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SH-Model: A Model Based on Both System and Human Effects

for Pointing Task Evaluation

Xiangshi Ren,† Jing Kong† and Xing-Qi Jiang††

As a well-known human performance model, Fitts’ law, a tool for evaluating pointing de-
vices, has been accepted and applied for a long time in the human computer interaction field.
However, doubts now exist regarding its validity. One challenging job for those who are doing
research on human performance models is to resolve the problem relating to input hits’ distri-
bution (i.e., spatial constraint). We developed a new model based on temporal distribution to
alter the traditional models. The new model and the traditional models are compared in two
experiments using AIC (Akaike’s Information Criterion), a criterion for statistical model selec-
tion. The results show that the new model is better than the traditional ones in performance
evaluation.

1. Introduction

These days, the need for a reliable model for
evaluating computer input tasks and for testing
the feasibility and efficiency of pointing devices
is greater than ever before. For example, the
ubiquitous mouse may not be the best choice
for some kinds of interfaces 1). In some situa-
tions certain devices are not convenient. Be-
fore we decide the optimal input device or in-
terface design for a system, we must first evalu-
ate the performance of users. Fitts’ law, which
was proposed by Paul Fitts (1954) 9), is a pow-
erful model which is used to evaluate the per-
formance of rapid and aimed movements. Al-
though many research projects have been car-
ried out applying Fitts’ law or its derivation
versions to evaluate input devices 6),7),11),14),15),
its adequacy remains debatable.

One common form of Fitts’ law is found in
the following equation:

MT = a + b log2

(
2A

W

)
(1)

where A is the amplitude, which indicates the
distance between the centers of the two tar-
gets, W is the target width, which indicates
the width of the different targets, MT is the
movement time of task completion, a and b are
regression coefficients (or constants).

One fatal shortcoming in Eq. 1 is that it may
produce a negative index of difficulty in the sit-
uation where a small target amplitude to tar-
get width ratio exists in the interface. This is
clearly illogical. A powerful variation of Fitts’
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law has been developed from the approximation
of Shannon’s theorem 17 ☆ to the direct analogy
of it:

MT = a + b log2

(
A

W
+ 1

)
(2)

In this paper, we call this variation the Shan-
non style model. Here the index of difficulty is
defined as:

ID = log2

(
A

W
+ 1

)
(3)

In Eqs. 2 and 3, movement amplitudes are
analogous to “signals” and target widths are
analogous to “noise”. Still the analogy con-
tains some doubtful points. One problem here
is that Shannon’s theory is established from a
great deal of complex and strictly mathemat-
ical deduction based on the assumption that
the signal is disturbed by the AWGN (Additive
White Gaussian Noise) 19). Thus the analogous
requirement in motor tasks is a normal distribu-
tion of hits 9),14). Mackenzie noted that to keep
target width analogous to noise, 96% of the hits
must fall inside the target, i.e., 4% of the hits
can be allowed to missed the target 14). How-
ever, the hits falling into the target width may
not follow the normal distribution so accurately
and subjects cannot be expected to maintain a
96% accuracy rate while working “as fast and
accurately as possible”, a condition which must
be fulfilled if Fitts’ law is to remain valid.

Thus, a lot of work has been developed to

☆ The formulation of Fitts’ law was derived from the
Shannon Theorem 17: C = B log2(S/N + 1), C in-
dicates the capacity of the channel, B indicates the
bandwidth, S/N indicates the ratio of the average

power of signals to noise 19).
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modify Fitts’ law without any changes or mod-
ifications to the experimental situation.

One of them is the method of using We (effec-
tive target width) 5) in the formulation which
appeared soon after Fitts’ law’s first publica-
tion, as shown in Eq. 4.

MT = a + bIDe (4)
In this paper, we refer to it as We model. IDe is
the effective index of difficulty which is defined
as:

IDe = log2

(
A

We
+ 1

)
(5)

We is computed from the observed distribu-
tion of hit coordinates in users’ trials: We =
4.133SD, where SD is the standard deviation
of the hit coordinates.

