6Z - 3

超小型マルチタッチ表示装置における ズーム・スクロールを用いたタッチ入力の評価

梅澤 猛 大澤 範高 ‡ 原 清貴†

[‡]千葉大学大学院融合科学研究科 「千葉大学工学部情報画像学科

1. はじめに

超小型マルチタッチ表示装置を搭載した腕時 計型端末が新たな情報通信端末の1つとして注目 されている. 腕時計型端末は携帯性に優れるが, ディスプレイサイズの制約が強いため、表示す る情報量を増やすと操作が困難になるという問 題がある. そこで本研究では、ズームとスクロ ールを併用することで狭い領域でも効率的な操 作を実現するタッチ入力法を提案する.

2. 関連研究

Oney らは、超小型マルチタッチ表示装置向け の入力法として ZoomBoard を開発した[1]. ZoomBoard は文字入力を対象にし、OWERTY 配 列のソフトウェアキーボード全体を画面に表示 (入力初期状態), タップでタップ位置を拡大, 拡大したキーのタップによる入力, 入力後自動 で入力初期状態に戻るという流れを繰り返すこ とで、狭い領域での入力を可能とした. しかし, 拡大率が固定である, ズーム位置を修正する場 合に, 入力初期状態に戻って操作をやり直す必 要があるなどユーザビリティに課題がある.

3. 提案手法

3.1. ズーム・スクロールジェスチャ

現在のスマートフォンなどに搭載されたマル チタッチ表示装置では、ズームはピンチ操作、 スクロールは指1本によるドラッグで定義されて いる. 提案手法では, ズームに関してはピンチ 操作を踏襲し、スクロールは2本指ドラッグで定 義することで、 双方のジェスチャをシームレス に利用可能とする. ズームとスクロールを同時 に操作可能とすることで, ズーム位置の修正が

Evaluation of Touch Input Method with Zooming and Scrolling for Ultra-Small Multi-Touch Displays

Kiyotaka HARA[†], Takeshi UMEZAWA[‡] and Noritaka OSAWA[‡]

[†]Department of Informatics and Imaging Systems, Faculty of Engineering, Chiba University

[‡]Graduate School of Advanced Integration Science, Chiba University

容易になると期待できる.

ここで, 腕時計サイズの表示装置上では2本の 指両方を自由に動かせる領域を確保できない場 合がある. そこで、1本の指は固定し、もう1本 の指のみを動かすジェスチャを活用する. 従来, 片方の指のみを動かすジェスチャはピンチズー ムまたは回転が割り当てられることが多いが、 文字入力の際には回転操作は不要である. した がって、提案手法では2指間の距離変化をズーム に、指の変位量をスクロールにそれぞれ反映さ せることで、狭い領域での操作の効率化を図る.

3.2. 変換式

画面右向きに X 軸、上向きに Y 軸がある座標 系において、時刻 t のある点 A の位置を A, 2 本 の指の位置をそれぞれ p, q, その直前の時刻 tの点 A の位置を A', 指の位置をそれぞれ p', q'とすると、t'から t におけるズーム・スクロール による変位は以下の式で示される.

$$\begin{pmatrix} A_x \\ A_y \\ 1 \end{pmatrix} = \begin{pmatrix} s & 0 & (1-s)c_x + t_x \\ 0 & s & (1-s)c_y + t_y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} A'_x \\ A'_y \\ 1 \end{pmatrix} \tag{1}$$

ここで, 時刻 t'のズーム率を s'とすると, ズーム 率 s, ズームの中心の位置 c, スクロール量ベク トルtは、以下の式で与えられる.

$$s = s' \times \frac{\| p - q \|}{\| p' - q' \|}$$
 (2)

