
A scalable and lightweight code checker using document
database

Ruo Ando1,a)

Abstract:
The exploitation of software vulnerability has become sophisticated. Therefore, currently safe code must obey system
specific rules as well as conventional bugs such as buffer overrun. In this paper me propose a lightweight static code
checker using document database. Second, a series of lexical tokens are represented as key-value form. After storing
tokens, programmer write NoSQL query with domain and system specific rules for scanning vulnerability. In experi-
ment, we apply proposed method for detecting system specific vulnerability of memory manipulation. It is shown that
our approach can detect difficult-to-observe flaws with reasonable implementation cost.

1. Introduction
Software has bugs. Efficient management and prevention have

been important endeavors. Unfortunately, while software has be-
come sophisticated and diversified, system performs is ways sur-
prising its developers. As well as safety, software vulnerabilities
are an enormous cause of exploitation and Compromise in secu-
rity systems. Vulnerability has become increasingly serious prob-
lem because a computer network is only as secure as its weakest
link and often the software is weakest link.

From the dawn of computing era, assurance would be a One
of the most critical challenge in computer security research and
many research efforts have been gone into formal methods for
inspecting programs. Formal approach has been proposed for
discovering bugs in mission critical software and its absence of
security. In many cases, push down automaton is adopted for rep-
resenting security property. The model checking is applicable for
identifying violation of any state desirable for security goal by
checking Program reachability.

Despite these efforts, software exploitation is currently perva-
sive. One reason is the difficulty of coping with scalability of
today’s rapidly enlarging software systems. Current software is
becoming large by millions of code and interacting over multi-
ple languages and files. Secondly, we face unavoidable attributes
of software development environment. Some vulnerabilities such
as buffer overrun reflect poorly designed language features. Ac-
cordingly, safer languages like Java has been recommended in
this aspect. However safer programming languages itself cannot
prevent other vulnerabilities specifically including higher seman-
tics. For example, system calls generated by operating system is
forced to obey implicit rules on how they should be invoked. If

1 Network Security Institute, National Institute of Information and Com-
munications Technology 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-
8795, Japan

a) ruo@nict.go.jp

coding errors unintentionally violate such rules in the interaction
With OS, that error may introduce vulnerabilities.

Based on this fact, we propose lightweight and scalable code
checker using document database. After performi.ng analysis of
mature, widely deployed software, it is shown that our tool can
be effective means of enhancing security of critical software at
scale.

2. Background: static checking
Recently efficient software development and maintenance have

become more challenging problem. Previous researches show
that An experimental compile-time static inspection can discover
find common programing errors with reasonable cost. Simple an-
notation programming language is often adopted for designing
decisions which are expressed formally. [1] propose extended
static checking which can be performed without running the pro-
gram for finding more errors than are caught by conventional
static inspection such as type checking.

Static checking takes advantages in the cost of correcting an
error for improving software productivity. Particularly, if an er-
ror is reduced in the case that early detection is achieved. Figure
compares three checking methods based on two aspects. Cover-
age and cost.] represents the degree of error coverage in running
each tool and also represents its running cost. In the upper right
corner is comprehensive program verification Which is designed
for detecting all errors, which makes it extremely expensive. In
the lower left corner are static checking method which is known
as generic way. This kind of technique requires modest effort but
detect an only limited range of flaw, which is the Case of conven-
tional type checkers and type check like tool such as lint. Con-
cerning recent computing environment, the choice of the middle
of the diagram is promising. X axis also represents the decidabil-
ity rate based on the fact that many factors of static checking such
as array bounds errors and null dereferences is undecidableD

Computer Security Symposium 2014
22 - 24 October 2014

－783－

Fig. 1 Decidability for choosing checking methods.

3. Design Requirement
3.1 scalability and false negatives

In designing vulnerability checker, we face the difficult choice
between precision and scalability. Particularly, security system
design is forced to emphasize either false negatives or false pos-
itives. In todayfs large scale computing era, we conclude that a
false negative rate should be as close to 0 as possible.

