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あらまし 有限体上の連立二次方程式の求解問題（MQ問題）は多変数公開鍵暗号の安全性の根拠
となっている．XL（eXtended Linearization）アルゴリズムはMQ問題を解決するためのアルゴ
リズムのひとつであり，MQ問題の解決困難性を評価する重要な指標として考えられている．本
研究では，GPU上を用いたXL-Wiedemannアルゴリズムの実装を示す．我々の実装ではGF(2)

上の 37変数 74方程式のMQ問題を 36,972秒，GF(3)上の 24変数 48方程式のMQ問題を 933

秒，GF(5)上の 21変数 42方程式のMQを 347秒で解決可能である．
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Abstract The security of multivariate public-key system is based on the problem of solving

multivariate quadratic equation systems over finite fields (MQ problem). The XL (eXtended

Linearization) is a aolving algorithm of MQ problem, and its running time is an important index

of the complexity of MQ problem. In this work, we provide parallelized XL-Wiedeman algorithm

on Graphics Processing Units (GPU). Our implementations solve MQ of 37 unknowns and 74

equations over GF(2) in 36,972 seconds, of 24 unknowns and 48 equations over GF(3) in 933

seconds, and of 21 unknowns and 42 equations over GF(5) in 347 seconds.
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1 Introduction

The problem of finding roots of non-linear

multivariate polynomial systems over finite fields

is a core of the security for Multivariate public-

key cryptography (MPKC). Some MPKCs (e.g.

Unbalanced Oil and Vinegar scheme [8], Hid-

den Field Equations [10], QUAD stream ci-

pher [5]) use the quadratic case of such prob-

lems (called MQ). Therefore, evaluating the

complexity of MQ is important for these MP-

KCs.

There are two known algorithms for solving

the MQ problem. One is the Gröbner basis

method and the other is the eXtended Lin-

earization (XL) algorithm. Both algorithms

generate new equations from original systems.

Although, XL is proved that is a redundant

variant of a Gröbner basis algorithm F4[3], it

has advantages of memory size in practics[12].

The heaviest part of XL is the solving step

of linearized systems. The Wiedemann algo-

rithm solves N × N non-singular matrix sys-

tems, which row sparsity is k, in O(kN2) mul-

tiplications and additions. N is decided by the

degree of regularity for the MQ.

1.1 Related works

There are several implementations of the XL-

Wiedemann algorithm. Yang et al. evaluate

the solving time of MQ instances (6-15 un-

knowns) by the C++ version[12]. Moreover,

they show that the expected time of the MQ

instance of 20 unknowns in 40 equations over

GF(28) is in 245 cycles. Cheng et al. imple-

ment on a NUMA machine and a cluster of

PCs[6]. As a result, they solve MQ of 36 un-

knowns and 36 equations over GF(2) in 46,944

seconds, of 32 unknowns and 64 equations over

GF(24) in 244,338 seconds and of 29 unknowns

and 58 equations over GF(31) in 12,713 sec-

onds.

1.2 Challenging issue

The Graphics Processing Units (GPU) im-

plementations: some steps of the XL-Wiedemann

algorithm can be parallelized. Therefore, we

can consider that accelerating by GPU im-

plementations. However, GPUs have different

limitations from CPU implementations. Hence,

we should consider how implement the XL-

Wiedemann algorithm.

1.3 Our contibution

We provide GPU implementations of the XL-

Wiedemann algorithm. We parallelized prod-

ucts of a sparse matrix and a dense vector

on GPU. Moreover, we provide using the cuS-

PARSE library version (with floating point val-

ues) of the XL-Wiedemann algorithm. Finally,

we show the experimental result of solving MQ

instances over GF(2), GF(3) and GF(5). Our

implementations solve MQ of 37 unknowns and

74 equations over GF(2) in 36,972 seconds, of

24 unknowns and 48 equations over GF(3) in

933 seconds, and of 21 unknowns and 42 equa-

tions over GF(5) in 347 seconds.

