
網羅的な攻撃者モデルを考慮したTorブリッジ機構の強化

馮　菲 松浦　幹太

東京大学生産技術研究所
153-8505　東京都目黒区駒場４－６－１
{fengfei, kanta}@iis.u-tokyo.ac.jp

あらまし Torは世界中で広く使われている匿名通信ツールであるが、その匿名性は十分に分析さ
れていない。公開されている中継リレーをブロックすることによるアクセス制限も Torへの脅威
となりえるが、この脅威に対処するために Torはエントリーポイントとしてブリッジと呼ばれる
非公開リレーを利用することができる。しかし、現在のブリッジ機構の脆弱性はまだ十分に調査さ
れているとは言えない。本研究ではさまざまな攻撃モデルのもとでブリッジ機構の脆弱性評価を
行う。そして、現在のブリッジ機構を我々が提案する新たな二種類のブリッジ機構と比較し、Tor
のセキュリティとパフォーマンスの与える影響について論ずる。

Stronger Bridge Mechanisms of Tor Considering Exhaustive
Adversarial Models

Fei Feng Kanta Matsuura

Institute of Industrial Science, The University of Tokyo
4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, JAPAN

{fengfei, kanta}@iis.u-tokyo.ac.jp

Abstract Tor is the most popular anonymous communication tool in the world. Its anonymity,
however, has not been thoroughly evaluated. For example, it is possible for an adversary to re-
strict access to the Tor network by blocking all the publicly listed relays. In response, Tor utilizes
bridges, which are unlisted relays, as alternative entry points. However, the vulnerabilities of
the current bridge mechanism have not been thoroughly investigated yet. We first investigate
the vulnerabilities of the current bridge mechanism under different adversarial models. Then we
compare it with two different methods and discuss their effects on security and performance of
Tor.

1 Introduction

In today’s expanding online world, there is
an increasing concern about the protection of
anonymity and privacy in electronic services.
The Tor[5] network is the most popular anony-
mous communication system. It is a low-latency
anonymity, privacy and censorship resistance
network whose relays are run by volunteers
around the world. Tor is used by private cit-
izens, corporations, and governments to pro-
tect their online communications, as well as
users trying to circumvent censorship. Its se-
curity is therefore essential for the safety and
commercial concerns of its users.
While a common use of Tor is to protect

the privacy, a growing set of Tor users use it
as a tool for censorship resistance. Since the
destination of a Tor’s client is hard to control
or determine, Tor can be effective tool for ac-
cessing to sites that some regimes may wish to

block or censor. However, because the list of
all Tor relays are publicly available from direc-
tory servers, blocking access to Tor is as simple
as downloading the list and blocking connec-
tions to the tuples of IP/port it contains.
To counteract this situation, designers of Tor

introduced a new method of accessing the Tor
network: bridges[6], which are designed to help
censored users. Bridges are Tor relays that are
not listed in the main Tor directory authorities
and are alternatives for publicly listed entry
relays as entries into the Tor network. Since
there is no complete public list of bridges, even
if the ISP is filtering connections to all the
known Tor relays, they probably won’t be able
to block all the bridges.
Effective attacks to block or attack the bridge

mechanism [9, 17, 18] are also being found and
conducted in the wild. However, the vulnera-
bilities of the current bridge mechanism have
not been thoroughly investigated yet. This

Computer Security Symposium 2014
22 - 24 October 2014

－1314－

motivates us to construct stronger bridge mech-
anisms toward those attacks. We first thor-
oughly investigate the vulnerabilities of the
current design under exhaustive adversarial mod-
els. Then we compare our proposing designs
with the current design and show their effec-
tiveness through simulation regarding to secu-
rity and performance of Tor.

