
Vol. 46 No. 8 IPSJ Journal Aug. 2005

Regular Paper

Efficient Group Signature Scheme Based on
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The concept of group signature allows a group member to sign message anonymously on
behalf of the group. In the event of a dispute, a designated entity can reveal the identity of a
signer. Previous group signature schemes use an RSA signature based membership certificate
and a signature based on a proof of knowledge (SPK) in order to prove the possession of a
valid membership certificate. In these schemes, all of SPKs are generated over an unknown-
order group, which requires more work and memory compared with a publicly-known-order
group.

In this paper, we present an efficient group signature scheme with a membership revocation
function. Our membership certificate is based on a Nyberg-Rueppel signature (NR-signature)
over a known-order group. We also reconstruct all SPKs that prove to have “valid” (non-
revoked) membership certificate. As a result, our scheme is more efficient than another group
signature based on NR-signature.

1. Introduction

A group signature proposed by Chaum and
van Heyst 12), allows a group member to sign
messages anonymously on behalf of the group.
A group signature has a feature of tracing, that
is, the identity of a signer can be revealed by
a designated entity in case of dispute. A group
signature consists of three entities: group mem-
bers, a group manager, and an escrow manager.
The group manager is responsible for the sys-
tem setup, registration and revocation of group
members. The escrow manager has an ability
of revealing the anonymity of signatures with
the help of a group manager.

A group signature consists of six functions,
setup, registration of a user, revocation of a
group member, signature generation, verifica-
tion, and tracing, which satisfy the following
features:
Unforgeability : Only group members are able

to generate a signature on a message;
Exculpability : Even if the group manager,

the escrow manager, and some of group
members collude, they cannot generate a
signature on behalf of other group mem-
bers;

Anonymity : Nobody cannot identify a group
member who generated a signature on a
message;

Traceability : In the case of a dispute, the
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identity of a group member is revealed by
the cooperation of both the group manager
and the escrow manager;

Unlinkability : Nobody can decide whether or
not two signatures have been issued by the
same group member;

Revocability : In the case of withdrawal, the
group manager can revoke a member, and a
signature generated by the revoked member
cannot pass the verification;

Anonymity after revocation : Nobody can
identify a group member who generated a
signature on a message even after a group
member was revoked;

Unlinkability after revocation : Nobody can
decide whether or not two signatures have
been issued by the same group member
even after a group member was revoked.

The efficiency of a group signature scheme is
considered by the size of public key and signa-
ture, the work complexity of signature genera-
tion and verification, and administration com-
plexity of revocation and registration of a group
member.

In the next section, we provide an overview
of related work.

1.1 Related Work
Various group signature schemes have been

proposed 1),2),4)∼6),8),9),11),21). These group sig-
nature schemes are classified into two types, a
public-key-registration type, and a certificate-
based type.

Public-key-registration type group signature
scheme 6) uses only a known-order group and
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can easily realize the revocation by removing
the group member’s public key. However, both
a group public key and the signature size de-
pend on the number of group members. It be-
comes serious if we apply them on large group.

The certificate-based type 1),2),4),5),8),9),11),21)

gives a membership certificate to group mem-
bers, and the group signature is based on the
zero-knowledge proof of knowledge (SPK) of
membership certificate. These schemes are
based on the following mechanisms. A user,
denoted by Mi, who wants to join the group,
chooses a random secret key xi, and com-
putes yi = f(xi), where f is a suitable one-
way function. Mi commits to yi (for instance,
Mi signed on yi) and sends both yi and the
commitment to the group manager denoted by
GM, who returns Mi with a membership cer-
tificate ceri = SigGM(yi). To sign a message
m on behalf of the group, Mi encrypts yi to
ci using the public key of the escrow man-
ager denoted by EM, and generates a signa-
ture based on the proof of knowledge which
shows the knowledge of both xi and ceri such
that ceri = SigGM(f(xi)). The verification
is done by checking the signature of knowl-
edge. The escrow manager can easily reveal the
identity of a signer by decrypting ci. There-
fore, neither a group public key nor signature
size depends on the number of group members.
On the other hand, this type must make the
member’s certificate invalid when they revoke.
This means that they need revocation mecha-
nism independently. This is why the previous
schemes 1),2),9),11) do not have any function of
revocation. The schemes 4),5),8),21) provide the
function of revocation. In Song’s scheme 21),
a membership certificate is valid for a limited
period. Therefore, each group member has to
update his/her membership certificate in each
time period. Camenisch and Lysyanskaya’s
scheme 8) needs to update a membership cer-
tificate in both cases of registration and revo-
cation. Thus, their scheme requires additional
cost to manage the valid member although their
verification does not depend on the number of
registered or revoked member. On the other
hand Bresson and Stern’s scheme 5) uses a CRL
to realize revocation. CRL is a public list of in-
formation related with revoked-member’s cer-
tificates. This scheme does not have to up-
date a membership certificate, but the size of
group signature and the cost of signature gen-
eration and verification depend on the number

of revoked members. Ateniese and Tsudik pro-
posed quasi-efficient solution for CRL-based re-
vocation 4). CRL-based revocation scheme is
based on the following mechanisms. The group
manager computes Vj = f ′(cerj) for each re-
voked member Mj by using a suitable one-way
function f ′ and publishes Vj together with the
current CRL. In the signing phase, a signer
Mi also sends T = f ′′(f ′(ceri)) with a signa-
ture by using a suitable one-way function f ′′.
In the verification phase, a verifier checks that
T �= f ′′(Vj) for ∀Vj ∈ CRL. The signature
size and the cost of signature generation does
not depend on the number of revoked members,
but the cost of verification depends on the num-
ber of revoked members. To sum up, there are
certificate-update-based revocation and CRL-
based revocation. In the former, the cost of ver-
ification does not depend on the number of re-
voked members, but each group member needs
to update a membership certificate. In the lat-
ter, each group member does not need to up-
date a membership certificate, but the cost of
verification depends on the number of revoked
members. The previous certificate-based type
group signature schemes that use an RSA signa-
ture over an unknown-order group for the mem-
bership certificate are not efficient because an
SPK over an unknown-order group is inefficient
than that over a known-order group.