Proposed system divides a file which is not processed before-
hand into u series of lexical tokens. Instead of using real parser,
we define a stream of token and match it to the series. Matching
code which is domain-specific representation of vulnerability is
add to document database by hand. By doing this, so non-regular
patterns can be identified. This method is effective for construct-
ing more sophisticated analyzer. Furthermore, this method is
easier to adapt a context-free parser with generated parse tree
for navigating representation of a program. Besides, traditional
Parser based analysis tool usually is not able to cope with a single
build of a program at one process. part1, because a technique for
parsing C programs with preprocessor directives into a compre-
hensive abstract syntax tree. Unfortunately, there have been no
techniques proposed for parsing C and C++ with complicated di-
rectives into a single abstract syntax tree. As design requirement,
the programmers would want to check every possible build of our
program. Meanwhile program auditor would want to inspect the
entire program without executing multiple build configurations
with sufficient coverage.

In this aspect we face the trade-off between Precision and scal-
ability. Today’s open source software has become larger which
requires code analyzer for scalability. Scalability should be taken
into account at the stare because program analysis will have trou-
ble handling large application eventually. Particularly, in the case
of analyzing large programs such as Sendmail, apache and Linux
kernel, we should aim for scalability explicitly regardless that we
will some Cost in precision. Several heuristics have been pro-

posed for trade off precision for scalability. As we give up pre-
cision, our code checker miss some implementation flaw as false
negatives and could generate many false alarms as false positives.
In spite of this, we believe this our tool is effective for coping with
large scale software. From our experience we could conclude that
relatively imprecise analysis outputs lots of false alarms, instead
it can detect the number of unsafe resource operations to be in-
spected by hand by an order of magnitude or more.

3.2 meta rules
As systems and networks have become sophisticated, rules

which system must obey are becoming complicated. While the
number of conventional exploitation caused by single buffer over-
flow has been reduced, complicated flaw using exploitation is
increasing. As a result, for securing code, programmers should
obey complicated rules such as gsanitize unvalidated input before
reference itg and greference permission settings before doing op-
eration]”. Every programs must obey this kind of meta rules. A
single flaw allows attackers to compromise the integrity of the en-
tire system. To make matters worse, almost all rules are difficult
to understand and erastically obeyed.

It is important to point out that system specific static analysis
makes it possible to discover security flaw violating meta rules
1ike ”do not user assigned pointers before validating it”. In pre-
vious research efforts, programmer work out system specific rules
which is embedded into compiler and inspect their code. Because
many security constraints are domain or even specific, hard cod-
ing a fixed set into compiler is expensive. it is preferable to cope
with meta rules in the form of high-1evel, system specific check-
ers.

Handling hign-1evel system specific checkers takes advantages
in some points. First, static inspection is able to find difficult-to-
observe errors. Usually lots of security flaw is silent which is
not often activated. Actually, they compromise system security
with a limited range of input value while not crashing machine.

－784－

Contrary, static analysis can specify what line and what file has
an error. without running code, static analysis can catch these er-
rorsDparticularly, this feature is helpful for coping with errors in
operating systems which has too many execution paths through
testing. Finally, implementation cost of static analysis is reason-
able. Usually, the extension is lightweight. Once the implementa-
tion fixed cost is paid, we have only pay little incremental manual
cost as program size grows. Other methods like formal verifica-
tion require substantial proportional to the size of code according
to the size of code. Proposed system enables programmer to Im-
plement and extend lightweight static analysis tool. we believe
that many system restrictions can be represented and exploited
using meta-level static analysis.

Thrust of proposed system are divided into two parts: Our
checking tool can discover flaws in complicated surroundings
from source code deployed in real world systems. As we discuss
in experiment, our tool can handle complex situation like “mem-
ory operation under high pressures”. Besides, our tool is able to
find system level flaw which are hard to detect with manual in-
spection. Our tool is fully corresponding t he format of document
database which results in that extensions are simple.