2 Background

2.1 Overview of Tor

The Tor network, the implementation of the
second generation of the Onion Routing, aims
to prevent users from being linked with their
communication partners; i.e. someone mon-
itoring a client should be unable to discover
which server he/she is accessing, and the server
(or someone monitoring the server) should be
unable to discover the identity of the client us-
ing Tor to access it.
The Tor network is a TCP overlay network

whose infrastructure is run entirely by volun-
teers. Tor users download and install the Tor
client software, which acts as a SOCKS proxy
interfacing their client software with the Tor
network. The client first connects to one of
the directory authorities, which monitor re-
lays’ availability and bandwidth capacity, and
then periodically generates a list of status for
these known Tor relays. From these author-
ities the client downloads the list, which is
called consensus file. The client then selects
three of these relays, and builds an encrypted
channel, which secured by a session key estab-
lished through an authenticated Diffie-Hellman
key exchange, to the first relay (called the en-
try guard). Over this encrypted channel, the
Tor client builds an encrypted channel to the
middle relay, and then via this channel, con-
nects to the third relay (called the exit relay).
In this way, the client has a connection to the
exit relay, but the exit relay is not aware of
whom the entry guard or client is; similarly
the entry guard does not know which exit re-
lay the client has selected. Figure 1 shows the
structure of the Tor network.
The client selects an exit relay, then the

guard relay, finally the middle relay. There
are additional constraints on the path, such
as avoiding using more than one relay from a
given /16 network or the same relay family.
Details are available in the Tor Path Specifi-
cation [16].

2.2 Bridges

Tor users can send email and instant messages,
surf websites, and post content online without
anyone knowing who or where they are. Con-
sequently, it is widely acknowledged as an im-

33

Entry
Guard

Exit
Relay Middle

Relay

The Tor Network

Directory
Authority

User

Consensus
File

Figure 1: The structure of the Tor network.

portant tool for freedom of expression and cen-
sorship resistance. That’s clearly a worry for
authoritarian regimes that want to control and
limit their citizens’ access to the Tor network.
As a list of Tor relays is publicly available from
directory authorities, it is trivial for an ISP to
block all connections to Tor by blocking access
to IP addresses of all Tor relays[17, 18].
To counteract this situation, designers of Tor

introduced a new method of accessing the Tor
network: bridges[6], which are designed to help
censored users. Bridges are Tor relays that are
not listed in the main Tor directory authorities
and are alternatives for publicly listed entry
guards as entries into the Tor network. Since
there is no complete public list of bridges, even
if the ISP is filtering connections to all the
known Tor relays, they probably won’t be able
to block all the bridges.
A bridge can be operated on a server or a

personal computer by a Tor user who is will-
ing to help censored users to reach the Tor
network. A standard Tor client can be easily
configured to operate as a bridge. Bridges can
be strictly unlisted (in which case information
of this bridge is spread within a group of peo-
ple by word of mouth), or their descriptors can
be distributed online by the Tor Project. The
bridge authority keeps track of valid bridges,
and the bridge database[13] distributes bridge
information through the web and e-mail, which
makes it easy for any client to find a few bridges.
On the other hand, the distributing mecha-
nism attempts to make it difficult for an at-
tacker to enumerate bridges in a short time,
which is realized by restricting the distribu-
tion of bridge descriptors to one set per 24-bit
IP address prefix in a week.
Censored users can get several bridges by

visiting the BridgeDB site[1] or send an email
to bridges@bridges.torproject.org with the line
”get bridges” in the body of the mail.

－1315－

3 Goals and Adversarial Mod-
els

3.1 Goals

We have two major goals. As suggested above,
our first goal is to investigate the current Tor
network’s and its bridge mechanism’s vulnera-
bilities to several known attacks toward bridges.
Our other major goal is to propose stronger

alternative bridge mechanisms. We investigate
whether adopting our proposing designs helps
to mitigate these known attacks. We compare
the current round-robin method with the two
methods we propose through simulation ex-
periments.