A Nyberg-Rueppel signature, denoted by
NR-signature in this paper, over a known-
order group was applied to a group signature 2),
which had been done independently with our
works 16)∼18). In their preliminary papers which
published on Nov. 12th in 2002 and Jan. 15th
in 2003, they fixed message M and used a
signature on M as a membership certificate.
Their revised papers, which were also done in-
dependent of ours, used a signature on a mem-
ber’s public key and not a fixed message as a
membership certificate. Although they intro-
duced an SPK over known-order group, it suf-
fers from much work complexity because 12/18
of SPKs are constructed over unknown-order
group. Furthermore, it does not provide the
function of revocation which requires much ad-
ministrative complexity if we simply apply a
CRL-based revocation 4) on it.

1.2 Our Contribution
Our previous paper 18) uses NR-signature and

only known-order groups. This scheme is based
on a special case of Multiple Discrete Logarithm
Problem (MDLP) which uses a q-order sub-
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group GP of residue ring ZP with two known
primes q, p, P = pq and q|p − 1 in order to do
all computations over known-order group. Ap-
parently it uses rather special group. This is
why such a special case of MDLP was pointed
out to be solved. However, naturally, MDLP
should be defined on an ordinary finite field be-
cause it is a variant of Discrete Logarithm Prob-
lem (DLP). So, in this final paper, we define
MDLP rather naturally on an ordinary finite
field, which forces us to use SPK over unknown-
order group. However, we improve SPK that
prove discrete logarithm over unknown-order
group in a large interval, and thus, we hold the
computation or memory amount down. On the
other hand, our previous scheme does not sat-
isfy the feature of unlinkability, which is also
improved by using a random base in each sig-
nature generation.

In this paper, we present an efficient group
signature scheme with CRL-based revocation
which realizes the full features of unforgeability,
exculpability, traceability, unlinkability, and re-
vocability. Our scheme is constructed over
both unknown-order and known-order groups
to prove knowledge of having “valid” mem-
bership certificate. The use of known-order
groups can reduce the size of group signa-
ture and computation amount of both signa-
ture generation and verification compared with
a group signature based on RSA signature
which uses only unknown-order groups. We
use SPKs over known-order group as many as
possible. Compared with another group sig-
nature based on NR-signature 2) with 12 or
6 SPKs over unknown-order or known-order
groups, our scheme consists of 5 SPKs over
both unknown-order and known-order groups,
respectively. Our group signature efficiently
proves to have a valid membership at one time.
On the other hand, the group signature scheme
that used NR-signature 2) does not have a func-
tion of revocation and, thus, we need to com-
bine CRL-based revocation 4) to realize a re-
vocability. This yields additional computation
amount for signature and size of signature.

1.3 Organization
This paper is organized as follows. In Sec-

tion 2, we summarize some notations and def-
initions used in this paper. In Section 3, we
introduce new building blocks. In Section 4,
we propose our new group signature scheme.
Section 5 discusses the security of our scheme.
Features and efficiency of our scheme are ana-

lyzed in Section 6. Finally, Section 7 concludes
our paper.

2. Preliminaries

2.1 Notation
In this section, we summarize facts used in

this paper. Let the empty string be 0̃. For a
set A, a ∈R A means that a is chosen randomly
and uniformly from A, and A \ {a} means that
A − {a} = {x ∈ A|x �= a}. Let c[j] be the
j-th bit of a string c. For integers �1, �2 ∈ N,
x ∈]�1, �2[ means that �1 < x < �2. We assume
a collision resistant hash function H : {0, 1}∗ →
{0, 1}k for a security parameter k.

2.2 Number Theoretic Assumption
In this section we describe the secu-

rity assumption used in our group signature
scheme 14). Let n be a composite number which
is a product of two safe primes and Gn ⊂ Z∗

n be
a cyclic subgroup with unknown-order but the
length of order �n is known.

Problem 1 [Strong RSA Problem] Given
n and gn ∈ Gn, find a pair (g′n, x) ∈ Gn × Z

with x > 1 such that gn = g′xn mod n.

Assumption 1 [Strong RSA Assump-
tion] The probability that Problem 1 is solved
by a probabilistic polynomial-time algorithm is
negligible small.

2.3 Proof of Knowledge
A signature based on a zero-knowledge proof

of knowledge (SPK), denoted by SPK{(α1, · · · ,
αw) : Predicates}, is used for proving that a
signer knows α1, · · · , αw satisfying Predicates.
We borrow five SPKs over known-order groups
from Refs. 7), 9), 10), 20), 22), SPK of (1) a
discrete logarithm, (2) a discrete logarithm lies
in a larger interval, (3) representations, (4) a
double discrete logarithm, and (5) a common
discrete logarithm over different groups.

Let ε be a security parameter, q, p and p̃
be primes with q|(p − 1) and p|(p̃ − 1), and n
be a composite number which is a product of
two safe primes. We use three cyclic subgroups
Gp ⊂ Z∗

p with order q, Gp̃ ⊂ Z∗
p̃ with order p,

and Gn ⊂ Z∗
n with unknown order.

Definition 1 [SPK of a discrete loga-
rithm]20) Let g, y ∈ Gp. An SPK proving the
knowledge of discrete logarithm of y to the base
g on a message m ∈ {0, 1}∗ is denoted as

SPK{(α) : y = gα mod p }(m),
which consists of a set (c, s) ∈ {0, 1}k ×Zq sat-
isfying c = H(g||y||ycgs mod p||m).
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If a signer knows an integer x ∈ Zq such that
y = gx mod p holds, such a signature on a mes-
sage m corresponding to a public key y can be
computed as follows:
( 1 ) choose a random exponent r ∈R Z∗

q ; and
( 2 ) compute c = H(g||y||gr mod p||m) and

s = r − cx mod q.
An SPK of a discrete logarithm on an unknown-
order group is defined, which proves a range of
the discrete logarithm lies in a larger interval.