4. proposed method
4.1 scanning and storing

In this section we describe initial scanning and storing tokens.
Proposed system divided a non-preprocessed file into a series of
tokens. Each token is recognized as ”key”. Then, some token
are matched with ”value” assigned in the stream of tokens. In the
case of processing C and C++ programs, proposed system takes
one source file as input, dividing each into a stream of symbols.
After scanning is completed, proposed system ’inspects the resul-
tant token stream with traversing symbols with focusing keyword
such as for, if and malloc. Selecting tokens to focus on is heuris-
tic which is not Precise. We cannot assign every kind of tokens in
C Language. Without real parsing of compiler we cannot identify
all tokens that are lexically represented as symbols.

1
2 switch (charatyp[ch]) {
3 case Letter:
4 for (; charatyp[ch]==Letter || charatyp[ch]==Digit;

ch=nextCh())
5 if (p < p 16) ∗p++ = ch;
6 ∗p = ’\0’;
7
8 if(strcmp(tkn.text, "memcpy")==0)

4.2 Backend datastore
For centralized filtering rule management, proposed system

adopts data store mongoDB for storing a large number of rules
rapidly while achieving scalability.

MongoDB which stands for humongous a cross-platform doc-
ument oriented NoSQL database.By eschewing the traditional re-
lational DB structure in favor of JSON-like documents which is
called as BSON. By introducing BSON, MongoDB makes it pos-
sible to integrate data in certain types of applications faster and
easier.

According to CAP theorem, MongoDB gives up consistency
for availability and partition tolerance. CAP theorem states that

a distributed system cannot satisfy these three guarantees at the
same time. Consistency means that all nodes see the same data
at the same time. Availability means that a guarantee that ev-
ery request receives a response about whether it was successful
or failed. Partition tolerance means that the system continues to
operate despite arbitrary message loss or failure of part of the
system.

A document-oriented database is a computer program designed
for storing, retrieving, and managing document-oriented infor-
mation, also known as semi-structured data. Document-oriented
databases are one of the main categories of NoSQL databases
and the popularity of the term ”document-oriented database” (or
”document store”) has grown[1] with the use of the term NoSQL
itself. In contrast to relational databases and their notions of ”Re-
lations” (or ”Tables”), these systems are designed around an ab-
stract notion of a ”Document”.

Listing 1
key-
value.

1 void DBop realloc(char ∗line, char ∗functionName, char ∗
functionLine, char ∗filename)

2 {
3 mongoc client t ∗client;
4 mongoc collection t ∗collection;
5 mongoc cursor t ∗cursor;
6 bson error t error;
7 const bson t ∗doc;
8 const char ∗uristr = "mongodb://127.0.0.1/";
9 const char ∗collection name = "realloc";

10 bson t query;
11 bson t query double;
12 bson t b;
13 char ∗str;
14
15 mongoc init ();
16
17 client = mongoc client new (uristr);
18 if (!client) {
19 fprintf (stderr, "Failed␣to␣parse␣URI.\n");
20 }
21
22 bson init (&query);
23
24 bson append utf8 (&query, "located", −1, line, −1);
25 bson append utf8 (&query, "functionName", −1,

functionName, −1);
26 bson append utf8 (&query, "functionLine", −1,

functionLine, −1);
27 bson append utf8 (&query, "filename", −1, filename,

−1);
28
29 collection = mongoc client get collection (client, "cci",

collection name);
30
31 mongoc collection insert (collection,
32 MONGOC QUERY NONE,
33 &query,
34 NULL,
35 NULL);
36 }

4.3 data representation
In detecting vulnerabilities, proposed system reads from docu-

ment database for key-value representation of focusing structures
and operations. Document database keeps the entire contents for
the lifetime of analysis tool. Flaw can be added to the database,
removed and updated.

Document database of proposed system currently contains two
major open source tree: Xen and Linux. Operations to focus are
mainly memory manipulation. Basic structure of loop and branch

－785－

account for many items. For each all, proposed system the fol-
lowing information.
• token name.
• location. line number and function name
• range. function involved.

