
分散型アイデンティティ管理スキームと

そのRSA及び離散対数系暗号による実現

穴田 啓晃 † 川本 淳平 ‡ 翁 健 ∗‡ 櫻井 幸一 ‡†

†公益財団法人九州先端科学技術研究所
814-0002 福岡市早良区 2-1-22 福岡 SRPセンタービル 7階

anada@isit.or.jp

‡九州大学大学院システム情報科学研究院
819-0395　福岡市西区元岡 744番地 ウェスト 2号館 712

{kawamoto,sakurai}@inf.kyushu-u.ac.jp
∗ 曁南大学計算機科学科

510632 中国広東省広州市黄埔大道西 601号

cryptjweng@gmail.com

あらまし ネットワークの参加者のアイデンティティ管理は通常，中央権限者によってなされる．本論文で

我々は，公開鍵暗号に基づく分散型のアイデンティティ管理スキームを提案する．我々は参加候補者の公開鍵

の中に任意の（限られた長さの）ストリングを埋め込む技術を用いる．埋め込むストリングとしては参加候

補者やその保証人のアイデンティティデータ，及び，参加候補者が確かにその公開鍵及び対応する秘密鍵を生

成したことを証明するためのもう一つの公開鍵を取る．我々はこの埋め込み手法を，アイデンティティリス

トを更新しブロードキャストする機構と結びつけ，分散型のアイデンティティ管理スキームを構成する．こ

の埋め込み手法は，RSA暗号における Lenstraのアルゴリズム及びその改良変種によって実現される．我々

は具体的なパラメータを書き下し，大きさを評価する．

Decentralized Identity Management Scheme

and its Realization by RSA and Discrete-Log-Based Encryption

Hiroaki Anada† Junpei Kawamoto‡ Jian Weng∗‡ Kouichi Sakurai‡†

†Institute of Systems, Information Technologies and Nanotechnologies (ISIT)
Fukuoka SRP Center Building 7F, 2-1-22, Momochihama, Sawara-ku, Fukuoka, 814-0001, JAPAN

anada@isit.or.jp

‡Faculty of Information Science and Electrical Engineering, Kyushu University
W2-712, Motooka 744, Nishi-ku, Fukuoka-city, 819-0395, JAPAN

{kawamoto,sakurai}@inf.kyushu-u.ac.jp
∗ Department of Computer Science, Jinan University

601 Huangpu W Ave, Tianhe, Guangzhou, Guangdong, 510632, CHINA
cryptjweng@gmail.com

Abstract Identity management of a network participants is usually done by a centralized authority. In

this paper, we propose a decentralized identity management scheme based on a public-key cryptosystem.

We assume that there is a technique to embed any string (of limited length) into a public key. Then,

as the string, we choose identity data of a candidate participant and his guarantors as well as another

public key which is used to prove that the candidate participant certainly generate the public key and the

corresponding secret key. Combining the embedding method with a broadcast mechanism of an updated

identity list, we can attain an identity management scheme in a decentralized manner. Such embedding

method is realized by the Lenstra’s algorithm in the RSA encryption and its modified variant. We write

down concrete parameters for the realization and evaluate the size of parameters and computational

efficiency.

Computer Security Symposium 2014
22 - 24 October 2014

－1073－

1 Introduction

A network is for participants, so trust among

them is a must requirement. Transactions are cer-

tainly available when they are based on the trust.

A kind of trust is reliability of identities of partici-

pants; we can communicate each other in the net-

work, even in broadcasting, when we can recognize

the participant with whom we are communicating.

Hence identity management has an importance and

to prevent impersonation is necessary. Such reli-

able identity management until now is mainly done

by a centralized authority, but there have arised

needs to do the management in a decentralized,

flat manner. One motivation for the decentralized

management is the Peer-to-Peer (P2P) communi-

cation. P2P communication can make transactions

available with relatively lower fee comapared to the

Server-Client (centralized) communication.

1.1 Previous Work

There was a history concerning decentralized iden-

tity management. Zimmermann, who developedd

PGP [13], is one of the pioneers of decentralized

trust management. The spirit of PGP is P2P low

cost management. Blaze et al. [2] proposed a trust

management system which they call PolicyMaker.