Definition 2 [SPK of a discrete loga-
rithm lies in a larger interval]9) Let gn, yn ∈
Gn. An SPK proving the knowledge of discrete
logarithm x ∈]0, �n[ of yn to the base gn lies in
the larger interval on a message m ∈ {0, 1}∗ is
denoted as

SPK{(α) : yn = gα
n mod n

∧ α ∈ ]− 2k�n, 2ε+k�n[ }(m),
which consists of a set of (c, s) ∈ {0, 1}k× ] −
2k�n, 2ε+k�n[ satisfying c=H(gn||yn||yc

ngs
n mod

n||m).

If a signer knows an integer x ∈]0, �n[ such that
yn = gx

n mod n holds, such a signature on a
message m corresponding to a public key yn

can be computed as follows:
( 1 ) choose a random exponent r ∈R

]0, 2ε+k�n[; and
( 2 ) compute c = H(gn||yn||gr

n mod n||m)
and s = r − cx in Z.

Definition 3 [SPK of representations]7)

Let g1, · · · , gu, y1, · · · , yv ∈ Gp. An SPK prov-
ing the knowledge of representations of y1, · · · ,
yv to the base g1, · · · , gu on a message m ∈
{0, 1}∗ is denoted as

SPK{(α1, · · · , αw) : y1 =
J1∏

j=1

g
αa1j

b1j
mod p

∧ · · · ∧ yv =
Jv∏

j=1

g
αavj

bvj
mod p }(m)

where Ji ∈ [1, u] are the number of bases
of yi, aij ∈ [1, w] are indexes of the el-
ements αaij

, and bij ∈ [1, u] are indexes
of the bases gbij

, which consists of a set of
(c, s1, · · · , sw) ∈ {0, 1}k × Z

w
q satisfying c =

H(g1|| · · · ||gu||y1|| · · · ||yv||yc
1

∏J1
j=1 g

sa1j

b1j
mod p||

· · · ||yc
v

∏Jv

j=1 g
savj

bvj
mod p||m).

If a signer knows x1, · · · , xw ∈ Zq such that y =∏J1
j=1 g

xa1j

b1j
mod p, · · · , yv =

∏Jv

j=1 g
xavj

bvj
mod p,

then a signature on a message m can be com-
puted as follows:

( 1 ) choose random exponents rω ∈R Z∗
q for

1 ≤ ω ≤ w;
( 2 ) compute c = H(g1|| · · · ||gu||y1|| · · · ||yv||∏J1

j=1 g
ra1j

b1j
mod p|| · · · ||∏Jv

j=1 g
ravj

bvj
mod p

||m) and sω = rω − cxω mod q for 1 ≤
ω ≤ w.

The above SPK can be also defined the case
of an unknown-order group. Let order of the
unknown-order group be smaller than is pub-
licly known �. The SPK over an unknown-order
group can be computed in almost the same pro-
cedures as the case of a known-order group.
The differences are: choose all rω ∈]0, 2ε+k�[
and compute all sω over Z. Such differences
increase the size of SPK.

Definition 4 [SPK of a double discrete
logarithm]22) Let g̃, ỹ ∈ Gp̃ and g ∈ Gp. An
SPK proving the knowledge of double discrete
logarithm of ỹ to the base g̃ and g on a message
m ∈ {0, 1}∗ is denoted as

SPK{(α) : ỹ = g̃gα

mod p̃ }(m),
which consists of a set of (c, s1, · · · , sk)∈{0, 1}k
×Zk

q satisfying c = H(g||g̃||ỹ||(ỹc[1]g̃1−c[1])gs1

modp̃|| · · · ||(ỹc[k]g̃1−c[k])gsk mod p̃||m).

A signer who knows the secret key x ∈ Zq

with ỹ = g̃gx

mod p̃ can compute a signature
(c, s1, · · · , sk) = SPK{(α) : ỹ = g̃gα

mod
p̃ }(m) on a message m as follows:
( 1 ) choose random exponents rj ∈R Z∗

q for
1 ≤ j ≤ k;

( 2 ) compute c = H(g||g̃||ỹ||g̃gr1 mod p̃|| · · · ||
g̃grk mod p̃||m) and sj = rj−c[j]x mod q
for 1 ≤ j ≤ k.

Definition 5 [SPK of a common discrete
logarithm over different groups]10) Let
gp, yp ∈ Gp and gn, yn ∈ Gn. An SPK prov-
ing the knowledge x ∈]0, �n[ of common discrete
logarithm of yp to the base gp over Gp and yn to
the base gn over Gn on a message m ∈ {0, 1}∗
is denoted as

SPK{(α) : yp = gα
p mod p

∧ yn = gα
n mod n }(m),

which consists of a set of (c, s) ∈ {0, 1}k×
]−2k�n, 2ε+k�n[ satisfying c = H(gp||gn||yp||yn||
yc

pg
s
p mod p||yc

ngs
n mod n||m).

If a signer knows such an integer x ∈]0, �n[, in
which both yp = gx

p mod p and yn = gx
n mod n

hold, a signature on a message m corresponding
to public keys yp and yn can be computed as
follows:
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( 1 ) choose a random exponent r ∈R

]0, 2ε+k�n[;
( 2 ) compute c = H(gp||gn||yp||yn||gr

p mod
p||gr

n mod n||m) and s = r − cx in Z.

3. New Building Blocks

In addition to the known building blocks
summarized in Section 2, we introduce new
building blocks of multiple discrete logarithm
problem and SPK.