Listing 2
Mem-
ory

1
2 { "_id" : ObjectId("53d291fe40c2acf65bbbf9f7"), "

located" : "145", "functionName" : "
xc_vcpu_setaffinity", "functionLine" : "116", "
filename" : "xc_domain.c" }

Listing 3
Loop

1
2 { "_id" : ObjectId("53d28a5a40c2acf65bbbf9a9"), "

start_line" : "209", "end_line" : "250", "
functionName" : "xc_domain_getinfo", "
functionLine" : "197", "filename" : "xc_domain.
c" }

3 { "_id" : ObjectId("53d28ab940c2acf65bbbf9b1"), "
start_line" : "212", "end_line" : "253", "
functionName" : "xc_domain_getinfo", "
functionLine" : "200", "filename" : "xc_domain.
c" }

Unfortunately, the document database has several limitations.
For example modified code about how to mitigate the problem is
desirable.
• detailed decriptions of guessed vuluerability
• the recommendations should be added.
• several additional fields would be preferable such as

callchain between variables.
Currently interface of our database has command line interface

of python. The programmer is able to write routines for which
proposed system should check specifically.

5. experiment
5.1 realloc vulnerability

Use-after-free vulnerability in the libxl list cpupool func-
tion in the libxl toolstack library in Xen 4.2.x and 4.3.x,
when running ”under memory pressure,” returns the original
pointer when the realloc function fails, which allows local
users to cause a denial of service (heap corruption and crash)
and possibly execute arbitrary code via unspecified vectors.
http://www.cvedetails.com/cve/CVE-2013-4371/

The function is located at:
global -t libxl_list_cpupool

libxl_list_cpupool tools/libxl/libxl.c 388

at line 402, Xen uses realloc for reallocating the memory. Note
that the address of libxl cpupoolinfo is already assigned outside
of this routine. Under high pressure, realloc can not extend the
memory from the original pointer which is already obtained. in
this case, realloc newly yielding the address which remaining the
data to be written.

Listing 4
Re-
al-
loc

1

2 402 tmp = realloc(ptr, (i + 1) ∗ sizeof(libxl cpupoolinfo));
3
4 388libxl cpupoolinfo ∗ libxl list cpupool(libxl ctx ∗ctx, int ∗

nb pool)
5 389{
6 397 poolid = 0;
7 398 for (i = 0;; i++) {
8 399 info = xc cpupool getinfo(ctx−>xch, poolid);
9 400 if (info == NULL)

10 401 break;
11 402 tmp = realloc(ptr, (i + 1) ∗ sizeof(libxl cpupoolinfo));
12 403 if (!tmp) {
13 404 LIBXL LOG ERRNO(ctx, LIBXL LOG ERROR, "

allocating␣cpupool␣info");
14 405 free(ptr);
15 406 xc cpupool infofree(ctx−>xch, info);
16 407 return NULL;
17 408 }
18 409 ptr = tmp;
19 410 ptr[i].poolid = info−>cpupool id;
20 411 ptr[i].sched id = info−>sched id;
21 412 ptr[i].n dom = info−>n dom;
22 413 if (libxl cpumap alloc(ctx, &ptr[i].cpumap)) {
23 414 xc cpupool infofree(ctx−>xch, info);
24 415 break;
25 416 }
26 417 memcpy(ptr[i].cpumap.map, info−>cpumap, ptr[i].

cpumap.size);
27 418 poolid = info−>cpupool id + 1;
28 419 xc cpupool infofree(ctx−>xch, info);
29 420 }

The realloc() function shall change the size of the memory ob-
ject pointed to by ptr to the size specified by size. The contents
of the object shall remain unchanged up to the lesser of the new
and old sizes.

after failing realloc, pointer is freed and
xc cpupool infofree(ctx-¿xch, info) is invoked. it seem that
the code is already pathed, though.

The realloc funcition copes with heap and is usually used for
increasing the size of a block of allocated memory. Realloc often
needs copying contents of the old memory block into a new and
larger block. Realloc leaves the data of the original block input
but inaccessible to the process, preventing the program from be-
ing able to scrub sensitive data from memory. If an attacker is
able to later examine the contents of a memory dump, the sensi-
tive data could be exposed.