Concerning a digital rights management (DRM),

we can see recent years an ingredient that Sander

and Ta-Shma [10] proposed an auditable anony-

mous electronic cash system, whose security relies

on ability of an underlying network to maintain the

integrity of a public database. QIU et al. [9] pro-

posed a model of social trust between content shar-

ers of DRM-related content.

1.2 Our Contributions

According to traditional challenges [13, 2, 10, 9],

our first contribution is to propose a decentralized

identity management scheme by embedding iden-

tity strings into a public key of an encryption scheme.

Our second contribution is to provide the above

decentralized identity management scheme in a con-

crete way. By embedding another public key of an

empolyed discrete-logarithm based encryption into

a modulus of the RSA encryption. Our scheme is

secure even if the security of the empolyed discrete-

logarithm based encryption collapses.

1.3 Organization of This Paper

In Section 2, we explain required notations and

notions. In Section 3, we state our generic identity

management scheme. In Section 4, we describe our

concrete scheme in the RSA and discrete logarithm

setting. In Section 5, we conclude our work.

2 Preliminaries

The security parameter is denoted by λ. A prime

of bit length λ is denoted by p. A multiplicative

cyclic group of order p is denoted by G. The ring

of the exponent domain of G, which consists of in-

tegers from 0 to p − 1 with modulo p operation, is

denoted by Zp. When an algorithm A with input a

outputs z, we denote it as z ← A(a).

2.1 Embedding Technique into a Mod-

ulus of RSA Encryption

As a variant of the RSA encryption, In 1995, Van-

stone and Zuccherato [11] proposed an algorithm

that allows us to embed any string I into a mod-

ulus N of the RSA encryption. But it has a trade

off between the time to generate the modulus N

and the bit length of I. This is because that the

algorithm needs factorization of I as an integer. So,

when we emebed I whose bit length is a half of that

of N , the algorithm needs quite long time both in

theory and in practice.

After that, in 1998, Lenstra [7] proposed a more

efficient algorithm that allows us to embed any string

I whose bit length is a half of that ofN into a modu-

lus N of the RSA encryption. The time to generate

the modulus N is almost the same as the time to

generate the modulus N of the normal RSA. The

following algorithm is a modified version by Kita-

hara et al. [6].

Lenstra’s Algorithm (a Modified Version [6])

1. Put N ′ = I ∥ 00 · · · 0 s.t. |N ′| = λ.

－1074－

2. Choose a prime p s.t. |p| = λ/2 at

random.

3. Compute q′ = ⌈N ′/p⌉.

4. Compute the minimum positive inte-

ger t s.t. q′ + t is a prime.

5. Put q = q′ + t.

6. Compute N = pq.

7. If the higher bits of N is equal to I,

then return (p, q,N) else go back to

2.

Note here that (1) and (2) can be swapped.

2.2 The Gap-DL Problem and As-

sumption

A discrete log (DL) problem instance consists of

(g,X = gx), where the exponent x is random and

unknown to a solver. A DL problem solver is a

PPT algorithm which, given a random DL problem

instance (g,X) as an input, tries to return x.

A quadruple (g,X, Y, Z) of elements in G is called

a Diffie-Hellman (DH) tuple if (g,X, Y, Z) is writ-

ten as (g, gx, gy, gxy) for some elements x and y in

Zp0 . A CDH problem instance is a triple (g,X =

gx, Y = gy), where the exponents x and y are ran-

dom and unknown to a solver. The CDH oracle

CDH is an oracle which, queried about a CDH prob-

lem instance (g,X, Y), replies the correct answer

Z = gxy.

A DL problem solver S that is allowed to access

CDH polynomially many times is called a Gap-DL

problem solver. We define the following experi-

ment.

Exprmtgap-dlS,Grp(λ)

(p, g)← Grp(λ), x← Zp0 , X := gx

x∗ ← SCDH(g,X)

If gx
∗
= X then return Win else return Lose.

We define the Gap-DL advantage of S over Grp

as:

Advgap-dl
S,Grp(λ)

def
= Pr[Exprmtgap-dlS,Grp(λ) returns Win].

We say that the Gap-DL Assumption holds forGrp

if, for any PPT algorithm S, Advgap-dl
S,Grp(λ) is neg-

ligible in k.