3.1 The Modified NR-signature and
the Multiple Discrete Logarithm
Problem

Before presenting our scheme, let us summa-
rize NR-signature 19). The original scheme is
as follows. For a q-order element g ∈ Z

∗
p, a

signer chooses his secret key x ∈R Zq and com-
putes his public key y = gx mod p. A signa-
ture (r, s) ∈ Zp × Zq on a message m ∈ Z∗

p

is computed as r = mg−w mod p and s =
w − rx mod q for a random integer w ∈R Zq,
which is verified by recovering the message m
as m = ryrgs mod p.

Message recovery signature schemes are sub-
ject to an existential forgery, in which an at-
tacker cannot control a message. In a sense, it
is not a serious problem because we can avoid
such a forgery by restricting a message to a par-
ticular format. However, suppose that we want
to use it for a membership certificate of DLP-
based key like m = gt mod p. Then, by using
a valid signature for a message m = gt mod p
with a known discrete logarithm t, it is easy
to obtain a forged signature for some known
message m′ = gt′ mod p, in which an attacker
can control a message of m′. Therefore, we
must remove such a defect from the original
NR-signature to generate a membership certifi-
cation of a DLP-based key.

In order to generate a membership certifi-
cate of a DLP-based key securely, we introduce
another base g′ ∈ Z

∗
p with order q such that

the discrete logarithm of g′ to the base g is
unknown. We restrict the message space for
NR-signature to {g′t mod p | t ∈ Zq} and com-
pute (ri, si) as ri = zig

w
1 mod p and si = w −

rixGM mod q. In our scheme, GM or Mi com-
putes each public key as yGM = gxGM mod p or
zi = g′xi mod p, respectively. Then, a member-
ship certificate (ri, si) ∈ Zp ×Zq of Mi’s public
key zi = g′xi mod p is given as ri = yri

GMgsizi

(mod p).
We define the Multiple Discrete Logarithm

Problem (MDLP), which is used for the secu-
rity proof of our scheme. Let k be a security
parameter, q be a k-bit prime, and p be prime
with q|(p− 1), h1, h2 and h3 be elements in Z∗

p

with order q ☆.

Problem 2 [MDLP Problem] Given Zp

and h1, h2 and h3 ∈ Z
∗
p with order q such that

the discrete logarithms based on each other el-
ement are unknown, find a pair (x1, x2, x3) ∈
Zp×Zq×Zq such that x1 = hx1

1 hx2
2 hx3

3 (mod p).

Assumption 2 [MDLP Assumption] The
probability that Problem 2 is solved by a prob-
abilistic polynomial-time algorithm is negligible
small.

3.2 SPK of a Discrete Logarithm Lies
in an Interval

We need an SPK of a discrete logarithm lies
in an interval for our group signature scheme.
There is an SPK which prove a discrete log-
arithm x lies in ] − 2kb, 2ε+kb[ for a integer
x ∈]a, b[, a, b ∈ N, and security parameters k
and ε, but there is no SPK which prove the dis-
crete logarithm lies in ]a, b[.

In Ref. 2), they propose an SPK which proves
the knowledge of a discrete logarithm in an in-
terval ]a, b[. The SPK consists of five commit-
ments and proof of knowledge of twelve secret
values. We propose a new SPK of a discrete
logarithm in an interval of ]a, b[ which consists
three commitments and proof of knowledge of
five values.

Both SPKs cannot prove a value lies in an
exact interval, but prove a value lies in a slightly
larger interval. This is why we take the value
in a slightly smaller interval to be proved. This
restriction is also needed in Ref. 2).

In order to prove a discrete logarithm x =
loggn

yn for gn, yn ∈ Gn lies in an interval
]a, b[, we define a slightly smaller interval of
x, x ∈ ]�1, �2[⊂]a, b[ where �1 = a + 2k+1b1/2

and �2 = b − 2k+1b1/2. Then a prover sets
x1 =

⌊
(x− �1)1/2

⌋
, x̄1 =

⌊
(�2 − x)1/2

⌋
, x2 =

(x − �1) − x2
1, and x̄2 = (�2 − x) − x̄2

1, and
computes y1 = gx1

n mod n, y2 = gx̄1
n mod n.

(Note that, x2 ≤ 2x
1/2
1 < 2b1/2 because x1 < b

and if x2 = 2x
1/2
1 + 1 then x − �1 represents

x2
1 + (2x

1/2
1 + 1) = (x1 + 1)2. From the same

☆ In the previous version, we use MDLP on a rather
special group 18), which is easily solved for the rea-
son of the group construction. Here we redefine
MDLP on a general group.
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reason, x̄2 < 2b1/2.) Next, he generates the
following SPK.
SPK{(α1, α2, α3, α4, α5) : yn = gα1

n mod n
∧ y1 = gα2

n mod n ∧ y2 = gα3
n mod n

∧ yn/g�1
n = yα2

1 gα4
n mod n

∧ g�2
n /yn = yα3

2 gα5
n mod n

∧ α4, α5 ∈ ]− 2k+1b1/2, 2ε+k+1b1/2[ }(m)
=(c, s1, s2, s3, s4, s5) ∈ {0, 1}k× ]− 2kb,

2ε+kb[×]− 2kb1/2, 2ε+kb1/2[2 ×]− 2k+1b1/2,

2ε+k+1b1/2[2.
This SPK is a combination of Definition 2
and 3. We show the above SPK is a proof
of knowledge that proves a discrete logarithm
x = loggn

yn lies in an interval ]a, b[.

Proposition 1 The interactive protocol corre-
sponding to
SPK{(α1, α2, α3, α4, α5) : yn = gα1

n mod n
∧ y1 = gα2

n mod n ∧ y2 = gα3
n mod n

∧ yn/g�1
n = yα2

1 gα4
n mod n

∧ g�2
n /yn = yα3

2 gα5
n mod n

∧ α4, α5 ∈ ]−2k+1b1/2, 2ε+k+1b1/2[ }(m)
proves that a discrete logarithm of yn to the base
gn lies in ]a, b[.

