
Android Movie Player System Combined with Automatically
Parallelized and Power Optimized Code by OSCAR Compiler

Bui Duc Binh
†
 Tomohiro Hirano

†
 Dominic Hillenbrand

†
 Hiroki Mikami

†

Keiji Kimura
†
 Hironori Kasahara

†

The emergence of multicore processors in smart devices promises higher performance and

low power consumption. The parallelization of application enables us to improve the

application performance; however, simultaneously utilizing many cores would drastically

drain the device battery life. Therefore, power saving technology has become important.

This paper shows a realtime video demonstration system for power reduction controlled by

the OSCAR Automatic parallelization Compiler on ODROID-X2, an open Android

development platform based on Samsung Exynos4412 Prime with four ARM Cortext-A9

cores. The demonstration results show that it can save 18.2% power consumption for

MPEG-2 Decoder application and 56.6% power consumption for Optical Flow application

by using 2 cores in both applications.

1. Introduction

Smart devices have been becoming the most popular

and dominant devices in the electronic market. It is also

known that such small hand-held devices are getting

rapidly powerful and affordable as well. They are

integrated with high performance processors, accelerated

graphics processing unit, high resolution display, GPS

and so on. These features have turned smart device in a

complete work station which is able to compete with

laptop as well as desktop computer.

However, in order to achieve such high performance,

the hand-held size devices must be able to complete a

large number of computations by powerful and

sophisticated hardwares which are extremely power

consuming. Moreover, the battery size in smart device is

limited and not increased as fast as its hardware.

Therefore, achieving higher performance in a longer

time with a limited energy support has become a very

important research issue.

Nowadays, most of commodity smart phone chips are

multi-core chips. Moreover, it is also known that a

system with more processors can provide better

performance than a single core system. Therefore, the

applications need to be parallelized in order to take

advantage of many cores system. Along with

parallelization of application, the power optimization is

also required to overcome the battery life constraints.

The Android platform is the most used OS (Operating

System) in smart phones with more than 70% in the

market share; therefore it is important to focus on

improving performance and power consumption in

Android devices. Generally, Android applications are

developed in Java language. It is possible to parallelize

applications in Java as shown in [1]. However, it is also

indicated by [1] and [2] that Android applications can be

speed up by using Android NDK and JNI. Android NDK

and JNI enable Android developer to use native code

written in C or C++ which is much faster than Java at

doing arithmetic operations. Another way of

parallelizing applications is to parallelize them in native

language such as C, then build shared library by NDK,

finally exchange computed data with Java part through

JNI. Android applications can be speed up two times by

using Android NDK and parallelized native code.

Parallelization of application is a very effective way

to benefit from a multi-core system, however, manually

parallelizing a large program is very time consuming and

moreover, most of the current applications were not

developed with considerations about multi-core system

as well as power optimization as a priority. There are

some parallelizing compilers, such as OpenMP Compiler

[3] and OSCAR compiler [4][5]. For all of these

parallelizing compilers, OSCAR Compiler can realize

not only application parallelization but also power † Department of Computer Science and Engineering, Waseda
University

組込みシステムシンポジウム 2014
Embedded Systems Symposium 2014

ⓒ 2014 Information Processing Society of Japan 55

ESS2014
2014/10/24

optimization [6][7]. [8] shows that by using OSCAR

compiler, it can save 86.7% power consumption in case

of using 3 cores compared to ordinary case of using 1

core with MPEG-2 Decoder application, and 86.5%

power consumption in case of using 3 cores compared to

ordinary case of using 1 core with Optical Flow

application. The experiments in [8] were conducted on

ODROID-X2 [9] board, an open Android development

platform based on Samsung Exynos4412 Prime [10].

However, it only showed the execution results of binary

files meaning that no realtime video displaying work

was done while MPEG-2 Decoder and Optical Flow

generate data that should be played on a display.

This paper introduces a full demonstration system of

playing video and measuring power consumption

simultaneously. In this paper, we show an efficient way

of the collaboration between the Java UI thread and

parallelized native C modules by core partitioning and

thread binding to cores. We also realize a real-time video

player system with low power optimization by utilizing

per-frequency profiling result in addition to the

previously proposed power optimization technique by

the OSCAR compiler.