ないなければ、以下の式で与えられる。
$$s = s' \times \frac{\| \boldsymbol{p} - \boldsymbol{q} \|}{\| \boldsymbol{p}' - \boldsymbol{q}' \|}$$

$$\boldsymbol{c} = \begin{pmatrix} c_x \\ c_y \end{pmatrix} = \begin{pmatrix} \min(p_x, q_x) + \frac{|p_x - q_x|}{2} \\ \min(p_y, q_y) + \frac{|p_y - q_y|}{2} \end{pmatrix}$$

$$\boldsymbol{t} = \begin{pmatrix} t_x \\ t_y \end{pmatrix} = \begin{pmatrix} \frac{\Delta p_x + \Delta q_x}{2} \\ \frac{\Delta p_y + \Delta q_y}{2} \end{pmatrix}$$
(4)

$$\mathbf{t} = \begin{pmatrix} t_x \\ t_y \end{pmatrix} = \begin{pmatrix} \frac{\Delta p_x + \Delta q_x}{2} \\ \frac{\Delta p_y + \Delta q_y}{2} \end{pmatrix} \tag{4}$$

 $\|v\|$ はベクトルの長さ、 v_x はベクトルの x成分、 v_v はベクトルの y 成分, Δv_x は t'から t までのベク トルの x 成分の変位量 $(v_x - v'_x)$, Δv_y は t'から t までのベクトルの y 成分の変位量 $(v_v - v'_v)$, min(a, b)は引数の最小値と定義する. (1), (2), (3) 式は既存のピンチズームとスクロ ールの実装に利用されている. また, スクロー ル量を(4)式のように指2本の変位量の平均と することで、2本指ドラッグだけでなく、指2本 のうち1本のみ動かすジェスチャの場合でもスク ロールを可能とする. (4) 式でスクロール量を 決定する場合, ズームを意図した操作でもスク ロールが行われるが、ユーザのスクロール操作 による調整で対応する.

4. ソフトウェアキーボードへの実装

既存手法である ZoomBoard と比較を行い、提 案手法の有用性を確認するために, 提案手法に よるズーム・スクロール機能をタブレット端末 Google Nexus7 (2012) 上で動作するソフトウェ アキーボードとして実装した。iPod nano(第6世 代)のディスプレイサイズ 1.54 インチを参考に、 入力領域は 28 mm × 28 mm とした. 図1に実装 したソフトウェアキーボードの概観を示す. 入 力領域の上半分を入力文字出力領域、下半分を キーボード表示領域とした.

図2に操作の様子を示す. 拡大は指先の間隔を 広げる動作、縮小は狭める動作で行う. 図 2 (a) のように片方の指(図 2 (a) では下の指)を固 定した状態で, もう一方の指を動かすことでズ ーム率を調整することができる. また, スクロ ールは図 2(b) のような 2本指ドラッグ, もし くは図 2 (c) のように片方の指(図 2 (c) では 左の指)を固定した状態で,もう一方の指を動 かすことで行う. 一方の指のみを動かすスクロ ールは,スクロール量は指を動かした距離の半 分になり、2 指間の距離に合わせてズーム率が変 わる.しかし、固定した指方向でなければズー ム率の変化は緩やかになるため、操作性への影 響は小さいと考える.

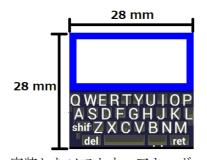
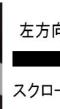


図 1: 実装したソフトウェアキーボード



拡大 縮小

指を広げる

指を狭める (a) ズーム操作

(b) 2本指スクロール (左にスクロールする場合)

(c) 一方の指のみを動かしたスクロール (上にスクロールする場合)

図 2: 操作の様子(白矢印:指の移動方向)

5. まとめ

本研究では, ズームとスクロールを併用する ことで超小型マルチタッチ表示装置を想定した タッチ入力法を提案した. 提案手法をソフトウ ェアキーボードに実装したところ,28mm 角の領 域で英字入力が可能であることが確認できた. 今後は、提案手法と ZoomBoard を用いて被験者 実験を行い, 入力時間やキー誤入力数などから 提案手法の有効性を検証していく予定である.

参考文献

[1] Oney, S., Harrison, C., Ogan, A. and Wiese, J. "ZoomBoard: A Diminutive QWERTY Soft Keyboard Using Iterative Zooming for Ultra-Small Devices". Proc. CHI 2013, pp.2799-2802 (2013).