2 The MQ problem

The security of MPKC is based on the com-

plexity of solving a system of multivariate non-

linear equations over finite fields. The MQ

problem is a quadratic case of this problem.

MQ is known to be NR-complete [4].

Let q = pk, where p is a prime, and x =

{x1, . . . , xn} (∀i, xi ∈ GF(q)). Generally, mul-

tivariate quadratic polynomial equations of n

unknowns over GF)(q) are described by the

following:

f(x) =
∑

1≤i≤j≤n

αi,jxixj +
∑

1≤i≤n

βixi + γ = 0,

(1)
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where ∀i, j, αi,j , βi, γ ∈ GF(q). The MQ prob-

lem consists solving quadratic polynomial equa-

tions given by y = {f1(x), . . . , fm(x)}.

3 The XL algorithm

The original XL algorithm was proposed by

Courtois in 2000[7]. The idea of XL is based

on the linearization technique. Linearization

is subtitution new unknowns non-linear terms

(e.g. x1x2 = y1,2). If the number of equa-

tions is greater than the number of variables,

it solves the system by algebraic methods (e.g.

the Gaussian elimination). If not, it generates

new equations from the original ones. The XL

algorithm is described in Algorithm 1. The

degree of regularity D is the minimal degree,

which the number of linearly independent equa-

tions exceeds the number of unknowns in lin-

earized system.

Algorithm 1 The XL algorithm[7]

Input: m quadratic polynomial equations

F = {f1, . . . , fm}, m-th vector y = F (x),

and the degree of regularity D.

Output: the n-th unknown vector x =

{x1, . . . , xn}.
1: Multiply: Generate all the product of

polynomial equations and products of un-

knowns
∏D−2

j=1 xij .

2: Linearize: Consider each monomial in the

xi of degree ≤ D as a new unknown and

perform an elimination algorithm on the

equations obtained in 1 and derive univari-

ate equations.

3: Solve: Solve univariate equations obtained

in 2 over GF(q).

4: Repeat: Simplify the equations and repeat

the process to find the values of other un-

knowns.

The XL algorithm generates sparse equa-

tions in the multiplication step. The num-

ber of non-zero terms of an equation is only

(
n+2
2

)
(of

(
n+D
D

)
terms), since generated equa-

tions are just producted of original equations

and monomials. However, the Gaussian elimi-

nation is not suited to solve systems of sparse

linear equations. it is quantitative for the size

of a matrix. The XL-Wiedemann algorithm[9]

improved this disadvantage of the original XL

by replacing the Gaussian elimination with the

Wiedemann algorithm[11], which is suited to

a system of sparse linear equations.

3.1 The Wiedemann algorithm

The Wiedemann algorithm[11] is a solving

method for a system of linear sparse equa-

tions over finite fields. Let A is an N × N

non-singular matrix over GF(q). The Wiede-

mann algorithm finds a n-th non-zero vector

x, where y = Ax. The block Wiedemann al-

gorithm is described in Algorithm 2.

Algorithm 2 The Wiedemann algorithm[11]

Input: N ×N non-singular matrix A and the

N -th vector b, where Ax = b.

Output: the N -th unknown vector x.

1: Set b0 = b, k = 0. y0 = 0 and d0 = 0.

2: Compute the matrix sequence si =

uk+1A
ibk for 0 ≤ i ≤ 2(N − d), with a

random N -th vector uk+1.

3: Set f(λ) to the minimum polynomial of

the sequence of si with the Berlekamp-

Massey algorithm.

4: Set yk+1 = yk+f−(A)bk, where f
−(λ) :=

f(λ)−f(0)
λ , bk+1 = b0 + Ayk+1 and dk+1 =

dk + deg f(λ).

5: If bk+1 = 0, then the solution is x =y
k

6: Set k = k + 1 and go to step 2.