The rest of this paper is structured as follows. Section

2 introduces the power management on Android

platform and section 3 introduces the OSCAR compiler.

Section 4 and 5 explains the structure of the

demonstration system. Section 6 shows the power

consumption evaluation results and section 7 gives the

conclusion of the paper.

2. Power Management on Android

This section shows a brief introduction about the

power management on Android Kernel based on the

Linux Kernel.

In the Linux operating system, one of the most

effective ways to save power consumption is to use CPU

DVFS (Dynamic Voltage and Frequency Scaling). This

allows the working frequency to be scaled in the running

time. The CPUFreq Governor decides the rules for

adjusting frequencies. The governor could be a

performance-oriented one which sets the CPU to use the

highest supported frequency. It is called “performance”.

In contrast, the power-oriented governor, named

“powersave”, tries to execute all tasks with the lowest

frequency, therefore, save energy as far as possible. In

this experiment, we used “ondemand” governor, and

“userspace” governor. The ondemand governor

dynamically adjusts the working frequency based on the

current workload while in userspace governor; users

must specify a working frequency and the whole system

will run at that frequency.

Figure 1: Original ondemand algorithm

In a Linux system, the ondemand governor is enabled

by default. The ondemand governor changes CPU

frequency based on CPU utilization. Fig. 1 shows the

original ondemand power control algorithm [11]. Every

X milliseconds, the system checks the current system

utilization. If it is larger than the upper bound value, the

system will set the working frequency to the maximum

value. Likewise, every Y milliseconds, the system

checks if the current utilization is smaller than the lower

bound, the working frequency will be decreased by 20%.

This process is repeated and applied for all available

CPU(s). The ondemand governor is very suitable to

periodical applications since the operating system can

predict the proper frequency based on the previous

workloads which are quite stable in case of periodical

applications.

In userspace governor, the user changes the working

frequency through sysfs interface. The desired

frequency value can be applied by writing to sysfs

filesystem such as /sys/devices/system/cpu/cpuX/cpu

freq/scaling_set_speed

組込みシステムシンポジウム 2014
Embedded Systems Symposium 2014

ⓒ 2014 Information Processing Society of Japan 56

ESS2014
2014/10/24

3. OSCAR Compiler

The following briefly describes the OSCAR

(Optimally Scheduled Advanced Multiprocessor)

Compiler and OSCAR API, which are used for

parallelization and power optimization of applications in

this paper.

The compiler exploits three kinds of tasks called

macro-tasks (MT) from a source program. Each MT can

be a basic block, a loop or a function. In constraints of

control dependencies and data dependencies, the

parallelism among MTs is exploited by the compiler and

the result is represented as a hierarchically defined

Macro Task Graph (MTG) [4]. Then macro-tasks are

scheduled to available processors.

Based on the result of tasks scheduling, the power

optimization is applied. In order to save power

consumption, OSCAR compiler manages to reduce the

working frequency as well as exploit clock gating and

power gating. In this paper, four levels of frequency

namely HIGH, MID, LOW and VLOW are used [7].

 For each macro task, the compiler checks if it can

reduce the working frequency of that task given that the

application performance is ensured. During the

execution time, if there is any CPU which is not

assigned with any task, that CPU would be forced to

power gating or clock gating mode. With multimedia

application, it is required the application to meet the

displaying rate of, for example, 30 frames per second.

OSCAR also considers this point and make sure that

application can run at low frequency but still meet the

deadline.

 Finally, the parallelized and power optimized C or

FORTRAN codes are generated with OSCAR API

directives [6]. The results can be improved to be more

precise and compatible with the target architecture by

providing additional information such as number of

cores, cache memory size in form of compiler options.

4. Video Player Demonstration System

The purpose of this paper is to show a demonstration

system of automatically parallelized and power

optimized realtime video application. This section

describes the details of the simple video application we

have developed.