3.2 Adversarial Models

Effective attacks to block or attack the bridge
mechanism [9, 17, 18] are being found in ex-
isting works and also conducted in the wild.
Those adversaries may have different purposes
and motivations. Some of them try to enumer-
ate bridges and block the usage of Tor, while
others may want to profile or locate the bridge
users. As a result, they also conduct attacks
in different means - passively or actively. In
order to propose stronger bridge mechanism,
we first exhaustively summarize possible ad-
versarial models. Only with these adversarial
models can the vulnerabilities of the current
bridge mechanism be thoroughly investigated.
Censorship. We first consider an active

adversary with full control of the local net-
work, who is capable of monitoring, inject-
ing, replaying, shaping and dropping packets
but only within his network bounds. An ex-
ample is the Great Firewall as described by
Wilde[17]. When a Tor user within the adver-
sary’s network bounds establishes a connec-
tion to a bridge, deep packet inspection (DPI)
boxes identify the Tor protocol. Shortly after
the Tor connection is detected, active scan-
ning is initiated. The scanner pretends to be
a normal Tor user and tries to establish a Tor
connection to the suspected bridges. If it suc-
ceeds, the bridge will be blocked. The details
of how the Great Firewall blocks are described
by Winter and Lindskog[18]
Enumeration of bridges by malicious

middle relays. Next, we consider a passive
adversary who runs malicious Tor relays to dis-
cover bridges. This attack has been floating
around in the wild, and was documented by
Ling et al[9]. Normal clients use entry guards
for the first node of their paths to protect them
from long-term profiling attacks, but bridge
users use their bridge as a replacement for the
first node. As a result, if an adversary runs
a relay that doesn’t have the Guard flag and

rejects to be an exit relay, the only position it
will end up is the middle one. Then nodes that
build paths to connect to this relay are normal
relays and bridges. The adversary can easily
identify whether the node, which connected to
his malicious middle relay, is bridge or not, by
referring to the public consensus files which
contains all IP address of relays.
Malicious bridges. Bridge relays are do-

nated by volunteers who are willing to help
censored users. On the other hand, it is hard
to trust every of them, because some of them
may be operated by an attacker. In this adver-
sarial model, we consider a passive adversary
who runs malicious Tor bridges. His goal is to
do traffic observing when his malicious bridges
are used as the first node into the Tor network.
Then the adversary may perform statistical
profiling attack or fingerprinting attack[7, 11,
12] on the user. However, the concrete proce-
dures of these attacks are out of the scope of
this research. What we will investigate is the
chance that these malicious bridges are used
by innocent users.
Bridge set fingerprinting. It has been

discussed in the Tor community that the sets
of entry guards might be the fingerprint for a
user[4, 8]. When a user connects to Tor from
multiple locations where the network is moni-
tored by the same adversary (e.g. a malicious
network provider), his persistent use of the
same set of entry guards uniquely identifies the
user and shows the adversary that connections
are all coming from the same user. This could
also allow malicious exit nodes - in connection
with other attacks - to link clients across des-
tinations. This fingerprinting problem is also
related to bridge, and it is even worse because
there is guard rotation for normal Tor clients,
while there is no rotation of bridges.
To investigate how vulnerable the current

bridge design is under these adversarial mod-
els, and the chance that an adversary blocks or
compromises Tor bridge, we conduct simula-
tion experiments with publicly available data
provided by the CollecTor[2].

4 Vulnerabilities of the Cur-
rent Bridge Mechanism

4.1 Experiment Design

We have developed a Tor bridge path simu-
lator for bridge users based on information
from Tor Path Specification [16], Tor Direc-
tory Protocol [15], Tor Bridge Specification[14]
and the Tor source code, which accepts the ex-
isting bridge descriptors and bridge network
statuses as input. Unlike publicly available
historical relay descriptors, bridge descriptors

－1316－

are sanitized by the Tor project by removing
or replacing all potentially identifying infor-
mation, because making bridge data available
would defeat the purpose of making bridges
hard to enumerate for censors. For example,
the bridge identity is replaced with its SHA1
value. However, the sanitizing does not affect
our simulation experiment because we could
identify a bridge by its unique SHA value in
our simulator.
Our simulator implements only Tor’s relay

selection logic and does not simulate the actual
construction of paths, the data transmission,
or network effects such as congestion. To sim-
ulate Tor’s path selection precisely, the simula-
tor generates paths with specified constraints,
such as only using relays with the Exit flag
for the exit position, and avoiding using more
than one relay from a given /16 network. Re-
garding to the exit policies, we assume bridge
users do web browsing which mainly utilizes
port 80 and 443.
It is worth mentioning that, in our simu-