Proof : The SPK proves the following knowl-
edge of α1, α2, α3, α4, and α5.

yn = gα1
n mod n (1)

y1 = gα2
n mod n (2)

y2 = gα3
n mod n (3)

yn/g�1
n = yα2

1 gα4
n mod n (4)

g�2
n /yn = yα3

2 gα5
n mod n (5)

α4,α5 ∈ ]− 2k+1b1/2, 2ε+k+1b1/2[. (6)
From Eqs. (1), (2), and (3) we can represent
Eqs. (4) and (5)

gα1−�1
n = g

α2
2+α4

n mod n,
and

g�2−α1
n = g

α2
3+α5

n mod n.
Therefore we get

α1 − �1 = α2
2 + α4 (in Z),

and
�2 − α1 = α2

3 + α5 (in Z)
without knowledge of order of Gn. From
α2, α3 ∈ Z then α2

2 > 0 and α2
3 > 0, the lower

bound of α1 − �1 or �2 − α1 is given
−2k+1b1/2 < α1 − �1,

and
−2k+1b1/2 < �2 − α1,

respectively, and thus, we get
a = �1 − 2k+1b1/2 < α1 < �2 + 2k+1b1/2 = b

Therefore, this SPK proves α1 which is the dis-
crete logarithm of yn to the base gn lies in the
interval ]a, b[. �

4. Proposed Scheme

We present the group signature scheme,
which uses SPK over known-order and
unknown-order groups.

4.1 Functional Description
A group signature scheme with CRL-based

revocation consists of the following procedures:
Setup: A probabilistic polynomial-time algo-

rithm that for input of a security parameter
k outputs the group public key Y (includ-
ing all system parameters), the secret key
S of the group manager and escrow man-
ager, and the initial certificate revocation
list CRL.

Registration: A protocol between the group
manager and a user that registers a user
as a new group member. The group man-
ager outputs the renewed member listML.
The user outputs a membership key with a
membership certificate.

Revocation: A probabilistic polynomial-time
algorithm that for input of the renewed
revoked member list RML outputs a re-
newed certificate revocation list CRL cor-
responding to RML.

Sign: A probabilistic polynomial-time algo-
rithm that for input of a group public key
Y , a membership key, a membership cer-
tificate, and a message m outputs a group
signature σ.

Verification: An algorithm that for input of a
message m, a group signature σ, a group
public key Y , and a current certificate re-
vocation list CRL returns 1 if and only if σ
was generated by a valid group member.

Tracing: An algorithm that for input of a valid
group signature σ, the escrow manager’s se-
cret key, and the member listML outputs
the identity of a signer.

In this paper, GM plays both roles of group
manager and escrow manager for the sake of
simplification.

4.2 Scheme Intuition
In our scheme, GM generates a membership

certificate almost in the same way as Ref. 2).
The essence of a membership certificate gen-
eration are as follows. For a q-order ele-
ment g1, g2 ∈ Z

∗
p, GM chooses his own secret

key xGM ∈R Zq and computes his public key
y1 = gxGM

1 mod p. A user who wants to join
the group, denoted by Mi, chooses Mi’s se-
cret key xi ∈R Zq, computes Mi’s public key
zi = gxi

2 mod p, and sends zi to GM. GM gen-
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erates the modified NR-signature 3) (Ai, bi) on
the user’s public key zi as Ai = zig

wi
1 mod p

and bi = wi −AixGM mod q for a random inte-
ger wi ∈R Zq.

To generate a group signature, Mi gener-
ates an SPK which proves the knowledge of his
membership certificate without revealing these
values. We note that it is difficult to prove the
knowledge of the membership certificate by us-
ing NR-signature over only known-order group.
Because it requires an SPK of two discrete log-
arithm over different groups are equal and the
value of discrete logarithm in an interval, but
there is no SPK which proves it directly. So,
we divide the procedure of proving it into two
steps: (1) the possession of a membership cer-
tificate (Ai, bi) and a membership key xi that
satisfies Ai = yAi

1 gbi
1 zi (mod p) and (2) the in-

teger value Ai lying in ]0, p[. It is necessary to
prove (2) because it is easy to forge a member-
ship certificate (A′, b′) ∈ Zpq × Zq on a mem-
bership key x′ ∈ Zq without knowledge of xGM

that satisfies A′ = yA′
1 gb′

1 gx′
2 (mod p) as follows:

( 1 ) choose random integers x′, A′
q and b′ ∈R

Zq;
( 2 ) set A′

p = y
A′

q

1 gb′
1 gx′

2 mod p;
( 3 ) compute A′ ∈ Zpq by using the Chinese

Remainder Theorem such that{
A′ ≡ A′

q mod q,

A′ ≡ A′
p mod p;

and
( 4 ) output {x′, (A′, b′)} ∈ Zq × Zpq × Zq.
In order to avoid such a forgery, we need an
SPK of proving the knowledge of
{(Ai,bi, xi) ∈ Zp × Zq × Zq : (7)

Ai = yAi
1 gbi

1 gxi
2 mod p ∧ Ai ∈ ]0, p[ }. (8)

Any SPK of proving a value in an exact interval
except a slightly larger interval have not been
proposed yet. This is why they 2) put only the
upper bound on Ai as Ai < �2 where �2 = p −
2k+1p1/2. However, the SPK of Eq. (8) proves
Ai ∈]− 2k+1�

1/2
2 , p[, not Ai ∈]0, p[.

In our scheme, we put slightly smaller interval
for Ai such as Ai ∈]�1, �2[⊂]0, p[ where �1 =
2k+1p1/2 and �2 = p − 2k+1p1/2. As a result,
the SPK of Eq. (8) can prove that Ai lies in
the exactly interval ]0, p[ by using an SPK of
discrete logarithm lies in an interval ]0, p[ which
proposed in Section 3.2.