3.2 Sparse matrix forms

We assume that D is the degree of regu-

larity for the XL algorithm. Then, XL con-

structs
(
n+D
D

)
×

(
n+D
D

)
linearized matrix from
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MQ instances of n unknowns and m equa-

tions over GF(q). However, quadratic polyno-

mial equations of n unkowns have only
(
n+2
2

)
terms. Therefore, we can reduce computations

of matrix-vector product and the memory size

of matrix by using sparse matrix form.

Let N be the degree of row and column in

a matrix(i.e. N ×N matrix), and numNZ be

the number of non-zero elements in the matrix.

Sparse matrix forms have value, row-index and

column-index data of non-zero elements in a

matrix. There are some sparse matrix foratss

as the following[1]:

The COO (coordinate) format is the most ba-

sic. It holds simplly value, row-index and column-

index data of non-zero elements in the matrix.

Therefore, it requires 3numNZ for the emory

space.

The CSR (compressed storage row) assumes

that the data vector is ordered by the row-

index. It differs only row-index from the COO

formats, it holds the head number of non-zero

terms in each row-vector of the matrix instead

of row-index data. The, it requires 2numNZ+

N .

The ELL (Ellpack-Itpack) format uses two dense

N × maxNZ matrices, where maxNZ is the

maximal number of non-zero terms in a row-

vector. One matrix shows the value of non-

zero matrix, and the other shows the column-

index. Figure 1 shows the example of each

foramt.

4 CUDA API

CUDA is a development environment for GPU,

based on C language and provided by NVIDIA.

Proprietary tools for using GPU have existed

before CUDA was proposed. However, such

tools as OpenGL and DirectX need to out-

put computer graphics while processing work.

Therefore, these tools are not efficient. CUDA

is efficient, because CUDA uses computational

core of GPU directly.

In CUDA, hosts correspond to computers,

and devices correspond to graphic cards. CUDA

works by making the host control the device.

Kernel is a function the host used to control

the device. Because only one kernel can work

at a time, a program requires parallelizing pro-

cesses in a kernel. A kernel handles some blocks

in parallel. A block also handles some threads

in parallel. Therefore a kernel can handle many

threads simultaneously.

4.1 cuSPARSE library

NVIDIA provides several libraries for lin-

ear algebra. For example, the cuBLAS library

provides functions of the Basic Linear Alge-

bra Subprograms (BLAS) library. BLAS class-

fies three levels of functions. Level 1 functions

gives operations of vectors and vectors, level 2

acheives operations vectors and matrices, and

level 3 allows matrix and matrix operations.

Actually, the cuSPARSE library is the sparse

matrix version of the cuBLAS library. There-

fore, cuSPARSE also provides three level func-

tons.

5 The XL-Wiedemann algorithm

on GPU

5.1 Degree of regurarity over small

fields

The heviest point of the XL-Wiedeman algo-

rithm is solving N×N matrix systems as a lin-

ear algebra. In XL, N is decided by the degree

of regularity D as N =
(
N+D
D

)
. The dgeree

of regularity is the minimal degree, where the

number of linearly independent equations ex-

ceeds the number of linearized unknowns. We

can figure the number of linearized unknowns

N for the degree d asN =
(
N+d
d

)
easily. Rønjon

and Raddum gives that the upperbound for
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Figure 1: Image of each sparse matrix formats.

Figure 2: The deree of regularity for m = 2n

cases, under n ≤ 64.

the number of linearly independent equations

I is decided by the following formula:

I =

Dm
De∑
i=0

(−1)i
(
m+ i

i+ 1

)Dm−i·De∑
j=0

(
n

j

)
. (2)

Then, Dm is the maximal degree of monomi-

als multplying equations, and De is the degree

of the original equations system. For the MQ

problem, Dm = D − 2 and De = 2. There-

fore, we can find the minimal degree D, where

I ≥ N(=
(
N+D
D

)
) by Formula (2). Figure 2

shows degrees of regularity for MQ of n un-

knowns and 2n equations over GF(2), GF(3),

GF(5) and other prime fields under n ≤ 64.