Although the Gap-DL Assumption is considered

fairly strong, it is believed to hold at least for a

certain class of cyclic groups [8].

2.3 The Knowledge-of-Exponent As-

sumption

Informally, the Knowledge-of-Exponent Assump-

tion (KEA) [5, 1] says that, given a randomly cho-

sen h ∈ G as an input, a PPT algorithm H can

extend (g, h) to a DH-tuple (g, h,X,Z) only when

H knows the exponent x of X = gx. The formal

definition is described as follows.

Let Λ(λ) be any distribution. Let H and H′ be

any PPT algorithms which take input of the form

(g, h, λ). Here g is any fixed generator, h is a ran-

domly chosen element in G, and λ is a string in

{1, 0}∗ output by Λ(λ) called auxiliary input [3, 4].

We define the following experiment.

ExprmtkeaH,H′,Grp(λ)

(p, g)← Grp(λ), λ← Λ(λ), a← Zp0 , h := ga

(g, h,X,Z)← H(g, h, λ), x′ ← H′(g, h, λ)

If Xa = Z ∧ gx
′
̸= X then return Win

else return Lose.

Note that λ is independent of h in the experiment.

This independence is crucial ([3, 4]).

We define the KEA advantage of H over Grp

and H′ as:

Advkea
H,H′,Grp(λ)

def
= Pr[ExprmtkeaH,H′,Grp(λ) returns Win].

An algorithmH′ is called theKEA extractor. Advkea
H,H′,Grp(λ)

can be considered the probability that the KEA ex-

tractor H′ fails to extract the exponent x of X =

gx. We say that KEA holds forGrp if, for any PPT

algorithm H, there exists a PPT algorithm H′ such

that for any distribution Λ(λ) Advkea
H,H′,Grp(λ) is

negligible in k.

2.4 Key Encapsulation Mechanism

A key encapsulation mechanism (KEM) KEM is a

triple of PPT algorithms (KG, Enc, Dec). KG

is a key generator which returns a pair of a public

key and a matching secret key (PK, SK) on an in-

put λ. Enc is an encapsulation algorithm which,

－1075－

on an input PK, returns a pair (K,ψ), where K is

a random string and ψ is an encapsulation of K.

Dec is a decapsulation algorithm which, on an in-

put (SK, ψ), returns the decapsulation K̂ of ψ. We

require KEM to satisfy the completeness condition

that the decapsulation K̂ of a consistently gener-

ated ciphertext ψ by Enc is equal to the original

random string K with probability one. For this re-

quirement, we simply force Dec deterministic.

2.4.1 Non-adaptive Chosen Ciphertext At-

tack on One-Wayness of KEM

Suppose that an adversary A consists of two al-

gorithms A1 and A2. The following experiment is

called a non-adaptive chosen ciphertext attack on

one-wayness of a KEM (called one-way-CCA1, for

short).

Exprmtow-cca1
A,KEM (λ)

(PK, SK)← KG(λ), st ← ADEC(SK,·)
1 (PK)

(K∗, ψ∗)← Enc(PK), K̂∗ ← A2(st , ψ
∗)

If K̂∗ = K∗ then return Win else return Lose.

We define the one-way-CCA1 advantage of A over

KEM as:

Advow-cca1
A,KEM (λ)

def
=Pr[Exprmtow-cca1

A,KEM (λ) returns Win].

We say that an KEM is secure against non-adaptive

chosen ciphertext attacks (one-way-CCA1-secure,

for short) if, for any PPT algorithmA,Advow-cca1
A,KEM (λ)

is negligible in k.

The non-adaptive chosen ciphertext attack is a

stronger model than the passive attack because A1

can choose ciphertexts of his choice in its queries to

DEC.

3 Our Generic Identity Man-

agement Scheme

In this section, we describe our generic identity

management scheme. we first state an assumption

for the underlying network. Next, we explain a de-

sign principle of our identity management scheme.

Then, we describe components and procedures of

our scheme.

Assumption for Underlying Network Our

scheme utilizes a public ID-list. The public ID-list

should be examined and maintained by all pertici-

pants who are active in the network. The security

of our scheme will partially rely on the ability of an

underlying network to maintain the integrity of a

public ID-list.