Multimedia applications are very computation

intensive, therefore, it is common to use fast C code in

computing ,then send the result back to a Java thread

and let it complete the remaining work, i.e.: displaying

the data. Our video application is built based on this

observation. The application is divided into two parts:

Java part and arithmetic part. The former runs on UI

(User Interface) thread which is assigned to CPU 0. This

part is responsible for displaying computed data, doing

garbage collection and other system related works while

waiting for the results from arithmetic thread. Since we

should avoid performing long running operations on the

UI thread, it is necessary to create new threads and

implement heavy jobs on them. By doing so, the UI is

not blocked at the calculating time. All long running

computations are done on the arithmetic part which is

written in C. This part is parallelized, and optimized by

the OSCAR compiler. In this experiment, we create new

worker threads on different cores to take the advantage

of the OSCAR compiler as well as multi-core

architecture. This core partitioning can efficiently avoid

the interference between Java part and arithmetic part,

such as task migration and cache pollution.

Figure 2: Simple video player model

Figure 2 shows the completed process to compute the

data and display it in the device screen. Firstly, an UI

Thread invokes a method to request the data of the

frame N. This parameter N is passed as input of native

method through JNI. Depending on how many cores the

developer wants to utilize, it forks into one or two

threads working simultaneously. The forked threads will

process all arithmetic calculations and join after

組込みシステムシンポジウム 2014
Embedded Systems Symposium 2014

ⓒ 2014 Information Processing Society of Japan 57

ESS2014
2014/10/24

finishing all tasks. When all operations have done, the

shared C library returns the result and passed them to

Java thread through JNI interface. Finally the calculated

result will be display to a monitor.

During the time of working on arithmetic

computations, the frequency is scaled up and down

according to the power optimization result by OSCAR

compiler. Since C is a processor bound language, it is

possible to programmatically adjust the working

frequency at the native level by opening and writing to a

specific sysfs. Meantime, the UI Thread on CPU 0 will

take care of rendering, displaying one frame of the video,

executing garbage collection and so on. This process is

repeated until all frames are displayed.

One point should be noticed here is the JNI

communication delay between Java part and arithmetic

part. [12] shows that it takes about 0.15 microseconds to

pass a string from native C library on to the application.

Since the deadline of a multimedia application is 33

milliseconds, this delay is negligible.

5. Demonstration Board Setup

5.1. ODROID-X2 Board

Figure 3: ODROID-X2 Board

In this experiment, the ODROID-X2 is used as the

development board. ODROID-X2 has the Samsung

Exynos4412 Prime chip which is integrated by four

ARM Cortex-A9 cores driven at 1.7GHz and having

2GB main memory. The board is installed with Android

4.1.2. Moreover, in the ODROID-X2 board, all four

cores must be switched into a same clock frequency fro

DVFS.

Since the ODROID-X2 board does not support

power measurement on any part of it, some

modifications are implemented in order to measure the

power consumption. A circuit is wired near the PMIC

(Power Management IC) [13]. That circuit includes a

40[mΩ] shunt resistor and an amplifier. The power

consumption is calculated by the following formula:

Where P is power consumption, dV is potential

difference and V is supply voltage.

5.2. Experimental Demonstration Structure

The demonstration is arranged as shown in Fig. 4 and

the demonstration screen is shown in Fig. 5. The

intensive computation is run on ODROID-X2 board and

the calculated result is displayed on a separate monitor,

simultaneously. The execution time is shown on the

screen in the form of fps (frames per second) so that we

can keep track to the application performance.

Figure 4: Experimental demonstration structure

In the development board ODROID-X2, Power

Management IC part (below the cooler metal block

shown in Fig. 3) is connected to an amplifier. The

amplifier is then connected to a measurement device

whose power consumption information is recorded by a

different PC. There are several options set on that PC

such as sampling frequency, number of precision digits.

In addition, it is also possible to capture the power

組込みシステムシンポジウム 2014
Embedded Systems Symposium 2014

ⓒ 2014 Information Processing Society of Japan 58

ESS2014
2014/10/24

wave-form, obtain the average power consumption as

well as export data to a CSV file.

Figure 5: Demonstration screenshot

6. Power Consumption Evaluation

6.1. Evaluated Application

In this section we explain 2 realtime video

applications used in our demonstration.