lator, clients use the measured bandwidth in
consensus files when choosing relays, while eval-
uates the performance that users experience
with bridges’ or relays’ advertised bandwidth
recorded in descriptors, which is the same way
as what the current Tor clients do. As men-
tioned in the Tor source code, when weight-
ing bridges, they enforce 20KB/s as lower and
100KB/s as upper bound of believable band-
width, because there is no way for them to
verify a bridge’s bandwidth currently.
Our simulator not only simulates paths but

also bridge users’ clients, in all of which there
are N configured bridges chosen from all the
bridge network statuses of February 2014. The
number N varies under different scenarios. In
the following experiments, we use the bridge
network status and relay consensus of the Tor
network on 28th February 2014 as input, to
simulate the bridge users and adversary on
that day.
All the historical data used in our experi-

ment are downloaded from CollecTor[2]. We
run the simulator on a 8-core 3.20GHz Intel
Core i7 machine with 23.5GB of memory on
Ubuntu 12.04 with the 3.2.0 Linux kernel.

4.2 Censorship

We first conduct the simulation of censorship
events to investigate how vulnerable the cur-
rent bridge mechanism is to censorship events.
There is an active adversary with full con-
trol of the local network within his network
bounds. When a Tor user within the adver-
sary’s network bounds establishes a connec-
tion to a bridge, deep packet inspection (DPI)
boxes identify the Tor protocol. Shortly after

the Tor connection is detected, active scan-
ning is initiated. The scanner pretends to be
a normal Tor user and tries to establish a Tor
connection to the suspected bridges. If the
connection is built, the censor can be sure it
is a bridge and thus block it.
We assume there are 200 Tor bridge users

within the adversary’s network bounds. In all
the clients, there are 4 to 12 bridges configured
(the number of bridges is chosen uniformly at
random). The adversary could block N% of
the online bridges used by the 200 users. We
run all the experiments for three rounds, and
the average values of the results are shown in
Table 1.
For not all the bridges recorded in Febru-

ary’s bridge network statuses are online on
28th February, some clients may have no ac-
cess to the Tor network even if there is no
censorship event. As shown by Table 1, there
are 17.9% clients that have no online bridges.
Then the adversary starts the active blocking
of clients’ online bridges. We assume he can
block N% of all clients’ online bridges. The
results are shown in Table 1. After 75% are
blocked, only fewer than 35% clients have ac-
cess to the Tor network. Blocking 75% may
seem like a difficult task, but it is possible if
the adversary is of the scale of the Great Fire-
wall.

Table 1: Simulation results of censorship
events.

Percentage of Percentage of
Bridges Blocked Clients with Increment

No Online Bridge

0% 17.9% 0.0%
25% 28.3% 56.7%
50% 41.2% 147.9%
75% 65.8% 256.2%

4.3 Enumeration of Bridges

Since bridges are not publicly listed, adver-
saries who want to block usage of Tor would
like to enumerate bridges. Next, we conduct
simulations of an adversary who tries to enu-
merate bridges. This passive adversary runs
malicious Tor relays to discover bridges. If
the adversary runs a relay that doesn’t have
the Guard flag and rejects to be an exit relay,
the only position it will end up is the middle
one. Thus nodes that build paths to connect
to malicious middle relays are normal relays
and bridges, because normal clients use entry
guards for the first node of their paths, while
bridge users use their bridge as a replacement
for the first node. The adversary can easily
identify whether these nodes are bridges or
not, by referring to the public consensus files
which contains all IP address of relays.

－1317－

We simulate 20,000 Tor bridge clients and 5
Tor paths for every clients. In all the clients,
there are 4 to 12 bridges configured (the num-
ber of bridges is chosen uniformly at random).
The adversary runs X malicious middle relays.
We run all the experiments for three rounds,
and the average values of the results are shown
in Table 2.
On 28th February, there are 3014 bridges

online. As shown by Table 2, when the adver-
sary controls 200 malicious relays, over 80%
unique bridges running on that day will be
enumerated. This attack is not very costly be-
cause the adversary can rent IPs on Amazon
EC2.