However this method is doubted by others.
Zhai (2002) is one example 21). Indeed, there
are still other researchers who prefer the Shan-
non style model, although the We method has
become one of the ISO standards 9241-9 12).
One problem is that the method used in the
We model to convert errors (hits outside the
target width) into time may unfairly represent
some specific applications, because for differ-
ent applications, error is not important to the
same degree. Weighing error against time re-
quires concrete consideration for different situ-
ations. Moreover, the relationship between tar-
get width and error rate is still unclear, more
study should be launched to see if it follows the
normal distribution curve. Even if the error
rate is modified to be 4% using the We model
as a post hoc method, it is still not certain that
the experimental data will follow the normal
distribution.

Both the add hoc and the post hoc meth-
ods proposed by the previous research depend
on the spatial distribution of the hits, i.e., re-
searchers are compelled to develop methods
which ensure that error rates are limited to 4%.
Thus, we established a new model based on the
concept of temporal distribution which is not
limited by spatial constraints.

2. The New Model: SH-Model

Our model is based on the general informa-
tion theory, different from the traditional Fitts’
models based on the concept of the capacity of
channel of Shannon’s theory.

The effects on the performance of a pointing
task can be divided into two parts: the system
effect and the human effect ☆. The system effect

Fig. 1 The black target randomly appears within the
gray area.

can be expressed by the condition of a pointing
task such as the amplitude between two targets
and the target width. The human effect can be
indicated by the accuracy of pointing generally.

Regarding the system effect, Fig. 1 (a) shows
a one-dimensional pointing input interface.
Two rectangular targets are in the gray area. A
is the amplitude of the centers of the two tar-
gets, and W is the target width. Assuming the
black target randomly appears elsewhere within
the gray area (i.e., the interval A+W ), then the
probability of the target falling into the gray
area, Ps, can be represented as

Ps =
W

A + W
(6)

Indeed, the target is not always located in the
gray area of the interface. Assuming the target
appears A+(λ+1)W as indicated in Fig. 1 (b),
where λ is a parameter, then the probability
should be redefined as:

Ps =
W

A + (λ + 1)W
(7)

Thus the self-information of the system is de-
fined as:

☆ we use “effect” here rather than “factor” because
“human factor” has been used with wider meaning.
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SIs = log2

(
1
Ps

)
= log2

(
A

W
+ λ + 1

)

(8)

Here SIs means Self-Information. The value
of the parameter λ can be estimated by the
minimum AIC method (described in Section 3).
To establish a complete and accurate model, we
should consider not only system effects but also
user performance effects. Thus, we take accu-
racy in pointing as an indicator of the human
effect.

If we use Ph to indicate the probability of
hits falling into the target width achieved by
the user and call it the “Probability of success”,
and simultaneously define the ratio of the num-
ber of hits falling outside the target width to the
total number of hits as the error rate, then Ph +
error rate = 1. Thus, Eq. 9 can be regarded as
self-information depending on the probability
of success reflecting the effects of human per-
formance.

SIh = log2

(
1
Ph

)
(9)

In our calculation, the Ph is calculated by
the different combinations of target widths and
amplitudes. Since SIh and SIs affect the move-
ment time, a linear model which represents the
movement time can be stated:

MT = a + bSIs + cSIh (10)
MT is the estimation of the real data. a, b and
c are the three coefficients.

In our view, in pointing tasks, experimen-
tal data do not always follow normal distribu-
tion. For experimental data that do not follow
normal distribution, it may tend to incur bi-
ased estimation 20). From observations of the
movement time data to be analyzed in Sec-
tions 4 and 5, we can see that distribution of
the data is close to lognormal distribution, that
is, the data under logarithmic-transformation
follow normal distribution 8). In order to avoid
getting biased estimations of the parameters in
models, we took the natural logarithm of the
data for movement time so that the logarithmic-
transformed data followed the normal distribu-
tion. At the same time, to keep each part of
the formulation identical, we took a logarithm
of every part in Eq. 10.

Thus, we established the following new
model:

ln(MT ) = a′+b′ ln(SIs)+c′ ln(SIh) (11)

Here a′, b′ and c′ are also coefficients but prob-
ably different from a, b and c in values.