Acturally, the cases of GF(5) and other prime

fields are similar. textGF (2) and textGF (3)

differ from other fields, because we consider re-

ductions by field equation αq = α (α ∈ GF(q)).

5.2 Choosing equations

By the definition of the degree of regular-

ity, I ≥ N . Then, we get an I × N matrix

by the extend step of the XL algorithm. For

the Wiedemann algorthm, we should reduce

to N from I. The simplest way is removing

equations by random choosing.

5.3 The Wiedemann algorithm

Mainly, the Wiedemann algorithm is seper-

ated to three steps. The first step is gener-

ating the sequence {(u, Aib)}2Ni=0 for a N ×
N matrix A, a vector b, where Ax = b and

random vector u. The second step is find-

ing the minimal polynomial of the generated

sequence f(λ) by the Berlekamp-Massey al-

gorithm. The final step is compute f−(A)b,

where f−(λ) = f(λ)−f(0)
λ . In this work, we

only implement the first step and the final step

on GPU. Because, the Berlekamp-Massey al-

gorithm is very sequencial (it seems no par-

allelizable) and has many conditional branchs.

Since, both of the sequencial algorithm and the

conditional branch are not suitable for GPU,

we implement the second step on CPU.

5.4 Generating sequence {(u, Aib)}2Ni=0

This step requires products the sparse ma-

trix A and the dense vector Ai−1b, and dot

products (u, Aib). However, we can choose the

random vector u as u = {1, 0, . . . , 0}. There-

fore, dot products can be computed by looking

up the first element of the vector Aib. Hence,

we should consider only producs of the sparse

matrix A and the dense vector Ai−1b
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Products of the sparse matrix A and the

dense vector Ai−1b has two steps. The first

one is multiplications of non-zero elements in

the matrix and elements in the vector. The

other is summations of multiplication result

for each row.

We choose the ELL format for sparse matri-

ces. One of advantages of this format is every

column width is same in a matrix and multi-

plication result holds such width. In CUDA

kernels (GPU functions), the column width

can correspond with the number of threads of

the kernel and the row height corresponds the

number of blocks. Usually, each blocks has the

same number of threads. Therefore, the ELL

format is suited to CUDA kernels.

In summations of multiplication result, we

use the parallel reduction technique [2]. This

technique computes summations of n terms in

log n steps.

5.5 Computing f−(A)b

Since f−(A)b =
∑d

i=1 ciA
i−1b, where d is

the degree of f(λ), this step is summations of

ciA
i−1b. Then, Aib is similar to the first step

of the Wiedemann algorithm. Hence, there is

two strategies forAib. One is storing the result

of Aib on GPU. This strategy can reduce re-

computations of Aib. However, it needs about

N2 memory spaces for Aib, where 0 ≤ i ≤ N

(since d ≤ N). Therefore, this strategy can be

used only small matrix cases.

The other is recomputing Aib. Although,

it requires more d products of Aib, it needs

memory space only Ai−1b (last vector of Aib).

Terefore, this strategy is suitable for large ma-

trix cases.

5.6 cuSPARSE version

The cuSPARSE library provides functions of

products a sparse matrix and a dense vector.

Therefore, using cuSPARSE is another choice

for products of A and Ai−1b. There are two

important points for implementations. One

is the function form. The cuSPARSE library

only provides y ← αAx + βy (A: matrix, x,

y: vector and α, β: scalar) form functions for

the CSR format. Then, for the first step, we

set β = 0. Moreover, in the cuSPARSE ver-

sion, we should use the CSR format for sparse

matrices.

The other is the type of variables. The cuS-

PARSE library suportes only floating point

values (does not support integer values). It

means that the cuSPARSE library does not

directly supporte any field operations. Then,

we should coordinate cuSPARSE functions as

field operations by additional operations (e.g.

modular operations).