Table 2: Simulation results of enumeration of
bridges by malicious middle relays.

Number of Number of Percentage of
Malicious Middle Found Bridges Found Bridges
Relays

50 690 22.88%
100 1085 36.01%
150 1497 49.67%
200 2414 80.08%

4.4 Malicious Bridges

It is hard to trust every bridge, because they
are donated by volunteers, and thus some of
them may be operated by an attacker. In this
adversarial model, we consider a passive ad-
versary who runs malicious Tor bridges. His
goal is to do traffic observing when his ma-
licious bridges are used as the first node of
a Tor path. Then the adversary may per-
form statistical profiling attack or fingerprint-
ing attack[7, 11, 12] on the user.
We simulate 20,000 Tor bridge clients and 5

Tor paths for every clients. In all the clients,
there are 4 to 12 bridges configured (the num-
ber of bridges is chosen uniformly at random).
The adversary runs Y malicious bridges. If one
or more paths of the five paths is started with
a malicious bridge, the client is defined as com-
promised. The results are shown in Table 3.
This attack could also be performed by rent-
ing IPs on Amazon EC2 with comparatively
low cost.

Table 3: Simulation results of clients compro-
mised by malicious bridge.

Number of Number of Percentage of
Malicious Compromised Compromised
Bridges Clients Clients

0 0 0.00%
50 548 2.74%
100 1112 5.56%
150 1611 8.06%
200 2094 10.47%

4.5 Bridge Set Fingerprinting

It has been discussed in the Tor community
that the sets of entry guards might be the fin-
gerprint for a user[4, 8]. When a user connects
to Tor from multiple locations where the net-
work is monitored by the same adversary, his
set of entry guards uniquely identifies the user
and shows the adversary that connections are
all coming from the same user. This finger-
printing problem is also related to bridge, and
it is even worse because there is guard rota-
tion for normal Tor clients, while there is no
rotation of bridges.
We simulate 20,000 Tor bridge clients and 5

Tor paths for every clients. In all the clients,
there are 4 to 12 bridges configured (the num-
ber of bridges is chosen uniformly at random).
We run the experiments for four rounds, and
the average number of distinct bridge sets is
12,633. Thus, the number of expected users
per set is 1.58, which means every user’s guard
set is distinct with high probability.
It is obvious that the more bridges one knows,

the less likely his client has no online bridge.
On the other hand, the more bridges one knows,
the more likely the bridge set is unique. In the
following experiments, we assume every client
is configured with the same number of bridges,
to investigate the relationship between the num-
ber of bridges, the number of unique bridge
set, and the number of clients that have no
online bridge. We simulate 100,000 Tor bridge
clients for every experiment. The results are
shown in Table 4. It is clear from these results
that there is trade-off between availability and
the possibility of being fingerprinted. We con-
sider 7 is the optimal number, because when 7
bridges are configured, over 80% clients have
access to the Tor network and the number of
expected users is 2 which ensures most clients
will not have unique bridge set. However, this
is not the real case because in Tor network ev-
ery client knows different number of bridges.
What we suggest is that, if a bridge user knows
over 7 bridges, just configure 7 in the client,
and periodically change the set of bridges man-
ually.

5 Possible Countermeasures

In the previous section, we investigate the vul-
nerabilities of the current bridge mechanism
under four different adversarial models. In this
section, we propose two alternative methods
of round-robin over all bridges, and investigate
whether these methods make the bridge mech-
anism more robust toward the aforementioned
attacks compared to the current round-robin
method.

－1318－

Table 4: Simulation results of clients with different number of bridges.

Number of Percentage of
Number of Clients that Number of Clients that Number of
Bridges have no Bridge Sets can Access Expected Users

Online Bridges the Tor Network per Set
3 49416 14295 50.6% 7.00
4 39430 22371 60.6% 4.47
5 30936 31133 69.1% 3.21
6 24669 39453 75.3% 2.53
7 19486 47780 80.5% 2.09
8 15367 55263 84.6% 1.81
9 12229 61733 87.8% 1.62
10 9655 68103 90.3% 1.47
11 7683 73065 92.3% 1.37
12 5965 77888 94.0% 1.28

5.1 Alternative Methods

Currently, if ten bridges are configured, the
client round-robins over all of them. Instead
of the round-robin method, we propose two
alternative methods.