The concept of distribution we discussed here
is completely different from the concept in the
traditional Fitts’ law model researches. In the
literature, researchers referred to the spatial
distribution of the input hits. This point has
been a theoretical and experimental dilemma
for researchers of Fitts’ law studies as we dis-
cussed in the introduction. Contrarily, the con-
cept of distribution in this paper was reference
to the movement time (i.e., temporal distribu-
tion). We utilize the logarithmic transforma-
tion in order to construct a linear model for the
logarithmic-transformed movement time data
with the normal-distributed error term ☆. Be-
cause Eq. 11 only gives the part of MT that can
be predicted by the model, a more exact expres-
sion of the model should be given by adding an
error term. Therefore we should add the error
term ε at the right-hand of Eq. 11. As previ-
ously discussed in the introduction, here MT
is an estimation based on the real data and is
recorded as MTreal. The real data can be ex-
pressed in the following equation.

ln(MTreal) = a′+b′ ln(SIs)+c′ ln(SIh)+ε

(12)

Equation 12 can be considered to be a re-
gression model for ln(MTreal) with ln(SIs) and
ln(SIh) being two independent variables. In
this model SIs shows the effects of the system,
such as the effects of different amplitudes and
target widths, and SIh shows the effects of the
human. Thus, Eqs. 11 and 12 contain complete
information of both the system and the human.
We call this new model the SH-Model (S indi-
cates the System and H the Human). The vari-
ables ln(SIs) and ln(SIh) are not independent
of each other, and their correlation coefficient
can be estimated statistically.

When we consider Ph as a parameter in a
binomial distribution, its maximum likelihood
estimate can be given as follows:

Ph =
n

m
(13)

where n is the number of the hits falling inside
the target, m is the total number of attempts.

If we use Eq. 13 to calculate Ph, either of two

☆ Here error refers to the difference between the ob-
servation of movement time and the estimation of
that calculated by corresponding equations.
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extreme situations could arise. One extreme
arises when all the hits fall inside the target,
Ph = 1. The other extreme arises when all
the hits fall outside the target, then Ph = 0.
Equation 11 could not be applied in either of
these situations. We therefore used a Bayesian
method to estimate Ph by using a uniform prior
distribution 16). The following equation gives
the posterior mean of Ph.

Ph =
n + 1
m + 2

(14)

Omitting the error term ε, another form of
Eq. 11 for computing the predictive value of
MT is:

MT = ea′
SIb′

s SIc′
h (15)

3. Model Evaluation by AIC

There are two main ways to evaluate regres-
sion models. The traditional one is the use of
a coefficient of determination R2. It indicates
the degree of fit of models to the observed data
but it cannot represent the predictive ability of
models, neither can it be applied to nonlinear
models. We usually evaluate models by the de-
scriptive ability and the predictive ability. The
former shows how well the model fits the data
under analysis, and the latter can indicate how
well the model predicts the value of data that
can be obtained in future under the same con-
dition. With more parameters, the model’s de-
scriptive ability will be improved so that the
predictive ability will also be improved, but the
stability of estimates for parameters will deteri-
orate so that the predictive ability will decrease.
The purpose of statistical modeling is to ob-
tain a model with a strong predictive ability,
so the key problem in model selection is how
to get a good trade-off between the descriptive
ability and the stability of estimates. Thus, it
is important to evaluate predictive ability of a
model objectively. Moreover, because the SH-
Model is a non-linear model, we cannot apply
this method to do model evaluation. Therefore,
we have to find another model evaluation tool.

Another approach to model evaluation is to
use information criteria (ICs), such as AIC and
BIC 18). AIC (Akaike’s Information Criterion)
is a criterion for model selection 2). When a
number of models are available, we have to se-
lect one as the best among the alternative mod-
els. Akaike’s minimum AIC method 2),13),17), is
developed for statistical model selection. This

method can be interpreted from a maximiza-
tion of the expected entropy of the predictive
distribution approach 3). It can be applied to
comparisons for not only linear but also non-
linear models 4). It is a better choice for us to
compare the new model (SH-Model) with the
traditional models (Shannon style model and
We model)with AIC.