4.3 Our Group Signature Scheme
We present a new group signature scheme

with CRL-based revocation. Let k and ε be se-

curity parameters and the initial member list
ML, the initial revoked member list RML
and the initial membership certificate revoca-
tion list CRL be null. A trusted party gen-
erates a composite modulus n and chooses a
cyclic subgroup Gn ⊂ Zn with unknown-order
but the length of order �n is known. Note that
anybody does not have to know factors of n
and the trusted party may also forget after the
initialisation.
Setup GM sets each cyclic subgroups Gp ⊂

Z
∗
p with order q and Gp̃ ⊂ Z

∗
p̃ with or-

der p for a random k-bit prime q, ran-
dom primes p and p̃ of such that q|(p − 1)
and p|p̃− 1, and chooses random elements
g1, g2, g3 ∈R Gp \ {1} and initial revo-
cation base g4 ∈R Gp \ {1}, that the dis-
crete logarithms are unknown each other.
He also chooses a secret key xGM ∈R Zq

and sets y1 = gxGM
1 mod p and y2 =

gxGM
3 mod p. Then the group public key is
Y = {q, p, p̃, n, g1, g2, g3, g4, y1, y2} and the
secret key S = {xGM}.

Registration A user Mi who wants to join
the group chooses a secret membership key
xi ∈R Zq, sets zi = gxi

2 mod p, and sends zi

with σi = SPK{(α) : zi = gα
2 mod p }(0̃)

to GM ☆. GM checks the validity of σi and
signs on Mi’s public key zi by using a mod-
ified NR-signature (Ai, bi) as

Ai = zig
wi
1 mod p

and
bi = wi −AixGM mod q

for a random integer wi ∈R Zq. If Ai does
not lie in ]�1, �2[ for �1 = 2k+1p1/2 and
�2 = p − 2k+1p1/2, he regenerates a sig-
nature for other random integer wi. It is
important and exactly our elegant idea to
restrict the range of Ai in order to avoid
forgery of a membership certificate, which
was discussed in Section 4.2. Then, he
sends (Ai, bi) ∈]�1, �2[×Zq to Mi through
a secure cannel and lists ((IDi, Ai, bi)) to
the member list ML.
Note that Ai is uniformly distributed in
]0, p[, and that the probability of Ai in
]�1, �2[ is 1 − (p−�2)+�1

p = 1 − 2k+2p1/2

p >

1 − 1
2448 for parameters of both ε = 150,

k = 160 and 1,200-bit prime p. Therefore,
Ai is in ]�1, �2[ with the overwhelming prob-
ability in a single trial.

☆ We can also add an interactive protocol to make a
user’s secret key jointly by a user and GM.
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Revocation We assume that GM revokes a
subset of members who are listed in re-
voked member list RML = {(ID, b)} with
|RML| = u. GM chooses a new revoca-
tion base g4 ∈R Gp \ {1}, computes Vj =
g

bj

4 mod p for bj ∈ RML (1 ≤ j ≤ u),
and publishes the renewed certificate revo-
cation list CRL = {Vj | 1 ≤ j ≤ u}.

Sign In signing phase, a group member has
to prove that he has a valid member-
ship certificate and a group signature in-
cludes information of tracing and revoca-
tion without revealing any linkable infor-
mation. Then we construct two SPKs by
combing SPKs which defined in Section 2.3
and Section 3.2.
In order to prove that the signer Mi has a
valid membership certificate (Ai, bi) and a
membership key xi such that

Ai = yAi
1 gbi

1 gxi
2 (mod p)

holds, the signer proves each format of left
side and right side. First, the signer com-
mits the right side for a random integer
w ∈R Zq to

T1 = yAi
1 gbi

1 gxi
2 yw

2 mod p. (9)
Then, he chooses a random element Tp̃ ∈R

Gp̃ \ {1} ☆ and computes
T2 = T

yw
2

p̃ mod p̃. (10)
If a set of (Ai, bi) is a valid membership
certificate corresponding a membership key
xi, then

TT1
p̃ = TAi

2 mod p̃. (11)
holds. Therefore, the signer can prove
the format of membership certificate by
proving the knowledge of {xi, Ai, bi, wi} on
Eqs. (9) ∼ (11). But it does not prove that
the signer knows Ai ∈ ]0, p[. To prove
the integer value Ai ∈]�1, �2[⊂]0, p[, set
a1 =

⌊
(Ai − �1)1/2

⌋
, ā1 =

⌊
(�2 −Ai)1/2

⌋
,

a2 = (Ai−�1)−a2
1, and ā2 = (�2−Ai)− ā2

1,
choose a random element Tn ∈ Gn and
compute

T3 = TAi
n mod n, (12)

T4 = T a1
n mod n, (13)

and
T5 = T ā1

n mod n. (14)
If Ai ∈]�1, �2[⊂]0, p[, both

T3/T �1
n = T a1

4 T a2
n mod n, (15)

a2 ∈ ]− 2k+1p1/2, 2ε+k+1p1/2[ (16)

☆ Tp̃ is chosen randomly at each signature for the rea-
son of unlinkability, which improves our previous
version 18).

and
T �2

n /T3 = T ā1
5 T ā2

n mod n, (17)
ā2 ∈ ]− 2k+1p1/2, 2ε+k+1p1/2[, (18)

hold. Therefore, the signer can prove
Ai ∈ ]0, p[ by proving the knowledge of
{Ai, a1, ā1, a2, ā2} on Eqs. (12) ∼ (18).
In order to prove that the signature in-
cludes an information of tracing, Ai is en-
crypted by GM’s public key y2 to

T6 = gw
3 mod p, (19)

and Eq. (9), where Eq. (9) is equal to T1 =
Aiy

w
2 mod p.