• Top one method: The first method is
to stick to the first bridge configured, and
move to the next one only when the previ-
ous one is offline. The client will return to
utilize the first one when it becomes online
again.

• Top three method: The second method
is to imitate the current entry guard mech-
anism. Instead of choosing a new guard
every time, normal Tor client (non-bridge
user) maintains a list, which is called guard
list, of several (by default, three) pre-sele
cted guards. When a path is constructed
by the Tor client, the entry relay to be
used is selected uniformly at random from
the client’s guard list. Our second pro-
posal is to imitate this mechanism. When
there are over three bridges configured,
the client randomly chooses one of the first
three bridges (the first/ first two brigdges,
if there are fewer than three) when a path
is being constructed.

5.2 Comparison

We conduct simulation experiments to com-
pare the current round-robin method with the
two alternatives under these adversarial mod-
els except the censorship model. Our propos-
als can not mitigate such active attack that
identifies Tor protocol, but researches have been
done on how to make Tor’s traffic undetectable[3,
10, 19].
First, we assume there is an adversary who

runs 100 malicious bridges and simulate 20,000
clients and 3 paths for every client respectively

to investigate how much clients he can com-
promise under three different methods. Let’s
recall that if at least one path is started with a
malicious bridge, the client is defined as com-
promised. Table 5 shows when the round-
robin method is used, clients are most likely
to be compromised. And sticking to the first
one is the safest method under this adversarial
model. It is easy to understand that sticking
to the first one can decrease the possibility of
a client exposed to malicious bridges.

Table 5: Comparison of three methods under
malicious bridge model.

Number of Percentage of
Compromised Compromised
Clients Clients

Round-robin 1019 5.10%
Top one 523 2.62%
Top three 934 4.67%

Then we change the number of malicious
bridges under three methods respectively, and
find the linear approximation of the relation
between the number of malicious bridges and
percentage of compromised clients in Figure 2.
Figure 2 shows that results are almost linear,
and they also show that under the adversar-
ial model of malicious bridges, sticking to the
first one bridge is the safest method, while the
current round-robin method is most vulnera-
ble one.
Next, we compare the three methods under

bridge set fingerprinting model. We simulate
20,000 clients and 5 paths for every client re-
spectively. The results in Table 6 show that
sticking to the first bridge can significantly
mitigate this problem, while using the top three
bridges does little help compared to the origi-
nal round-robin method.
We plot the cumulative distribution func-

tions of the size of expected anonymity set,
that is the number of expected users per bridge

－1319－

y = 0.0005x + 0.0011
R² = 0.9989

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

0 50 100 150 200 250

P
e

rc
e

n
ta

ge

Number of malicious bridges

percentage of compromise

線形 (percentage of compromise)

(a) Round-robin.

y = 0.0003x - 0.0004
R² = 0.9988

-1.00%

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

0 50 100 150 200 250

P
e

rc
e

n
ta

ge

Number of malicious bridges

percentage of compromise
線形 (percentage of compromise)

(b) Top one bridge.

y = 0.0005x - 0.0004
R² = 0.9998

-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

0 50 100 150 200 250

P
e

rc
e

n
ta

ge

Number of malicious bridges

percentage of compromise

線形 (percentage of compromise)

(c) Top three bridges.

Figure 2: Linear approximation of the relation between the number of malicious bridges and
percentage of compromised clients under three different methods.

Table 6: Comparison of three methods under
bridge set fingerprinting model.