3.1 Design Principle, Components and

Procedures of Our Generic Scheme

3.1.1 Initiation

We start with at least n initiators. n must be

equal to the number of guarantors for a candidate

participant.

3.1.2 Local Update of the ID-list

When a new, candidate participant comes, the

candidate participant issues a query that he wants

to join the network.

3.1.3 Generation of Candidate-Participant’s

New Key

1. Generate a secret key SK = (sk1) by

running KG(λ, 1).

2. Compute a value of the one-way func-

tion sk1 := f(sk1).

3. Put I = IDcand ∥ IDgurt1 ∥ · · · ∥
IDgurtn ∥ sk1.

4. Put pk′ = I ∥ 00 · · · 0.

5. Apply the embedding algorithm to

pk′ to obtain (pk, sk).

6. Put PKcand = pk, SKcand = sk.

3.1.4 Verification of Candidate-Participant’s

New Key

1. The i-th guarantor generates a ran-

dom challenge according to a challenge-

and-response identification protocol

and send it to the candidate-participant.

－1076－

2. Receiving the random challenge, the

candidate-participant generates a re-

sponse according to the protocol, and

send it to the i-th guarantor.

3. Receiving the response, the i-th guar-

antor verifies it and outputs accept

or reject.

4. The above protocol is executed by all

guarantors; i = 1, . . . , n.

3.1.5 Broadcast of the Updated ID-list

1. After finishing the above verification,

the candidate-participant adds his iden-

tity data IDcand on the ID-list A broad-

cast mechanism for an updated iden-

tity list starts. Integrity of the iden-

tity list is assured by the above as-

sumption.

4 Instantiation

In this section, we instantiate our generic identity

management scheme by public-key encryptions in

RSA and discrete logarithm setting. We use the

modified version [6] of the Lenstra’s algorithm [7]

as our main tool.

4.1 Components and Procedures of

Our Scheme in RSA Setting

We assume that the Elliptic Curve Discrete-Logarithm

problem for the groupG and the Integer-Factorization

problem for the RSA modulus N have almost the

same difficulty ([12]).

4.1.1 Generation of Candidate-Participant’s

New Key

1. Generate a prime p s.t. |p| = λ/2 at

random.

2. Compute P := gp in G.

3. Put I = IDcand ∥ IDgurt1 ∥ · · · ∥
IDgurtn ∥ P .

4. Put N ′ = I ∥ 00 · · · 0 s.t. |N ′| = λ.

5. Apply the modified version of the Lensra’s

algorithm to obtain (p, q,N).

6. Put PKcand = N , SKcand = q.

4.1.2 Verification of Candidate-Participant’s

New Key

1. The i-th guarantor chooses a random

exponent t from Zp0 , computes h =

P t in G, and send it to the candidate-

participant.

2. Receiving the random challenge h, the

candidate-participant computes a re-

sponse value K = hq by using his

secret key q, and send it to the i-th

guarantor.

3. Receiving the response, the i-th guar-

antor verifies by using the following

equation, and outputs accept or reject.

K
?
= gNt.

4. The above protocol is executed by all

guarantors; i = 1, . . . , n.

Correctness of the above protocol is assured by:

K = (P t)q = (P q)t = ((gp)q)t = gNt.

Note that we can view the above procedures as a

key encapsulation mechanism of El Gamal encryp-

tion by putting g := P and x := q in the algorithm

in Fig. 1.

Note also that the hardness of finding the secret

key x = q for the employed cyclic groupG is assured

by the hardness of Integer Factorization Problem

for the modulus N of the RSA encryption.

4.1.3 Broadcast of the Updated ID-list

This phase is executed generically according to

the description in Section 3.1.5.

4.2 Attack and Security on Our Scheme

in RSA Setting

Theorem 1 The key encapsulation mechanism EGKEM

is one-way-CCA1 secure based on the Gap-DL as-

sumption and KEA for Grp. More precisely, for

－1077－

Key Generation

– KG: given λ as an input;

• (p0, g)← Grp(λ), x← Zp0 , X := gx

• PK0 := (p0, g,X), SK0 := (p0, g, x), return

(PK0, SK0)

Encapsulation

– Enc: given PK0 as an input;

• a ← Zp0 ,K := Xa, h := ga, ψ := h, return

(K,ψ)

Decapsulation

– Dec: given SK0 and ψ = h as an input;

• K̂ := hx, return K̂

図 1: El Gamal KEM: EGKEM.

any PPT one-way-CCA1 adversary A = (A1,A2)

on EGKEM, there exist a PPT Gap-DL problem solver

S on Grp and a PPT algorithm H for KEA which

satisfy the following tight reduction.