AIC is defined on the basis of the maximum
log-likelihood and the number of parameters
to be estimated by the maximum likelihood
method, i.e., it is defined as follows:

AIC = −2M + 2N (16)
Where, M is maximum log likelihood of the

model, N is number of estimated parameters
in the model. The term −2M measures the
decrease in predictive ability of a model that
is contributed to the AIC value by the increase
in descriptive ability of a model, and the term
2N measures the decrease in predictive ability
of a model that is contributed to the model by
the increase in the number of parameters of a
model (related to the stability of estimates of
parameters). Thus, the trade-off between the
descriptive ability and the stability of estimates
for a model can be obtained by minimizing the
value of AIC.

Meanwhile, for the linear regression model
with the error term following normal distribu-
tion, the least square estimation agrees with the
maximum likelihood estimation. Therefore, by
using the method of the least squares, we can
not only estimate the parameters in models, but
also get the AIC value of different models easily
and then compare the effects of different mod-
els. For two models that have different num-
bers of parameters we can estimate the param-
eters and calculate their AIC values by using
the same set of data. Although more parame-
ters can make the model more descriptive, the
minimum AIC method itself can reimburse the
deviation brought by the parameters before it
gives out the final results. That means that
AIC can show the consistency between reality
and prediction and can test both the descriptive
ability and predictive ability in a model com-
prehensively 13). Overall, the model with the
smallest AIC value can be regarded as the best
one 2).

According to the characteristics of AIC, we
used the original data for each combination of
amplitude and target width rather than the av-
erage of the original data. For linear models, it
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makes no difference whether we use the origi-
nal data or the average. However, for non-linear
models such as Eqs. 11 and 15, original data and
the average values give different results, i.e., the
corresponding estimates may be different. Ac-
cording to statistical theory, estimation is more
reliable if it is obtained from a larger sample.
So it can be concluded that the estimated re-
sults are more reliable when we use the original
data to establish the model. Another reason to
use the original data is that the general formula
of AIC is established based on the law of large
numbers 8). Therefore, we decided to use the
minimum AIC method to evaluate the models.

4. Experiment 1: On PDA

To compare the performance of our new
model with the traditional models, we used the
data from a pointing experiment on a PDA,
which was developed according to the one-
direction pointing task defined in ISO 9241-
9 12).

4.1 Subjects
Twelve subjects (6 male, 6 female, aged from

20 to 22, all right handed) were tested in the
experiment.

4.2 Apparatus
The PDA used in the experiment was a Psion

RevoTM running Windows EPOC, 157mm
(width) × 79mm (height) × 18 (thickness).
The weight of the PDA was 200 g. The display
was 480 × 160 pixels (1 pixel is about 0.24 mm).
A stylus pen was used as the input device. Ex-
perimental software was developed with Java.

4.3 Design
The experiment was a 3 × 3 within-subjects

factorial design. The factors and levels were as
follows:
• Target widths: 10, 20, 40 pixels (2.4, 4.8,

9.6mm)
• Amplitudes, or distances between the cen-

ter of targets: 100, 200, 300 pixels (24, 48,
72mm)

Each subject performed the task in 30 trials
in each of nine conditions. There was no rest
time between two conditions, because the per-
formance time was so short (within 30 minutes)
that no fatigue would be incurred by it. The
height of the targets was 90 pixels in all trials.
Targets were presented in different order to the
various subjects.

Because the actual time slot of the first trial
was zero, the total number of data that we pro-
cessed was 3 (targets amplitudes) × 3 (target

widths) × 29 (trials) × 12 (subjects) = 3,132.
4.4 Procedure
In the experiment, two rectangles were shown

on the display. One was filled and the other
was unfilled. Subjects sat down and held the
device with their non-dominant hands. They
were instructed not to rest their hands on the
table or any other objects during the test. Upon
contact the rectangles would switch places and
the subjects would again attempt to point to
the unfilled rectangle.

Before testing, the subjects were asked to
point to the unfilled rectangle (called “target”
below) with the input device as fast and accu-
rately as possible. All subjects performed 10
warm-up trials.