Number of Number of Number of
Distinct Expected Clients
Bridge Users with a
Sets per Set Unique

Bridge Set

Round-robin 12655 1.58 10775
Top one 3004 6.66 86
Top three 12642 1.58 10765

set, for the three methods respectively, in or-
der to analyze the probability of being finger-
printed. As Figure 3 shows, when there are
20,000 bridge users, sticking to the first one
can ensure the median user an anonymity set
of 6 users. On the other hand, in the round-
robin or top three bridge methods, over 85%
bridge sets only has one user and over 53.8%
clients have their own unique bridge set. As
a result, this could allow malicious exit nodes
- in connection with other attacks - to link
clients across destinations, and malicious net-
work providers to link mobile clients across lo-
cations.
Then we compare the three methods under

the enumeration of bridges by malicious mid-
dle relays model. We simulate 20,000 clients
and 5 paths for every client for three rounds.
The results in Table 7 show that there is no di-
rect relationship between the number of bridges
found by the adversary and the methods used
by clients. We consider it is because now we
assume that the adversary just insert N mali-
cious non-guard non-exit relays without con-
sidering bandwidth. However, the Tor path se-
lection favors relays with high bandwidth[16].
Controlling relays that are more possible to be
chosen as middle relays perhaps can enumer-
ate more bridges, which is a possible avenue
for our future work.
Finally, we investigate whether our propos-

als will negatively affect the performance. When
a fast bridge is selected, as long as the mid-
dle and exit relays are not slow, the client can

Table 7: Comparison of three methods under
enumeration of bridges by malicious middle re-
lays model.

Number of Number of Number of
Bridges Bridges Bridges
Found Found Found
(Round 1) (Round 2) (Round 3)

Round-robin 826 848 577
Top one 692 965 1782
Top three 525 408 1423

experience fast service. As mentioned in Sec-
tion 4.1, the simulator weights bridges by en-
forcing lower and upper bound of their band-
width in the network status file, but evalu-
ates the performance by their advertised band-
width from bridge descriptor files. We use av-
erage bandwidth of all online bridges config-
ured in a client as the metric for evaluating
performance for the round-robin method, the
bandwidth of the first bridge for the top one
bridge method, and the average bandwidth of
the first three bridges for the top three method.
We simulate 20,000 clients and 5 paths for ev-
ery client respectively for three rounds. Table
8 shows that the top one method does not neg-
atively affect the performance, while top three
method causes a trivial degradation in perfor-
mance. The reason of this trivial degradation
is still unknown, and we consider it as a future
task.

Table 8: Comparison of the performance of
three methods.

Average Average Average
Bandwidth Bandwidth Bandwidth
(B/s) (B/s) (B/s)
(Round 1) (Round 2) (Round 3)

Round-robin 50747 50781 50696
Top one 50251 50903 50785
Top three 49042 49109 49289

6 Conclusions and FutureWork

In this research, we first investigate the vul-
nerabilities of the current bridge mechanism

－1320－

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6 7 8 9

C
D

F

Expected Anonymity Set

(a) Round-robin.

0
0.1
0.2
0.3

0.4

0.5
0.6
0.7
0.8

0.9
1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
D

F

Expected Anonymity Set

(b) Top one bridge.

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1 2 3 4 5 6 7 8 9

C
D

F

Expected Anonymity Set

(c) Top three bridges.

Figure 3: Distribution of anonymity set size under three different methods.

under four adversarial models through simula-
tions using our bridge path simulator. Then
we compare it with our two proposals. We
discover our proposal that sticking to the first
bridge can effectively mitigate the attacks un-
der malicious bridge model and bridge set fin-
gerprinting model. And this method does not
negatively affect the performance.
As mentioned before, in this research the

two proposals seem not helpful in mitigating
the enumeration of bridges by malicious mid-
dle relays. We regard proposing countermea-
sures toward this attack as our future work.

Acknowledgement

This work was partly supported by JSPS KAK-
ENHI Grant Number 25280045.

References

[1] BridgeDB.
https://bridges.torproject.org/

[2] CollecTor,
https://collector.torproject.org/index.html.
Accessed August 2014.

[3] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart,
and Thomas Shrimpton. 2013. Protocol misidentifica-
tion made easy with format-transforming encryption.
In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security (CCS ’13).
ACM, New York, NY, USA, 61-72.

[4] Roger Dingledine, Nicholas Hopper, George Kadi-
anakis, Nick Mathewson. One Fast Guard for Life
(or 9 months). 7th Workshop on Hot Topics in Pri-
vacy Enhancing Technologies (HotPETs 2014). Ams-
terdam, Netherlands, July 18, 2014.