5.2 results
Listing6 shows brief output of detecting heavy memory manip-

ulation. in this result, realloc is located at line 402. The realloc
invocation is located at function which starts at line 388. Second
item represents information of forloop written in libxl.c. Iteration
starts at 388 and ends at 420.

Listing 5
Main
loop

1
2 { "_id" : ObjectId("53f9ec4764e21cef244d69fb"), "

located" : "402", "functionName" : "
libxl_list_cpupool", "functionLine" : "388", "
filename" : "libxl.c" }

3
4 { "_id" : ObjectId("53f9ec9464e21cef244d6a0e"), "

start_line" : "398", "end_line" : "420", "
functionName" : "libxl_list_cpupool", "
functionLine" : "388", "filename" : "libxl.c" }

6. Related Work
A number of research efforts have been proposed on detecting

－786－

Software vulnerabilities and configuration flaws. Integer range
analysis has been proposed for identifying buffer overruns [1]D
They have developed a tool for static detection of buffer overflow
in C programs. It is shown that their tool is effective for dis-
cover both known and unknown buffer overflow vulnerabilities in
sendmail. Integer range analysis problem is a formulation of the
problem for testing C strings as abstract type accessed through
library functions and modeling pointers. Their system can handle
constraints which is similar to Lint[2] for operations involving
strings.

Three key analysis techniques of context sensitive, flow sen-
sitive and interprocedual data flow are adopted. Kored et al for
computing access rights requirement in Java. This method al-
lows optimizations to keep the analysis tractable[3]. For inspect-
ing properties of C programs, CQAUL[4] is proposed with type
based analysis. authorization of hook placement of Linux secu-
rity Model Framework is proposed in[5].

It has been used to detect format string vulnerabilities [6]
and to verify authorization hook placement in the Linux secu-
rity Model Framework. which are examples of the development
of sound analysis for verification of particular security properties.

Unix grep is simple but frequently used for finding potentially
unsafe library function calls. For finding some Program flaws
by lexical analysis, ITS4[7] points out some limitations of us-
ing grep.ITS4 is proposed for challenging this problem with lex-
ical analysis tool which finds a security problems using a poten-
tially risky conflicts. Adopted lexical analysis are fast and simple.
However, its effectiveness is limited int he point that ITS4 does
not take into account the syntax or semantics of the program. For
a deeper inspection, more precise checking is necessary.

Metal[8] is early research effort for checking rule violation in
order to write system-specific compiler extensions. Metal is ba-
sically designed for programmer/security analyst to cope With
specify annotations on the target program.

SLAM [9] has been milestone project which leverage soft-
ware model checking for verification of temporal safe proper-
ties, SLAM show the direction of formal verification. However.
SLAM is not supporting analysis of large programs,

MOPS[10] is a model checking based tool or inspecting secu-
rity critical applications. If a security property is defined, Mops
detects the violation of the property. For example, Mops can
check the violations of folk rules for writing secure programs es-
pecially for setuid programs. MOPS provides the ability to output
at one error trace for each error. By doing this, the usability is im-
proved by reducing the number of error trace to be reviewed

Ann Despite important technical differences, they believe these
diverse approaches to software model checking share significant
common ground, and we expect that much of our implementa-
tion experience would transfer over other tools annotations and
libraries. Usually, constraints are not generated from annotations.
Constraints are generated for standard library functions which is
embedded. Flow incentive analysis is adapted to cope with the
constraints. Flow sensitive analysis which can be scaled for han-
dling real programs requires the localization provided by annota-
tions. In general, flow incentive analysis is not accurate enough
to enable special handling of loop or if statements.

Another few tools have been introduced to array bound vulner-
ability in C language. [11] propose an extended static checking
adopts an automatic theorem prover to find array index bounds er-
ror. Another extended static checking leverages information pro-
vided by annotations to assist checking.

These diverse methods for vulnerability checking provides sig-
nificant common ground. We expect that our implementation ex-
perience could transfer over other methods.