During the experiment, the subjects acciden-
tally pointed in the wrong direction away from
the target (e.g., when the target appeared in
the left, the subject pointed to the right). That
was related to the inertia and anticipation of
the fast movements of the subjects. It was unre-
lated to the one-dimensional task, so we deleted
these accidental hits. Thus the total valid data
is 3,132 (complete data number) − 118 (acci-
dental data number) = 3,014.

4.5 AIC Values of the Three Models
from the Data of Experiment 1

To test the feasibility of our new model
(Eqs. 11, 15), we applied the experimental data
to the Shannon style model (Eq. 2) and the We

model (Eq. 4) to see whether there was any dif-
ference in the effects of different models.

The results of the calculation are shown in
Table 1. The model with the lowest AIC value
will be regarded as the best one (see Section 3).
Ph was calculated by each combination of A
and W.

The corresponding AIC value of the Shannon
style model (Eq. 2) is 38,927. The regression
line is shown in Fig. 2.

The AIC value of the We model is 39,078,
which is larger than that of the Shannon style
model. The regression line is shown in Fig. 3.

To compare the effects of the new model with
the traditional models, we set the parameter
λ = 0 in the SH-Model (Eq. 15), then the model
is determined as:

MT = e5.27{
log2

(
A

W
+ 1

)}0.64 {
log2

(
1
Ph

)}−0.03

(17)
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Table 1 AIC values of the three models with the Experiment 1 data.

Model Formulation AIC

Shannon Style Model MT = 197.39 + 75.3log2

(
A

W
+ 1

)
38,927

We Model MT = −5.05 + 165.3log2

(
A

We
+ 1

)
39,078

SH-Model MT = e5.27

{
log2

(
A

W
+ 1

)}0.64 {
log2

(
1

Ph

)}−0.03

37,696

Fig. 2 Regression line of the Shannon style model.

Fig. 3 Regression line of the We model.

Fig. 4 Regression curved surface projection of the
SH-Model (λ = 0).

The corresponding AIC value is 37,696 ☆.
In Fig. 4, for convenience of contrast with the

other two regression lines, we used the two di-
mension figure for the regression curved surface
☆ Here the AIC value was computed by adding twice

the sum of all data to the AIC value of the model for
the log-transformed data, so it is comparable with
the others 13).

of the SH-Model, so there is no SIh in this fig-
ure. It can be regarded as a projection of the
curved surface on the surface of ln(MT ) and
ln(SIs). This model includes a negative coeffi-
cient in the place of c′ (−0.03). It is easy to ex-
plain: if the subject performs quickly, he or she
may make more mistakes, so Ph will be smaller
and SIh will become bigger, then the value of
the MT will be smaller for for any occurrences
of the negative value of c′.

From the above computation with the PDA
experimental data, the SH-Model obtained the
lowest AIC (37,696). Therefore, this model can
be regarded as the best of the three models.
The traditional models have bigger AIC val-
ues. This indicates that those models cannot
describe the data that agree with the real data
as accurately as the new model can. These con-
clusions can effectively test the reasons for the
doubts regarding traditional Fitts’ models.

As previously noted, the input hits may not
be limited by the outer boundaries of the two
targets, and may not be 0. Thus we changed the
value from λ = 0 to λ = 1, λ = 2, and λ = 3,
and the AIC results are shown in Table 3.

5. Experiment 2: On Tablet PC

To make sure our models have universality
and are not limited to PDA experimental data,
we conducted an experiment which was the
same as Fitts’ reciprocal tapping paradigm to
obtain the paradigm Fitts’ law experimental
data to see if it did indeed support our con-
clusions. Thus we performed an experiment on
a Tablet PC.

5.1 Subjects
Twelve subjects (9 male and 3 female, aged

from 21 to 38, mean = 26, all right handed)
were tested in the experiment.

5.2 Apparatus
The tablet PC used in the experiment was a

FUJITSU FMV STYLISTIC running Windows
XP. The screen size was 21 cm × 15.6 cm, 1
pixel = 0.2055 mm. Experimental software was
developed with Java.
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Table 2 AIC values of the three models with the Experiment 2 data.

