
Solving 6x6 Othello on Volunteer Computing System 

 
Shi-Jim Yen†1, Tsan-Cheng Su †2, Jr-Chang Chen †3, Shun-Chin Hsu †4 

 

�1 Department of Computer Science & Information Engineering, National Dong Hwa 

University, Hualien, Taiwan. sjyen@mail.ndhu.edu.tw 
�2 Department of Computer Science & Information Engineering, National Dong Hwa 

University, Hualien, Taiwan. d9821009@ems.ndhu.edu.tw 
�3 Department of Applied Mathematics, Chung Yuan Christian University, Taoyuan, Taiwan. 

jcchen@cycu.edu.tw 
�4 Department of Information Management, Chang Jung Christian University, Tainan, Taiwan. 

schsu@mail.cjcu.edu.tw 
 

Abstract 

A job-level system, named CGDG, is suitable to solve computer games in 

parallelization. In this paper, we propose a volunteer computing application in the 

desktop grids based system. A strongly solved game tree for 6x6 Othello is constructed 

and applied on CGDG. We use CGDG to parallelize the game tree by splitting it to sub-

trees, and to accelerate the process of construction. This research cooperates with five 

universities in different locations to use all sparing computing power to solve the game 

of 6x6 Othello. The experimental result shows that CGDG system is efficient on 

generating a Othello game tree. 

 

Keywords: Othello, Game Tree, Computer Game Program, Parallelization 

 

I. Introduction 

The development of computer game 

programs and solvers are popular 

research topics [2][3][4]. Program 

parallelism is essential for a program 

running on a system with enormous 

computing resources of many workers. A 

desktop grid system, named CGDG, is 

suitable to solve computer games in 

parallelization [5][6]. The CGDG 

framework was developed by modifying 

and improving the system in [1]. In this 

paper, we propose a volunteer computing 

application on CGDG for solving 6x6 

Othello. CGDG is executed on a mass of 

computer connected by Taiwan 

Academic Network (TANet), which is a 

high-speed internet connection among all 

universities in Taiwan. Its network delays 

are about 5ms or less. We also propose a 

method for splitting a game tree into sub-

The 19th Game Programming Workshop 2014

- 117 -



trees. Then, we can take advantage of 

massively parallel computing of CGDG, 

and thus a complete game tree can be 

searched by using remote fast computers 

simultaneously. 

 

II. Architecture of CGDG  

CGDG is divided into two parts: the 

user program and volunteer workers. The 

broker is a bridge between both parts, as 

shown in Fig. 1. There are six steps for a 

round of a job:  

(1) The user program encodes a game 

state as a job and sends it to the 

broker.  

(2) The broker dispatches jobs from the 

user program to a remote idle 

volunteer worker, as shown in Fig. 2.  

(3) The volunteer worker receives, 

decodes and executes the job.  

(4) After finishing the job, the volunteer 

worker encodes the result and sends 

information back to the broker. 

(5) The broker passes the result from the 

volunteer worker to the user program. 

(6) The user program receives, decodes 

and handles the result, as shown in 

Fig. 3. 

 

III. The Split of a Game Tree 

Volunteer workers on CGDG 

provided from many universities are 

connected by TANet. A target tree should 

be split into many sub-trees before 

sending jobs. The purpose is to generate 

an enough amount of jobs lest some 

volunteer workers become idle at the 

same level. Because the network delays 

in TANet are short, and the number of 

child nodes for a node in the game tree of 

Othello is limited, the use of multiple 

sub-trees that are generated together can 

effectively utilize all volunteer workers. 

Fig. 1.The model for paralleling games. 

Fig. 2. Dispatch jobs in CGDG. 

Fig. 3. Integrate results in CGDG. 

  A game tree is split into three sub 

groups as shown in Fig. 4. Each leaf node 

The 19th Game Programming Workshop 2014

- 118 -



is encapsulated as a job, and then all the 

jobs are sent to the broker. In Fig. 5, both 

of group A and group C have three jobs 

at the simultaneous time. The six jobs are 

sent to the broker, and then the broker 

assigns six volunteer workers to compute 

each of these jobs simultaneously.  