[5] Roger Dingledine, Nick Mathewson, and Paul Syver-
son. 2004. Tor: the second-generation onion router.
In Proceedings of the 13th conference on USENIX Se-
curity Symposium - Volume 13 (SSYM’04), Vol. 13.
USENIX Association, Berkeley, CA, USA, 303-320.

[6] Roger Dingledine, Nick Mathewson. Design of a
blocking-resistant anonymity system. Tor Project
technical report.
https://www.torproject.org/svn/trunk/doc/
design-paper/blocking.html, Nov 2006. Accessed
August 2014.

[7] Andrew Hintz. Fingerprinting websites using traf-
fic analysis. Privacy Enhancing Technologies, Second
International Workshop, PET 2002, San Francisco,
CA, USA, April 14-15, 2002, Revised Papers 2003,
2482/2003:229-233, 2003.

[8] Implications of switching to a single guard node:
some conclusions.
https://lists.torproject.org/pipermail/
tor-dev/2014-March/006458.html.Accessed August
2014.

[9] Zhen Ling, Xinwen Fu, Wei Yu, Junzhou Luo, Ming
Yang. Extensive analysis and large-scale empirical
evaluation of Tor bridge discovery. In Proceedings of
the 31th IEEE international conference on computer
communications (INFOCOM), Orlando, FL, USA,
25—30 March 2012, pp 2381—2389

[10] Hooman Mohajeri Moghaddam, Baiyu Li, Moham-
mad Derakhshani, and Ian Goldberg. 2012. Skype-
Morph: protocol obfuscation for Tor bridges. In Pro-
ceedings of the 2012 ACM conference on Computer
and communications security (CCS ’12). ACM, New
York, NY, USA, 97-108.

[11] Andriy Panchenko, Lukas Niessen, Andreas Zinnen,
and Thomas Engel. Website fingerprinting in onion
routing based anonymization networks. In Proceed-
ings of the 10th annual ACM workshop on Privacy
in the electronic society, WPES’11, pp. 103-114, New
York, NY, USA, 2011. ACM.

[12] Yi Shi and Kanta Matsuura. 2009. Fingerprinting at-
tack on the tor anonymity system. In Proceedings of
the 11th international conference on Information and
Communications Security (ICICS’09), Si-han Qing,
Chris J. Mitchell, and Guilin Wang (Eds.). Springer-
Verlag, Berlin,Heidelberg, 425-438.

[13] Tor bridgedb.
https://gitweb.torproject.org/bridgedb.git/
tree. Accessed August 2014.

[14] Tor Bridge Specification,
https://gitweb.torproject.org/torspec.git?a=
blob_plain;hb=HEAD;f=attic/bridges-spec.txt.
Accessed August 2014

[15] Tor Directory Protocol,
https://gitweb.torproject.org/torspec.git/
blob/HEAD:/dir-spec.txt. Accessed April 2014.

[16] Tor Path Specification,
https://gitweb.torproject.org/torspec.git?a=
blob_plain;hb=HEAD;f=path-spec.txt. Accessed
August 2014.

[17] Tim Wilde. Great Firewall Tor Probing Circa 09
DEC 2011.
https://gist.github.com/da3c7a9af01d74cd7de7,
Dec 2011. Accessed August 2014.

[18] Philipp Winter, Stefan Lindskog. How the Great Fire-
wall of China is Blocking Tor. In Proceedings of 2nd
USENIX Workshop on Free and Open Communica-
tions on the Internet, FOCI ’12, Bellevue, WA, USA,
August 6, 2012.

[19] Zachary Weinberg, Jeffrey Wang, Vinod Yeg-
neswaran, Linda Briesemeister, Steven Cheung,
Frank Wang, and Dan Boneh. 2012. StegoTorus: a
camouflage proxy for the Tor anonymity system. In
Proceedings of the 2012 ACM conference on Com-
puter and communications security (CCS ’12). ACM,
New York, NY, USA, 109-120.

－1321－

