of the roots. This
means that the subtrees become connected components in the up-
dated F, and that uv has no descendant in the subtrees in F', while
it may have a descendant in the subtrees in H. Moreover, if uv has
no parent in F, then the new connected component rooted by uv
and consisting of descendants of uv in H is added to F. Note that
edges of Q constructed in Step 3 of Detour-edge are descendants
of uv in F, and that the links between uv and the edges of Q will
never be cut. The latter is because if uv and an edge of Q would be
cut, then Detour-edge(-, u’, v") must be called for an edge «’v’ that
is both an ancestor of the edge of Q and a descendant of uv. Since
such ' and v’ are contained in 7;, however, Detour-edge(:, u’,v")
should never be called later.
Subdivision
Suppose that we finished constructing 7 := Tig. For every
edge uv such that Detour-edge(-, u, v) is called in the construction
of T, let D,, be the set of edges in Q constructed in Step 3. We
want to define a similar edge set D,, for any inner edge uv in
some D, such that Detour-edge(:, u#,v) is not called. For this
purpose, we perform the following procedure for such an edge uv
and define D,, as the set of edges in Q constructed in Step 3 as
well.
Extend-edge(u, v)
(1) If uo is an outer edge, then let Q be the path consisting of uv,
and return.
(2) Let G’ be the subgraph of G induced by descendant edges of
uvin H.
(3) Find a shortest path Q in G” connecting;
(a) uand vif {u,v} N Vy =0,
(b) a vertex in the subtree of T in G’ containing u, and v if
{u, v} NV = {u},
(c) u, and a vertex in the subtree of 7" in G’ containing v if
{u, v} 0V = {v},
(d) avertex in the subtree of 7 in G’ containing u, and a ver-
tex in the subtree of T in G’ containing v if {u, v} N V7 =
{u, v}.
(4) Call Extend-edge(u’, v") for each edge u’v’ in Q.
We regard each edge uv in G as a line segment L(uv) of length
w(uv). A path Q is regarded as the concatenation L(Ep) :=

IPSJ SIG Technical Report

UeEEQ L(e)
that linearly maps L(D,,) to L(e), such that for any line seg-

If uv has D,,, then we define a mapping m,,

ment s C L(D,,), m,(s) is a line segment in L(uv) of length
w(uv)w(s)/w(D,,), where w(s) is the length of s and w(D,,) =
ZeeD‘w w(e).

There are two possibilities that an inner edge «’v” has no D, .
One is that #’v" has no ancestor in F. For this case we de-
fine m,,(s) := 0 for any edge uv and s C L(u'v’). The other
case is that there exists an ancestor edge uv of u’v’ such that

some edges D C D, are descendant of u’v" in F, and that

vy S
w('v") > w(Dy,). For this case, we define that m,, linearly maps
L(u'v") to my,(L(D;,,)). Moreover, we define that m,,, linearly
maps L(Dj,,,) to L(u'v").

We recursively extend m, in such a way that m.(s) :=
m,(my (s)) for any e with D,, a descendant edge ¢’ with D, of

e in F, and any line segment s on a descendant edge of ¢’ in F.

Lemma 3 For an edge e with D,, ¢ € D,, and e” with ¢ €
D;, € D,, it follows that w(m.(L(e"))) < w(e’) < w(m,(L(e"))).

Proof By the definition of the shortest path in Step 3 of Detour-
edge or Extend-edge, if w(uv) > w(D,), then D, instead of uv
should have been chosen in the parent procedure. Therefore,
w(uv) < w(D,), implying that w(m,.(L(e’))) < w(e’). Similarly,
if w(e”) < w(D},), then ¢” instead of D;,

", should have been cho-

sen in the parent procedure. Therefore, w(e”) > w(D;,), implying
that w(m,~(L(e"))) = w(e’).]

Lemma 4 Suppose that uwo € Ep, for some i, and that P; is the
path connecting a vertex of T; and v that is constructed by Detour-
edge(a, u,v) in Step 3 of a-Detour. If e is a descendant edge of
¢’ € Ep, then it follows that w(e) > a - w(nmy,(L(e))).

Proof By Lemma 3, it suffices to show the lemma for the case
of e € D,. We prove the lemma by induction on the number of
recursive depths for Detour-edge(a, u, v) to output ¢’. If there is
no recursive calls, then uv = ¢’ and w(D,,)/w(u,v) > @, implying
w(e) > a - w(my,L(e)). Assume that a-Detour(a, u, v) invoke re-
cursive calls and that the lemma holds for the smaller number of
recursive calls. From this assumption, Detour-edge is recursively
called with x = a - w(u,v)/w(D,,) and some edge u'v' € D,,.
By induction hypothesis, we have w(e) > x - w(m,,(L(e))) =
(a - w(u,v)/w(D,y)) - w(m,,(L(e))) = a - w(m,,(L(e))). Thus, we
have the lemma. m]

For any outer edge o, we define S (0) = |, m.(L(0)) overall an-
cestor edges of o in F. S (o) contains line segments of a sequence
of edges from the root to the leaf o of a connected component of
F. Let e, be the last edge in the sequence that is contained in P;
for some i.