Model Formulation AIC

Shannon Style Model MT = 136.46 + 119.99log2

(
A

W
+ 1

)
47,465

We Model MT = 53.52 + 153.05log2

(
A

We
+ 1

)
47,859

SH-Model MT = e5.40

{
log2

(
A

W
+ 1

)}0.71 {
log2

(
1

Ph

)}−0.00012

46,077

5.3 Design
The experiment was a 3 × 3 within-subjects

factorial design. The factors and levels were as
follows:
• Target widths: 12, 36, 72 pixels (2.5, 7.4,

14.8mm)
• Amplitudes, or distances between the cen-

ter of targets: 120, 360, 840 pixels (24.7,
74.0, 172.6 mm)

Each subject performed the task in 12 trials
in each of nine conditions. Each subject was
instructed to repeat the experiment three times
with different conditions, i.e., to tap the targets
“as accurately as possible”, “as accurately and
fast as possible”, and “as fast as possible”. The
goal was to make the subjects operate at a wide
range of error levels ☆. They were asked to take
a rest before the next condition task. Targets
were presented in random order to the subjects.

Because the actual time slot of the first trial
was zero, the total number of data that we pro-
cessed is 3 (repeating times) × 3 (targets am-
plitudes) × 3 (target widths) × 11 (trials) × 12
(subjects) = 3,564.

5.4 Procedure
In the experiment, the tablet PC was placed

on a desk. Two rectangles (the height was 760
pixels) were shown on the screen. One was filled
and the other was unfilled. Subjects sat down
and tapped on the unfilled one. Upon contact,
the rectangles would switch places and the sub-
jects would again attempt to point to the un-
filled rectangle.

Before the test, all subjects performed the
same number of warm-up trials. During the
experiment subjects were asked to point to the
unfilled rectangle with a stylus pen.

Furthermore, in this experiment there were
fewer accidental trials (28) than in Experiment
1 (118), and the total number of valid hits was
3,564 − 28 = 3,536.

☆ Fitts and Radford (1966) also manipulated three
subjects’ operational bias towards “accuracy, neu-
tral, and speed” 10).

Fig. 5 Regression line of the Shannon style model.

Fig. 6 Regression line of the We model.

The error rates of the three different condi-
tions were 3.2%, 10% and 19.4% for the condi-
tion of “as fast as possible”, “as accurately as
possible” and “as fast as possible” respectively.

5.5 AIC Values of the Three Models
from the Data of Experiment 2

The Shannon style model (Eq. 2), the We

model (Eq. 4), and SH-Model (Eq. 11 or 15) ap-
plied from the experimental data and their AIC
values are shown in Table 2.

The regression curves of the three models are
shown in Figs. 5 and 6. Figure 7 shows the
regression curved surface projection of the SH-
Model. Ph was calculated by each combination
of A and W. Therefore, the different functions
of different instructions during the tasks can be
expressed by Eq. 11 effectively.

From the above computation, we can con-
clude that with the data of Experiment 2, the
SH-Model still has the lowest AIC (46,077) (see
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Fig. 7 Regression curved surface projection of the
SH-Model (λ = 0).

Table 3 AIC values of SH-Model of different λs.

Experiment λ = 0 λ = 1 λ = 2 λ = 3
Experiment1 37,696 37,689 37,691 37,694
Experiment2 46,077 46,037 46,032 46,039

Table 2). The experimental outcome gave pow-
erful support to our previous conclusion.

The AIC results of the SH-Model with differ-
ent λs are shown in Table 3.

6. Discussions

This study proposed an alternative model,
SH-Model, for the development of the solution
for Fitts’ law’s problems. Using the Shannon
style model, if error rates have not been consid-
ered, in other words, if the experimenter does
not control the error rates during the experi-
ment, or if subjects cannot follow the instruc-
tions accurately, then the experimental data
may not follow the normal distribution and/or
keep the error rate of 4%. Using the We model
as a post hoc method, though the error rate is
modified to be 4%, it is still not certain whether
or not the experimental data can follow the nor-
mal distribution. This means there may be a
difference between the reality and the predic-
tion.