In order to prove that the signature in-
cludes an information of revocation, bi is
embedded into

T7 = T
g

bi
4

p̃ mod p̃. (20)
From Eq. (20) and CRL, a verifier can
check whether the information of the
signer’s membership certificate is included
in CRL or not.
Now we describe how to construct SPKs
on Eqs. (9) ∼ (20). The knowledge σ1 on
{bi, w} such that Eqs. (10) and (20) hold
are done by an SPK of double discrete log-
arithm. To prove the knowledge σ2 on
(ai, Ai, bi, a1, ā1, a2, ā2, w) such that Eq. (9)
and Eqs. (11) ∼ (19) hold, known SPKs of
Definition 2, 3, 4, and 5 are combined. Fur-
thermore, to prove that (bi, w) is in both σ1

and σ2, we compute
T8 = gbi

3 gw
4 mod p, (21)

and add an SPK of the knowledge of (bi, w)
to both σ1 and σ2. In summary, a signer
generates two SPKs,
σ1 = SPK{(α1, α2) :

T2 = T
y

α2
2

p̃ mod p̃

∧ T7 = T
g

α1
4

p̃ mod p̃
∧ T8 = gα1

3 gα2
4 mod p }(m)

and
σ2 = SPK{(α3, α4, α5, α6, α7, α8, α9, α10) :

T1 = yα4
1 gα5

1 gα3
2 yα10

2 mod p

∧ TT1
p̃ = Tα4

2 mod p̃
∧ T3 = Tα4

n mod n
∧ T4 = Tα6

n mod n
∧ T5 = Tα7

n mod n
∧ T3/T �1

n = Tα6
4 Tα8

n mod n
∧ T �2

n /T3 = Tα7
5 Tα9

n mod n

∧ α8, α9 ∈ ]− 2k+1p1/2,

2ε+k+1p1/2[
∧ T6 = gα10

3 mod p
∧ T8 = gα5

3 gα10
4 mod p}(m).

These SPKs are generated as follows:
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• choose random integers ω1j , ω2j ∈R Zq

for 1 ≤ j ≤ k;
• compute

– t1j = Tp̃
y

ω2j
2 mod p̃, t2j = T

g
ω1j
4

p̃

mod p̃, and t3j = g
ω1j

3 g
ω2j

4 mod p
for 1 ≤ j ≤ k,

– c1 = H(g3||g4||y2||Tp̃||T2||T7||T8||
t11|| · · · ||t1k|| t21|| · · · ||t2k|| t31||
· · · || t3k||m),

– s1j = ω1j−c1[j]bi mod q and s2j =
ω1j − c1[j]w mod q for 1 ≤ j ≤ k;

• choose ω3, ω5, ω10 ∈R Zq, ω4 ∈R

]0, 2ε+kp[, ω6, ω7 ∈R ]0, 2ε+kp1/2[, and
ω8, ω9 ∈R ]0, 2ε+k+1p1/2[; and

• compute
– t4 = yω4

1 gω5
1 gω3

2 yω10
2 mod p, t5 =

Tω4
2 mod p̃, t6 = Tω4

n mod n,
t7 = Tω6

n mod n, t8 = Tω7
n mod

n, t9 = Tω6
4 Tω8

n mod n, t10 =
Tω7

5 Tω9
n mod n, t11 = gω10

3 mod p,
and t12 = gω5

3 gω10
4 mod p,

– c2 = H(g1||g2||g3||g4||y1||y2||Tp̃||
Tn||T1||T2||T3||T4||T5||T6||T8||t4||
t5||t6||t7||t8||t9||t10||t11||t12||m),

– s3 = ω3 − c2xi mod q, s4 = ω4 −
c2Ai in Z s5 = ω5 − c2bi mod q,
s6 = ω6 − c2a1 in Z, s7 = ω7 −
c2ā1 in Z, s8 = ω8 − c2a2 in Z,
s9 = ω9 − c2ā2 in Z, and s10 =
ω10 − c2w mod q.

A group signature is σ = {Tp̃, Tn, T1, T2, T3,
T4, T5, T6, T7, T8, σ1 = (c1, s11, · · · , s1k, s21,
· · · , s2k), σ2 = (c2, s3, s4, s5, s6, s7, s8, s9,
s10)}.

Verify If both σ1 and σ2 are valid, and T
Vj

p̃ �=
T7 mod p̃ for ∀Vj ∈ CRL, then accept the
group signature otherwise reject the group
signature.

Tracing In case of dispute, GM decrypts
Ai = T1/T xGM

6 mod p, and identify the
signer Mi from Ai by using the member
list ML.

In our scheme, in order to realize the fea-
tures of anonymity and unlinkability, GM has
to keep ML secretly and sends a membership
certificate to a group member through a secure
cannel. This assumption is required in 4) and
2). To reduce the features of anonymity and
unlinkability to GM, GM may be separated to
two managers, the group manager and the es-
crow manager by applying techniques of multi-
party computation to generate a membership
certificate.

5. Security Consideration

We use two different signature schemes in our
group signature scheme. One is the modified
NR-signature scheme that generates the mem-
bership certificate, and the other is SPK that
generates the group signature. In this section,
we consider the security of a membership cer-
tificate and the group signature.

5.1 Security Proof on the Membership
Certificate

The security of the membership certificate in
our scheme is based on the difficulty of MDLP.
We show the membership certificate is secure
against any probabilistic polynomial-time ad-
versaries.

Let us define one more security assumption.
For the security parameter k, k-bit prime q,
prime p with q|(p − 1), and h1, h2, h3 ∈ Zp

with order q, a set of solutions of Problem 2 is
denoted as
X (Zp, h1, h2, h3) = {(x1, x2, x3) ∈ Zp×Zq×Zq

| x1 = hx1
1 hx2

2 hx3
3 (mod p)}

where the discrete logarithms of h1, h2, and h3

based on each other element is not known.