6.1.1. MPEG-2 Decoder

MPEG-2 Decoder is a standard video coding

application from Mediabench. It converts MPEG-2

video coded bitstream into uncompress video frames. In

our experiment, a raw video output “.yuv” extension file

is obtained after running the application. We convert

frame data into rgb bitstream of the length 352x240 and

show that on the device screen by placing the data result

into a SurfaceView which is a dedicated drawing surface

provided by Android.

The input data of MPEG-2 Decoder application is

partitioned into slices and the application decodes the

input data slice by slice. The OSCAR exploits the slice

level parallelism. The deadline for MPEG-2 Decoder is

set to 30[fps] (33[ms] per frame)

6.1.2. Optical Flow

The Optical Flow tracks specific features in an image

across multiple frames. In our experiment, Optical Flow

is used to draw a vector field of displacement vectors

showing the movement of 16x16 blocks from two

consecutive frames.

The OSCAR compiler exploits the parallelism on

computing the motion vectors of each pixel block in two

images. The deadline for Optical Flow is also set to

30[fps] (33[ms] per frame).

6.1.3. Application Parallelization and Power

Optimization

After being parallelized by the OSCAR compiler,

both two applications are parallelized and the shared

libraries are built by ndk-build. The compiler flag is

“-O3 -pthread -mfpu=neon -ftree-vectorize”, the target

CPU is set to “armeabi-v7a”. By implementing core

partitioning, which means that we separate display and

calculation, and assign them to different cores, we can

obtained higher performance than doing everything on

the core 0. Table 1 shows the performance of MPEG-2

Decoder application with core partitioning and without

core partitioning. “Without core partitioning” means that,

both UI thread and arithmetic thread are assigned onto

core 0. Otherwise, the core 0 is used for UI thread and

the core 1 is used for arithmetic thread. From table 1, it

can be seen that the number of frames per second in case

of using core partitioning is twice as large as that in case

of not using core partitioning. In other words, the

application can have double-speed with core

partitioning.

Table 1: Comparison of application performance in case

of implementing core partitioning and not implementing

core partitioning

 Performance

With core partitioning 83fps

Without core partitioning 40fps

At this time, it is confirmed that both two

applications are obtained speed-up with the OSCAR

compiler, we can apply the power optimization. The

reason is that once the application is speed up, we have

more available time till the deadline. This implies we

likely have chance to reduce the working frequency as

well as have the CPU stay at idle state longer, therefore,

the power consumption can be saved.

The OSCAR pre-calculates the costs of all

macro-tasks based on the number of arithmetic

operations in them. These data are stored in the data

組込みシステムシンポジウム 2014
Embedded Systems Symposium 2014

ⓒ 2014 Information Processing Society of Japan 59

ESS2014
2014/10/24

structure of OSCAR. By using the pre-calculated data

and the imported deadline information, the OSCAR

estimates the execution time, the cost, the energy of

each macro-task in the application and tries to make the

best decision of the working frequency for each block.

The OSCAR uses 4 levels of working frequency in

this evaluation: HIGH, MID, LOW, VLOW. For

instance, in the current target platform ODROID-X2

which supports the frequency in the range of 200MHz to

1700MHz, HIGH is 1700MHz, MID is 800MHz, LOW

is 400MHz, VLOW is 200MHz, respectively.

With the help of additional profiler information, the

OSCAR determines the most proper frequency for each

macro task. It is common to say that for a task, if we

reduce the working frequency to half, the execution time

of that task will become twice as long as the origin.

However, the cycles for cache miss penalty might be

reduced when the clock frequency becomes lower. In

this case, the execution time of that task will become

shorter than expected.

The OSCAR calculates a task cost based on the

number of clock cycles in HIGH mode when the

profiled feedback is not used. It means, for instance,

when the clock cycle is 500 at the half clock frequency

of the HIGH mode, the task cost is dealt as 1000 in the

OSCAR compiler. In this paper, we measured the actual

cost of the specific tasks at every frequency step: HIGH,

MIDDLE, LOW and pass that profiling information to

the OSCAR. Table 2 shows the profiling measurement

results in case of MPEG-2 Decoder application.