Advow-cca1
A,EGKEM (λ) ⩽ Advgap-dl

S,Grp(λ) +Advkea
H,H′,Grp(λ).

Proof. An outline is stated as follows. The CDH

oracle enables the solver S to simulate the adver-

sary A’s decapsulation oracle perfectly. After that

the KEA extractor works to extract the answer of

a DL problem instance. (Note that the Gap-DL

assumption and KEA are compatible.)

Let us proceed in detail. Let A = (A1,A2) be

as in Theorem. Using A as a subroutine, we con-

struct a Gap-DL problem solver S as follows. (The

construction is illustrated in Fig.2.)

S is given p0, g,X = gx as a DL problem instance,

where x is random and unknown to S. S initializes

its inner state, sets pk = (p0, g,X) and invokes A1

on an input pk.

In the first phase, in the case that A1 queries

its decapsulation oracle DEC(sk, ·) for the answer

for ψ = h, S queries its CDH oracle CDH for the

answer for a CDH problem instance (g, h0, X) and

gets Z as a reply. Then, S replies K̂ = Z to A. In
the case that A1 returns the inner state st , S ends

the first phase and proceeds to the second phase.

In the second phase, S chooses a∗ from Zp0 at

random and computes ψ∗ = h∗ = ga
∗
. Then, S

invokes A2 on an input (st , ψ∗). In the case that

A2 returns K̂∗, S invokes the KEA extractor H′ on

(g, h∗, st). Here H′ is the KEA extractor associated

with the algorithm H below.

H(g, h∗, st) :

K̂∗ ← A2(st , h
∗), Z := K̂∗, return(g, h∗, X, Z).

Note that the auxiliary input st is independent of

h∗.

If H′ returns x∗, then S returns x∗.

It is obvious that S simulates A’s decapsulation

oracle DEC(sk, ·) perfectly with the aid of the CDH

oracle CDH.
Now we evaluate the Gap-DL advantage of S. Let

Ext denote the event that gx
∗
= X holds (that is,

H′ succeeds in extracting the exponent of gx
∗
= X).

If Ext occurs, then the solver S wins. So we have:

Pr[S wins] ⩾Pr[Ext].

Then, we do the following deformation;

Pr[S wins]

⩾Pr[A wins ∧ Ext] + Pr[¬(A wins) ∧Ext]

⩾Pr[A wins ∧ Ext]

=Pr[A wins]− Pr[A wins ∧ ¬Ext].

Here A wins if and only if K̂∗ = Z = Xa∗
holds.

Therefore;

Pr[S wins] ⩾ Pr[A wins]− Pr[Xa∗
= Z ∧ gx

∗
̸= X].

That means what we want.

Advgap-dl
S,Grp(k) ⩾ Advow-cca1

A,EGKEM(k)−Advkea
H,H′,Grp(k) □

4.3 Discussion for Recommended Pa-

rameter Size

We write down parameter values of our concrete

scheme. IFP denotes the Integer Factorization Prob-

lem and ECDLP denotes the Elliptic Curve Dis-

crete Logarithm Problem.

Table 3 shows a set of parameter values.

When we use an e-mail address for identity data

ID, 70 characters are available because in Table 3,

there 564 bits remaining for identity data. That

is, 70 byte. On condition that 1 character needs 1

byte, we can use 35 characters for identyty data of

a candidate-participant. Also we can use 35 char-

acters for identyty data of a guarantor.

－1078－

図 3: Parameter Size (bit).