 

The above method generates a game 

tree for Othello efficiently. Also, it is 

suitable for computing a game tree via 

machines located far away 

geographically and connected by the 

network with about 5ms latency. The 

latency is 50 times slower than that of the 

cluster computer architecture where all 

nodes in a tree are computed locally. 

Furthermore, our method to distribute 

tree nodes fits the CGDG architecture, 

and thus we maximize the use of all 

available resources with a variety of 

computers with different numbers of 

cores and clock speed.  

 

The above method generates a game 

tree for Othello efficiently. Also, it is 

suitable for computing a game tree via 

machines located far away 

geographically and connected by the 

network with about 5ms latency. The 

latency is 50 times slower than that of the 

cluster computer architecture where all 

nodes in a tree are computed locally. 

Furthermore, our method to distribute 

tree nodes fits the CGDG architecture, 

and thus we maximize the use of all 

available resources with a variety of 

computers with different numbers of 

cores and clock speed. 

IV. Experimental Results and 

Discussions 

The experiments compare CGDG with 

a single server system. The single server 

system is Intel 12-cores i7-3930k CPU @ 

4.2GHz with main memory 32GB; and 

CGDG have volunteer workers 

comprised of Intel 8-core Xeon CPU @ 

2.2GHz with main memory 16GB and 

AMD 8-cores FX-8350 CPU @ 4.0GHz 

with main memory 16GB. Note that the 

hardware specifications for all volunteer 

workers are varied.  

 

Table 1 is the experimental result to 

solve the game of 6x6 Othello. A "node" 

means a different state in the game. Each 

node is computed by one core. Numerous 

nodes are generated by searching from 

the current state to the end, and thus 

enormous computing resources are 

required.  

 

The CGDG systems with 4 and 8 

volunteer workers are used, and each 

volunteer worker owns 8 cores. Thus, 

there are 32 and 64 cores in total 

respectively. For the generation of a 

complete “strongly solved” game tree for 

6x6 Othello, the result shows that CGDG 

with 8 volunteer workers performs about  

4 times faster than the single server 

system. If there are extra idle computers 

joining the system, the system scales 

linearly in Fig. 6. 

The 19th Game Programming Workshop 2014

- 119 -



Table 1. Comparison of a single server and CGDG. 
System 

Nodes Single Server System 
(12 cores) 

CGDG (4 workers) 
(1 worker is a 8-core 

machine) 

CGDG (8 workers) 
(1 worker is a 8-core 

machine) 

10000 1217.95 sec 615.66 sec 305.26 sec 

30000 3696.37 sec 1747.12 sec 898.49 sec 

50000 6328.45 sec 3011.47 sec 1476.63 sec 

 

 

Fig. 4. Split to sub game trees. 

 

Fig. 5. Sample jobs to CGDG 

 

Fig. 6. Comparison of a single server and CGDG 

B  C A 

B  C A 

The 19th Game Programming Workshop 2014

- 120 -



References 

[1] BOINC, available at 
http://boinc.berkeley.edu/. 

[2] Chen, C.H., Lin, S.S. and Huang, 
M.H., “Volunteer Computing System 
Applied to Computer Games” TCGA 
workshop 2012 (TCGA2012), June 
2012, Hualien, Taiwan, pp.25-28.  

[3] Chen, K.Y., “The Development of the 
Multi-Broker Desktop Grid for 
Computer Games”, National Chiao-
Tung University, master thesis, 2012. 

[4] Liou, H.Y., Wu, I.C., Kang H.H., Guo, 
J.H. and Liao, T.F., “General 
Framework Development on Board 
Game” TCGA workshop 2012 
(TCGA2012), June 2012, Hualien, 
Taiwan, pp.19-24. 

[5] Liu, H.Y., Wu, I.C., Liau, T.F., Kang, 
H.H. and Chen, L.P., “Software 
Framework for Generic Game 
Development in CGDG,” International 
Computer Symposium (ICS 2012), 
Hualien, Taiwan, 2012. 

[6] Wu, I.C. and Jou, C.Y., “The Study and 
Design of the Generic Application 
Framework and Resource Allocation 
Management for the Desktop Grid 
CGDG”, Institute of Computer Science 
and Engineering College of Computer 
Science NCTU, 2010. . 
 

The 19th Game Programming Workshop 2014

- 121 -