We compared the AIC values of different
models including two traditional ones with the
new one designed in this study. From Table 1
and Table 2, the AIC results show that the new
model is much better than the traditional ones.
There is another noteworthy point: the AIC
values of the We model were even greater than
the Shannon style model. One reason is that
Experiment 1 was developed on the PDA, and
the subjects could not rest their hands on knees,
tables or any kind of platform. This might
have made them produce more mistakes. So
the standard deviation of the experimental data
of movement time was greater and that made

the AIC values larger. In Experiment 2, the
AIC value of the Shannon style model was still
better than that of the We model although the
difference in the AIC values between the two
models decreased. This may be due to the fact
that using We to modify the Fitts’ law model
is from the point of the input hits distribution.
It may not contribute to the modification of
MT. AIC or similar methods are able to show
whether the We model can be more advanta-
geous. From the viewpoint of modification of
MT, the greater AIC values of MT mean that
the We model cannot model the performance
better than the Shannon style model. We calcu-
lated the error rate for Experiment 1 (26.11%)
and Experiment 2 (10.94%). With these two
kinds of data on the PDA and the tablet PC,
the SH-Model always offers the smallest AIC,
which means the new model is better than the
traditional ones.

The AIC results showed that the Shannon
style model was better than the We model even
though this study does not focus on the compar-
ison of the Shannon style model and We model.
We note that while the results of comparing
models might be different because of the differ-
ent mathematical tools that we used to do the
analysis. The SH-Model is a non-linear model,
so we could not use the traditional methods
for linear model evaluation (e.g., R2) to do the
analysis.

The larger AIC values of the traditional mod-
els lend support to doubts about the traditional
Fitts’ law formulations. At the same time, this
also testifies to the feasibility of using AIC val-
ues to examine different models in human com-
puter interaction. Although we introduce one
more parameter here, the AIC results can show
that there is a great difference between the new
model and the traditional ones. The qualitative
difference is greater than twice the number of
the new parameters plus 1, e.g., using the Ex-
periment 1 data, λ = 0, the AIC value of the
SH-Model is 37,696, and that of the Shannon
style model is 38,927. There is only one more
parameter in the SH-Model so to double the
sum of 1 parameter plus one is 4, i.e., 2 × (1 pa-
rameter + 1) = 4. Then 38,927−37,696 = 1,231
is much bigger than 4.

Regarding the benefits of the SH-Model, first,
it provides the development of the solution for
Fitts’ law’s problems. It is established based
on the concept of temporal distribution rather
than the traditional concept of spatial con-
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straint. Second, with the new model, we need
not keep within the error rate of 4% constantly
and strictly, either by controlling experimental
conditions or when calculating We. Third, it
can distinguish between system and human ef-
fects.

We propose using “SH-Model” as the name
for the new model because we proposed the con-
cept of separating the two parts in one model.
Indeed, SIs in Eq. 8 is different in its physical
meaning from the traditional Fitts’ law formu-
lation. It is decided by the situation of the task.
Meanwhile, the SIh in Eq. 9 is obviously deter-
mined by the subjective effect of the perform-
ers. The two parts of the information can be ob-
served clearly and distinctly in the SH-Model.
From the traditional models, although the sys-
tem effect and human effect are both consid-
ered, they cannot be separately considered and
hence they are not easy for others to observe.
We need to analyze deeply to find the effects of
the two separate parts upon the performance.

In the SH-Model, we add another parameter
of Ph to consider the human effect. This means
that we need to know the error rate to apply
this model. In this situation, the SH-Model has
a similar function to the We model (including
the behavioral effects or accuracy into move-
ment time). However, because the We model
only modifies the error rate to be 4%, we do
not know whether the data follow the normal
distribution. The SH-Model is established from
the viewpoint of temporal distribution (move-
ment time), thus we can fix the error rate and
estimate the MT at different levels (i.e., not
only 4%). Furthermore, Ph can affect the move-
ment time so that with this information the
model can be more reliable. The benefits de-
rived from the increase in complexity in the
new model outweigh any inconvenience caused
by increased complexity.