7. Conclusions
The exploitation of software vulnerability has become sophis-

ticated. Therefore, safe code must obey system specific rules as
well as conventional bugs such as buffer overrun. In this paper me
propose a lightweight static code checker using NoSQL. First,
proposed system divides program code into tokens. Second, a
series of lexical tokens are represented as key-value form. After
storing tokens, programmer write NoSQL query with domain and
system specific rules for scanning vulnerability. in experiment,
we apply proposed method for detecting system specific vulnera-
bility of memory manipulation. It is shown that our approach can
detect difficult-to-observe flaws with reasonable implementation
cost.

References
[1] David Wagner, Jeffrey S. Foster, Eric A. Brewer, Alexander Aiken: A

First Step Towards Automated Detection of Buffer Overrun Vulnera-
bilities. NDSS 2000

[2] Stephen Johnson. Lint, a C program checker. Computer Science Tech-
nical Report 65, Bell Laboratories, December 1977.

[3] L. Koved, M. Pistoia, and A. Kershenbaum. Access rights analysis for
Java. In Proceedings of the 17th Annual ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications, 2002.

[4] J. Foster, M. FNahndrich, and A. Aiken. A theory of type quali?ers.
In ACM SIGPLAN Conference on Program- ming Language Design
and Implementation (PLDIf99), May 1999.

[5] Antony Edwards, Trent R. Jaeger, Xiaolan Zhang, Verifying Autho-
rization Hook Placement for the Linux Security Modules Framework,
Proceedings of the 9th ACM Conference on Computer and Communi-
cations Security. , ACM. , 225-34 in 2002

[6] Detecting Format String Vulnerabilities with Type Qualifiers. U
Shankar, K Talwar, JS Foster, D Wagner USENIX Security Sympo-
sium, 201-220, 423, 2001

[7] John Viega Bloch, ITS4: a static vulnerability scanner for C and C++
code, Computer Security Applications, 2000. ACSAC ’00. 16th An-
nual Conference

[8] K. Ashcraft and D. Engler. Using programmer-written compiler ex-
tensions to catch security holes. In Proceed- ings of IEEE Security
and Privacy 2002, 2002

[9] T. Ball and S. K. Rajamani. The SLAM project: Debug- ging system
software via static analysis. In POPL f02: Proceedings of the ACM
SIGPLAN-SIGACT Conference on Principles of Programming Lan-
guages, 2002.

[10] H. Chen and D. Wagner. MOPS: an infrastructure for ex- amining se-
curity properties of software. In Proceedings of the 9th ACM Confer-
ence on Computer and Communica- tions Security (CCS), Washing-
ton, DC, 2002

[11] Flanagan, Leino, Lillibridge, Nelson, Saxe, State, Extended Static
Checking for Java, PLDI 02

[12] T. Ball, M. Naik, and S. Rajamani. From symptom to cause: Localiz-
ing errors in counterexample traces. In POPL f03: Proceedings of the
ACM SIGPLAN-SIGACT Conference on Principles of Programming
Languages, 2003.

[13] H. Chen, D. Wagner, and D. Dean. Setuid demysti?ed. In Proceed-
ings of the Eleventh Usenix Security Symposium, San Francisco, CA,
2002.

[14] M. Das, S. Lerner, and M. Seigle. Esp: Path-sensitive pro- gram
veri?cation in polynomial time. In PLDI f02: Pro- ceedings of the
ACM SIGPLAN 2002 Conference on Pro- gramming Language De-
sign and Implementation, Berlin, Germany, June 2002.

[15] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules
－787－

using system-speci?c, programmer-written compiler extensions. In
OSDI, 2000.

[16] D. Engler and M. Musuvathi. Static analysis versus soft- ware model
checking for bug ?nding. In 5th Intl. Confer- ence Veri?cation, Model
Checking and Abstract Interpre- tation (VMCAI f04), 2004.

[17] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software
veri?cation with BLAST. In Proceedings of the 10th SPINWorkshop
on Model Checking Software, 2003.

－788－