Table 2: Measurement results of profiling cost in each

frequency level

HIGH (100%) cycles 100%

MIDDLE (52%) cycles 69%

LOW (23%) cycles 57%

From this table, it is clear that the profiling cost is not

proportional to the working frequency. Therefore, it is

necessary to pass the measured profiling information to

the OSCAR in order to obtain better results in power

optimization. The OSCAR compiler also computes the

idle time until deadline and generates some codes to

notify the CPU to go to idle state. Besides that, there are

some cases when it is impossible to parallelize a

sequential set of tasks, those tasks are assigned to one

specific CPU and the OSCAR will force other CPU(s) to

idle state while waiting for those tasks completed. Once

they are finished, the working CPU will wake all

remaining CPU(s) up.

6.2. Power Consumption Evaluation Results

This section shows the results of power

measurements on the ODROID-X2. We compare the

power consumptions of two applications in case of using

the OSCAR compiler and not using the OSCAR

compiler. With the OSCAR compiler power control, the

cpufreq governor is set to “userspace”. In contrast, the

benchmark application without power control is

executed with the Linux ”ondemand” governor.

Figure 6: Power consumption of MPEG-2 Decoder

Figure 7: Power consumption of Optical Flow

Fig.6 shows the power consumption results of

0.33 0.35 0.33

0.27

0

0.1

0.2

0.3

0.4

1 2 P
o
w

e
r

C
o
n

su
m

p
ti

o
n

 (
W

)

Number of Cores

Ondemand OSCAR

1.27

0.9

1.22

0.55

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 P
o
w

e
r

C
o
n

su
m

p
ti

o
n

 (
W

)

Number of Cores

Ondemand OSCAR

組込みシステムシンポジウム 2014
Embedded Systems Symposium 2014

ⓒ 2014 Information Processing Society of Japan 60

ESS2014
2014/10/24

MPEG-2 Decoder in case of 1 and 2 cores, respectively.

The power consumption in case of 1 core with OSCAR

power optimization is 0.33[W] which is the same as that

in Linux ondemand governor 0.33[W]. OSCAR and

ondemand governor are equal on 1 core (processor

element). The power consumption of 2 cores with power

control consumes 0.27[W] compared to 0.35[W] with

ondemand governor. In this case, the power

consumption is saved 22.9%. The power consumption in

the case of 2 cores with OSCAR power control 0.27[W]

is reduced by 18.2% compared to 1 core in the default

Linux ondemand governor 0.33[W].

Fig. 7 shows the power consumption results of

Optical Flow application in 3 cases: 1 core and 2 cores.

For 1 core, the power consumption is 1.27[W] with

OSCAR power optimization. In contrast, with

ondemand power control, the result is 1.27[W]. There is

no big difference on power consumption in this case.

For 2 cores, with power control, the power consumption

is 0.55[W] while it is 0.9[W] without using OSCAR

power control. The power consumption is reduced

38.9% by implementing OSCAR power optimization.

The power consumption in the case of 2 cores with

OSCAR power control 0.55[W] is reduced by 56.6%

against the execution with 1 core in Linux ondemand

governor 1.27[W].

Figure 8: Power waveform with OSCAR power

control

Fig. 8 shows the power waveforms with OSCAR

power optimization. In this figure, we can observe the

peaks in the wave form. These peaks indicate the time

when the application finishes calculating 1 frame data

and transfer the calculated data to UI thread to display

the frame. During this time, the system is running at the

highest frequency or in OSCAR's HIGH mode. In other

times, OSCAR tries to scale the working frequency as

low as possible.

Figure 9: Power waveform with ondemand governor

On the other hands, Fig. 9 points out a characteristic

of ondemand power control. Since the ondemand

governor decides the working frequency based on the

CPU utilization and previous system work-load, it tends

to keep frequency stable when dealing with periodical

application because there is not much difference

between the numbers of computations in 2 consecutive

frames. In ondemand governor, the applications run at

fixed frequency most of the time except the beginning of

the application and the time of garbage collection.