We have tested the effects of four different
parameters: λ = 0, 1, 2, 3. The comparison
of the results (see Table 3) shows that, for Ex-
periment 1, λ = 1 produced the smallest AIC,
for Experiment 2, λ = 2 produced the smallest
AIC. Comprehensively, this means that most
of the input hits would fall into the range of
(A + 2W ) to (A + 3W ) as shown in Fig. 8. We
can explain this phenomenon in this way: when
the subjects fulfilled the task, they would con-
centrate on the two targets as instructed. Si-
multaneously, they must perform the pointing
task as quickly and accurately as possible. So

Fig. 8 The range of input hits when λ = 1 to 2.

they would certainly make mistakes, but the de-
viation of the hits’ coordinate would not depart
from the two targets too far.

The smallest AIC value of the model with
λ = 1 or λ = 2 shows that most of the hits, in-
cluding the successful attempts and the misses
will fall into the shallow gray area indicated in
Fig. 8. This shows that interfaces with targets
should leave at least this much space between
any two targets. The reason for the different
optimal λ determined by the minimum AIC
method in the two experiments is that we used
apparatus with different screen sizes. The PDA
screen is so small that the subjects were unable
to move their hands freely and also that their
attention was focused on a much smaller area.
That might make them point to a smaller range.
Conversely, the tablet PC’s screen is rather big,
so it is natural for the subjects to point to a big
range. Then the areas of most hits are differ-
ent and so are the optimal λs, i.e., optimal λs
may be expected from different devices. Cer-
tainly we can select even more values for pa-
rameter λ. Then the corresponding AIC values
can indicate whether there are better λs for the
models.

We analyzed the experimental data through
the ID − MT figures (shown in Figs. 2, 3 and
5, 6). Through these figures we can see that
the numbers of those hits beside the two parts
of the regression lines are significantly different.
This means that the distribution of the data is
obviously different from a normal distribution.
From the SH-Model we can see that the data’s
distribution beside the two parts of the regres-
sion plane are nearly symmetrical (see Fig. 4
and 7). We can also see whether the percent-
ages of the number of errors are greater than 0
or smaller than 0 from Table 4. It is easy to
conclude that after logarithm transformation,
the data follow normal distribution more accu-
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Table 4 Error distribution percentage.

SH-Model Shannon Style Model We Model

Negative error Positive error Negative error Positive error Negative error Positive error
percentage (%) percentage (%) percentage (%) percentage (%) percentage (%) percentage (%)

Experiment 1 47.8 52.2 54.9 45.1 55.1 44.9
Experiment 2 52.8 47.2 58.9 41.1 59.7 40.3

rately and with the new model we can evaluate
performance better 8),17). The estimated MT
values can be observed from the trend lines in
Figs. 2 to 7 ☆.

7. Conclusions

Our goal in this study is to provide an alter-
native model for solving the problems of the tra-
ditional Fitts’ models. We have demonstrated
that the SH-Model is better than the traditional
models based on the AIC analysis in the PDA
and tablet PC experiments.

This study has broader implications than just
the solution of traditional modeling problems.

First, we introduced a new method which
applies the general information theory (self-
information) and also the probability theory to
established pointing performance models.

Second, it is the first attempt to observe the
effects of system and human beings distinctly
in one model.

Third, we have not only verified the advan-
tages of the SH-Model, but we have also applied
the powerful AIC statistical tool to the evalua-
tion of human performance models for the first
time in the human computer interaction area.
We used the minimum AIC value method to de-
termine λ values on both a PDA and a Tablet
PC. This is an innovative method for design-
ing user interfaces, e.g., to determine the ap-
propriate space between two objects displayed
on a screen. Therefore, the significance of this
research goes well beyond the new model pro-
posed in this paper. More work on model eval-
uation can be developed through similar anal-
ysis.

In the experiments, we used the data derived
from the use of a stylus pen to test the feasi-
bility of different models. Our future work in-
☆ A point worthy of noting is that we cannot compare

these figures simply, because different units of the
axis of the coordinates were applied. Meanwhile,
since the movement time’s unit is in milliseconds
(ms), the values of the Y axis are very big and it
is not easy to observe the difference from movement
time. Also because the unit of Fig. 4 and Fig. 7 is
different from Figs. 2, 3, 5 and 6, the simple compar-
ison of the values of the Y axis will be meaningless.

cludes investigations of various pointing tasks
and more pointing devices in order to clarify-
ing the SH-Model’s range of application.
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