Lemma S Suppose that O is the set of edges of the path con-
necting r,r’ € R on the unbounded face, and that no other vertex
of R is contained in the path. Then, any path Z connecting r and
1’ has length at least), ,co w(m,, L(0)).

Proof S is a partition of a planar drawing of G as well as a sub-
division of edges of G. Therefore, for each o € O, there is an edge

2014 Information Processing Society of Japan

Vol.2014-AL-150 No.8
2014/11/20

z € Ex such that m.(0) N S(0) # 0. Either z is a descendant of ¢,,
or z is an ancestor of e,. If z is a descendant of ¢,, then Lemma 3
implies that w(m,,(L(0))) < w(m,(L(0))).

Suppose that O" C O be the set of edges o such that z is an
ancestor of e,. Because no vertex of R \ {r, 7’} are between r and
r’, e, must go into and out of | J,co S (0) using a part of a path P;
for some i. Since G is planar, and by the assumption that z is an
ancestor of e,, a part of Z passes outside of the path P;. Since P;
is a shortest path, the length of part of P; is at most the length of
the part of Z. In this way, we can see that for any edges e, with
0 € O, there are parts of P;s and parts of Z such that the length
of parts of P;s are at most the length of parts of Z. Therefore, we
have the lemma. o

Lemma 6 Forany o € O, it follows that

a

w(m,(L(0))) <
e€l; Ep,.L(e)NS (0)£0

w(me,(L(0)))-

a—-1

Proof By Lemma 4, for any edge e € | J; Ep, and its descendant
e’ € U, Ep, in F, it follows that w(e’) > a - w(m,(L(e’))). This
implies that if e; = e,, ..., ¢ are the sequence of edges in | J; Ep,
in the order from the leaf o to the root of a connected component
of F, it follows that w(m,,, (L(0))) > a-w(m,(L(0))). Solving the

recurrence, we have the lemma.]

Lemma 7 For any tree Z containing vertices R, ¢(T)/c(Z) <
20% /(- 1).

Proof Suppose that Oy,..., O be the set of edges of paths on
the unbounded face of G such that the ends of each O; are nodes
of R. Let Z; be the subpath of Z connecting ends of O;. Then, it
follows from that

c(T) < arz

0€0 e€lJ; Ep,.L(e)NS (0)#0
2

w(m,(L(0))) (Lemma 1)

< a,a,_ 1 ;w(meu(ll((’))) (Lemma 6)
CZ2
<o ;C(Z_;) (Lemma 5)
2
<2 .
a-1

Setting @ = 2, we have the following theorem:

Theorem 8 Algorithm 2-Detour is 8-competitive.

4. Concluding Remarks

Previously known lower bounds to be applied to outerplanar
graphs is 2 for rings. We will present a lower bound of 4 in the
future version of this report. We believe that the competitive ratio
of 8 of our algorithm can be still improved, probably, to 4.

. Vol.2014-AL-150 No.8
IPSJ SIG Technical Report 2014/11/20

References

[1] Angelopoulos, S.: On the Competitiveness of the Online Asymmetric
and Euclidean Steiner Tree Problems, WAOA 2009, pp. 1-12 (2010).

[2] Averbuch, B., Azar, Y. and Bartal, Y.: On-Line Generalized Steiner
Problem, Theoret. Comput. Sci., Vol. 324, pp. 313-324 (2004).

[3] Bartal, Y., Fiat, A. and Rabani, Y.: Competitive Algorithms for Dis-
tributed Data Management, J. Comput. Sys. Sci., Vol. 51, No. 3, pp.
341-358 (1995).

[4] Fleischner, H. J., Geller, D. P. and Harary, F.: Outerplanar Graphs and
Weak Duals, J. Indian Math. Soc., Vol. 38, pp. 215-219 (1974).

[5] Gupta, A., Newman, I., Rabinovich, Y. and Sinclair, A.: Cuts, Trees,
and ¢;-Embedding of Graphs, Combinatorica, Vol. 24, No. 2, pp. 233—
269 (2004).

[6] Imase, M. and Waxman, B. M.: Dynamic Steiner Tree Problem, STAM
J. Discrete Math., Vol. 4, No. 3, pp. 369-384 (1991).

[71 Naor,J. S., Panigrahi, D. and Singh, M.: Online Node-Weighted Steiner
Tree and Related Problems, Proc. 52nd Annual Symposium on Founda-
tions of Computer Science, pp. 210-219 (2011).

2014 Information Processing Society of Japan 4