In our experiment, the ondemand governor keeps the

system running at the frequency close to OSCAR's MID

step. This might be a characteristic of ondemand or most

of current architecture which is to run at an average

frequency to assure the performance and avoid

switching frequency as much as possible. However,

DVFS have been showing that it is useful to reduce the

power consumption. By making use of DVFS, OSCAR

keeps the application running at lower frequency in

longer time and it results in the reduction of power

consumption.

7. Conclusion

Reducing energy consumption is gradually becoming

one of the most important issue in smart device industry

and automatically optimize the power consumption is a

very promising way in order to attack that with a higher

performance as well as lower energy consumption. This

組込みシステムシンポジウム 2014
Embedded Systems Symposium 2014

ⓒ 2014 Information Processing Society of Japan 61

ESS2014
2014/10/24

paper shows a realtime video demonstration system for

parallelization and power reduction controlled by

OSCAR Automatic Parallelization Compiler. MPEG2

Decoder Application showed 18.2% power reduction

from 0.33[W] on ordinary execution to 0.27[W] on

execution with power optimization by OSCAR compiler

using 2 cores and Optical Flow Application showed

56.6% power reduction from 1.27[W] on ondemand

Linux governor 1 core to 0.55[W] on execution with

power optimization by OSCAR compiler using 2 cores.

Reference

[1] Kundu, T.K. ; Paul, K.: Improving Android

Performance and Energy Efficiency, VLSI Design

(VLSI Design), 2011 24th International

Conference on, On page(s): 256 – 261

[2] Ki-Cheol Son ; Jong-Yeol Lee: The method of

android application speed up by using NDK,

Awareness Science and Technology (iCAST),

2011 3rd International Conference on, On page(s):

382 – 385

[3] OpenMP: http://openmp.org/wp/

[4] Kasahara, H., Obata, M., Ishizaka, K.: Automatic

coarse grain task parallel pro-cessing on smp using

openmp. Workshop on Languages and Compilers

for ParallelComputing (2001) 1–15

[5] Obata, M., Shirako, J., Kaminaga, H., Ishizaka, K.,

Kasahara, H.: HierarchicalParallelism Control for

Multigrain Parallel Processing. Lecture Notes in

ComputerScience2481(2005) 31–44

[6] Kimura, K., Mase, M., Mikami, H., Miyamoto, T.,

Shirako, J., Kasahara, H.: OS-CAR API for

Real-time Low-Power Multicores and Its

Performance on Multicoresand SMP Servers.

Lecture Notes in Computer Science (2010)

188–202

[7] Shirako, J., Oshiyama, N., Wada, Y., Shikano, H.,

Kimura, K., Kasahara, H.: Compiler Control

Power Saving Scheme for Multi Core Processors.

Lecture Notesin Computer Science (2007)

362–376

[8] Yamamoto, H., Hirano, T., Muto, K., Mikami, H.,

Goto, T., Hillenbrand, D., Takamura, M., Kimura,

K., Kasahara, H.: OSCAR Compiler Controlled

Multicore PowerReduction on Android Platform,

The 26th International Workshop on Languages

and Compilers for Parallel Computing (2013)

[9] Samsung Electronics Co., L.: White Paper of

Exynos 5.1(1) (April 2011) 1–8

[10] Hardkernel: ODROID-X2

http://www.hardkernel.com/renewal2011/products

/prdtinfo.php?gcode=G135235611947

[11] The Ondemand Governor

https://www.kernel.org/doc/ols/2006/ols2006v2-pa

ges-223-238.pdf

[12] Sangchul Lee; Jae Wook Jeon: Evaluating

performance of Android platform using native C

for embedded systems, Control Automation and

Systems (ICCAS), 2010 International Conference

on, On page(s) 1160 - 1163

[13] SAMSUNG ELECTRONICS: Samsung

Semiconductors Global Site

https://www.samsung.com/global/business/semico

nductor/product/poweric/overview

組込みシステムシンポジウム 2014
Embedded Systems Symposium 2014

ⓒ 2014 Information Processing Society of Japan 62

ESS2014
2014/10/24