Security Paramter λ 112

Equivalent Modulus Length for IFP |N | 2048

Embeddable Information Length |I| = |N |/2− log2(|N |)− 1 1012

Equivalent Order Length for ECDLP |p0| = 2 λ 224

Bit Length for Expression of a Point on a EC |P | = 2|p0| 448

Embeddable Length for Identity Data |I| − |P | 564

Given (p0, g,X) as an input;

Initial Setting

– Initialize its inner state

– pk := (p0, g,X), invoke A1 on pk

The First Phase : Answering A1’s Queries

– In the case that A1 queries DEC(sk, ·) for the

answer for ψ = h;

• Z ← CDH(g, h,X), reply K̂ := Z to A1

– In the case that A1 returns the inner state st ;

• Proceed to the Second Phase

The Second Phase : Extracting the An-

swer from A2’s Return

• a∗ ← Zq, ψ
∗ := h∗ := ga

∗

• Invoke A2 on (st , ψ∗)

– In the case that A2 returns K̂∗;

• Invoke H′ on (g, h∗, st) : x∗ ← H′(g, h∗, st)

• Return x∗

図 2: A Gap-DL Problem Solver S for the Proof of

Theorem 1.

5 Conclusions

We propose a decentralized identity management

scheme by embedding identity information into a

modulus of the public key of the RSA encryption.

Then we provide the above decentralized identity

management scheme in a concrete way by embed-

ding a public key of an empolyed discrete-logarithm

based encryption into a modulus of the RSA en-

cryption.

6 Acknowledgements

The third autuhor was partially supported by the

Invitation Programs for Foreign-based Researchers

provided by NICT.

参考文献

[1] M. Bellare and A. Palacio. The Knowledge-

of-Exponent Assumptions and 3-Round Zero-

Knowledge Protocols. In CRYPTO 2004, vol-

ume 3152 of Lecture Notes in Computer Sci-

ence, pages 273–289. Springer, 2004.

[2] M. Blaze, J. Feigenbaum, and J. Lacy. Decen-

tralized Trust Management. In In Proceedings

of the 1996 IEEE Symposium on Security and

Privacy, pages 164–173. IEEE Computer So-

ciety Press, 1996.

[3] R. Canetti and R. R. Dakdouk. Extractable

perfectly one-way functions. In ICALP 2008.

[4] R. R. Dakdouk. Theory and Application of

Extractable Functions. PhD thesis, Yale Uni-

versity, New Haven, CT, USA, 2009.

[5] I. Damg̊ard. Towards Practical Public Key

Systems Secure against Chosen Ciphertext At-

tacks. In CRYPTO ’91, volume 576 of Lec-

ture Notes in Computer Science, pages 445–

456. Springer, 1991.

[6] M. Kitahara, T. Yasuda, T. Nishide, and

K. Sakurai. Upper Bound of the Length of

Information Embedd in RSA Public Key Effi-

ciently. In AsiaPKC@AsiaCCS, pages 33–38.

ACM, 2013.

[7] A. K. Lenstra. Generating RSA Moduli with

a Predetermined Portion. In Proceedings of

－1079－

the International Conference on the Theory

and Applications of Cryptology and Informa-

tion Security: Advances in Cryptology, ASI-

ACRYPT ’98, pages 1–10, London, UK, UK,

1998. Springer-Verlag.

[8] U. M. Maurer and S. Wolf. The Relationship

between Breaking the Diffie-Hellman Protocol

and Computing Discrete Logarithms. SIAM J.

Comput., 28(5):1689–1721, May 1999.

[9] Q. QIU, Z. TANG, F. LI, and Y. YU. A Per-

sonal DRM Scheme Based on Social Trust.

Chinese Journal of Electronics, 21(4):719–724,

2012.

[10] T. Sander and A. Ta-Shma. Auditable, Anony-

mous Electronic Cash. In CRYPTO, LNCS,

pages 555–572. Springer, 1999.

[11] S. A. Vanstone and R. J. Zuccherato. Short

RSA Keys and Their Generation. J. Cryptol-

ogy, 8(2):101–114, 1995.

[12] M. Yasuda, T. Shimoyama, J. Kogure, and

T. Izu. On the Strength Comparison of the

ECDLP and the IFP. In I. Visconti and R. D.

Prisco, editors, SCN, volume 7485 of Lecture

Notes in Computer Science, pages 302–325.

Springer, 2012.

[13] P. Zimmermann. Phil zimmermann’s home

page. http://www.philzimmermann.com/EN/

background/index.html, 2014. [Online; ac-

cessed 25-Aug-2014].

－1080－