6 Experimentation

We implement the XL-Wiedemann algorithm

on GPU. Our implementations are two types,

integer version and the cuSPARSE (floating

point) version. We solve the largest case of

D = 4, 5, over GF(2), GF(3) and GF(5) by

both XL-Wiedemann implementations. Ta-

ble 1 shows the detail of each MQ construc-

tion.

Table 2 shows the experimental result, and

Table 3 shows the profile of the Wiedemann

algorithm. The cuSPARSE library seems to

be better choice for larger case. In our ex-

perimentations, the Berlekamp-Massey algo-

rithm is heavy for the XL-Wiedemann algo-

rithm. However, it is not problem, because we

can choose faster libraries on CPU like MAGMA.

7 Conclusion

We provide GPU implementations of the XL-

Wiedemann algorithm. Also, we show the two
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Table 1: Constructions of MQ instances.

Field GF(q) GF(2) GF(3) GF(5)

Degree of regularity D 4 5 4 5 4 5

Unknowns n 24 37 15 24 13 21

Equations m 48 74 30 48 26 42

Matrix

Linearized terms 12,950 510,415 3,635 110,954 2,379 65,758

Nonzero terms 301 704 136 325 105 253

Table 2: Result of XL-Wiedemann on GPU.
Field GF(q) GF(2) GF(3) GF(5)

Degree of regularity D 4 5 4 5 4 5

Unknowns n 24 37 15 24 13 21

Equations m 48 74 30 48 26 42

Solving time (sec) 14.7358 83,782.11 0.5847 2,089.30 0.4415 601.124

Integer Extension (sec) 0.1248 130.98 0.0116 7.29 0.0059 3.347

Wiedemann (sec) 14.6101 83,651.08 0.5729 2,082.01 0.4355 597.777

Solving time (sec) 8.8982 36,971.85 0.8684 932.95 0.4852 346.571

cuSPARSE Extension (sec) 0.0885 128.28 0.0098 8.00 0.0050 3.366

Wiedemann (sec) 8.8077 36,843.49 0.8583 924.95 0.4800 343.204

Table 3: Profile of the Wiedemann slgorithm.

Field GF(q) GF(2) GF(3) GF(5)

Degree of regularity D 4 5 4 5 4 5

Unknowns n 24 37 15 24 13 21

Equations m 48 74 30 48 26 42

Running time (sec)

Wiedemann 14.6101 83,651.08 0.5729 2,082.01 0.4355 597.777

Generating Sequence 9.5806 49,719.75 0.3030 1,104.82 0.2131 302.236

Berlekamp-Massey 4.9253 9,035.16 0.2379 439.1057 0.19 148.328

Integer Computing f−(A)b 0.0937 24,895.43 0.0305 537.99 0.0273 147.188

Memory Usage (MB)

Matrix 29.74 2741.49 5.66 412.67 2.86 190.39

Stream 1279.47 0 100.81 0 43.22 0

Running time (sec)

Wiedemann 8.8077 36,843.49 0.8583 924.94 0.4800 343.2035

Generating Sequence 3.8079 22,215.69 0.4284 325.75 0.2418 108.0073

Berlekamp-Massey 4.8855 9,059.83 0.4284 325.75 0.1999 183.685

cuSPARSE Computing f−(A)b 0.1045 5,567.20 0.0403 160.77 0.0372 51.473

Memory Usage (MB)

Matrix 44.66 4114.18 5.67 413.10 2.87 190.64

Stream 1279.47 0 100.81 0 43.22 0
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types, integer case and using cuSPARSE li-

brary (floating point values) case. Our imple-

mentations solve MQ of 37 unknowns and 74

equations over GF(2) in 36,972 seconds, of 24

unknowns and 48 equations over GF(3) in 933

seconds, and of 21 unknowns and 42 equations

over GF(5) in 347 seconds by using cuSPARSE

library case. Our further goal is evaluating the

expected time of larger degree cases (e.g. the

case of D = 6).
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