Problem 3 [Modified-MDLP] Given Zp,
h1, h2, and h3 ∈ Zp such that the discrete loga-
rithm based on each other element is not known
and any subset X ⊂ X (Zp, h1, h2, h3) with the
polynomial order |X|, find a pair (x1, x2, x3) ∈
Zp×Zq×Zq such that x1 = hx1

1 hx2
2 hx3

3 (mod p)
and (x1, x2, x3) �∈ X.

Assumption 3 [Modified-MDLP As-
sumption] The probability that Problem 3 is
solved by a probabilistic polynomial-time algo-
rithm is negligible small.

Remark The relationship among DLP,
MDLP, and the modified MDLP is left as an
open question. Compared with the original
DLP of x for y = gx, MDLP takes away any
mathematical relation such as homomorphism
from (x1, x2, x3) by putting a parameter x1 on
both Zp and Zq. Therefore we believe that
to solve modified-MDLP is not easy. We may
note that there exists the modified version for
strong-RSA 9) and that the similar assumption
is used in2).

More formally, the following experiment is ex-
ecuted with algorithm A.
Break-Modified-MDLP(A, k, q, p, h1, h2, h3)

Choose a polynomial-order subset
X ⊂ X (Zp, h1, h2, h3).
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(x1, x2, x3)← AX(k, q, p, h1, h2, h3).
If (x1, x2, x3) ∈ Zp × Zq × Zq,

x1 = h1
h1h2

x2hx3
3 (mod p), and

(x1, x2, x3) �∈ X
then return 1,
else return 0.

The Modified-MDLP assumption is that
the maximum success probability of Break-
Modified -MDLP(A, k, q, p, h1, h2, h3) over all
the probabilistic polynomial-time adversary is
negligible in k.

By using Assumption 3, we can formalize
the security of the membership certificate as
follows. Let us define A be a probabilistic
polynomial-time oracle Turing machine, which
gets input Y and runs with a membership cer-
tificate oracle OC(Y ,S, ·), which on input z ∈
Zpx outputs a membership certificate (A, b).
The adversary A may query the oracle adap-
tively. Eventually, adversary outputs a new
membership certificate (A′, b′) for a public key
z′ and the corresponding membership key x′.
The adversary wins if z′ was not queried and
A′ = yA′

1 g1
b′z′ (mod p). More formally, the

following experiment is executed with the al-
gorithm A.
Adversary (A, k)
Set (S,Y)← Setup(k)
Set (A′, b′, z′, x′)← AOC(k,Y)
If A′ �= yA′

1 g1
b′z′ (mod p),

(A′, b′, z′, x′) ∈ Zp×Zq ×Zp ×Zq, or
z′ was queried to OC,
then return "adversary failed",
else return "adversary succeeded".

From the above discussion, the security of our
certificate is proved as follows.

Theorem 1 Let A be a probabilistic polynomial-
time adversary of time complexity τ with at
most Q queries to an oracle OC. If the adver-
sary successfully forges a new certificate, then
there exists an adversary B performing an at-
tack against the Modified-MDLP with at least
the same advantage. Furthermore the time
complexity of B is at most τ .

5.2 Security Proof on the Group Sig-
nature

We show the security of the group signature.

Theorem 2 The interactive protocol underly-
ing the group signature scheme is a honest-
verifier statistical zero-knowledge proof of

knowledge of a membership certificate and cor-
responding membership key. Furthermore, it
proves that the a pair (T1, T6) encrypts the
membership certificate under the group man-
ager’s public key y2.
Proof : The proof that the statistical zero-
knowledge part is quite standard. We restrict
our attention to the proof of knowledge part.
By the properties of the SPK protocol, the
signer can produce values of α1, α2, α3, α4, α5,
α6, α7, α8, α9 and α10 such that

T1 = yα4
1 gα5

1 gα3
2 yα10

2 mod p (22)

T2 = T
y

α2
2

p̃ mod p̃ (23)
T3 = Tα4

n mod n (24)
T4 = Tα6

n mod n (25)
T5 = Tα7

n mod n (26)
T6 = gα10

3 mod p (27)

T7 = T
g

α1
4

p̃ mod p̃ (28)
T8 = gα1

3 gα2
4 = gα5

3 gα10
4 mod p (29)

TT1
p̃ = Tα4

2 mod p̃ (30)
T3/T �1

n = Tα6
4 Tα8

n mod n (31)
T �2

n /T3 = Tα7
5 Tα9

n mod n (32)
α8 ∈ ]− 2k+1�

1/2
2 , 2ε+k+1�

1/2
2 [ (33)

α9 ∈ ]− 2k+1�
1/2
2 , 2ε+k+1�

1/2
2 [ (34)

hold, in which α1 ≡ α5 (mod q) and α2 ≡ α10

(mod q) hold from Eq. (29). Thus, Eqs. (23)
and (28) represent

T2 = T
y

α10
2

p̃ mod p̃, (35)
and

T7 = T
g

α5
4

p̃ mod p̃. (36)
From Eqs. (22) and (35), we can rewrite
Eq. (30) as

T
y

α4
1 g

α5
1 g

α3
2 y

α10
2

p̃ = (T y
α10
2

p̃ )α4 (mod p̃)
⇔ yα4

1 gα5
1 gα3

2 yα10
2 ≡ yα10

2 α4 (mod p)
⇔ yα4

1 gα5
1 gα3

2 ≡ α4 (mod p). (37)
Thus, a set of (α4, α5) is coincident with the
valid membership certificate and α3 is a corre-
sponding membership key. From Eqs. (24), (25)
and (26), Eqs. (31) and (32) represent

Tα4−�1
n = T

α2
6+α8

n mod n
and

T �2−α4
n = T

α2
7+α9

n mod n.
Therefore, we get

α4 − �1 = α2
6 + α8 (in Z),

and
�2 − α4 = α2

7 + α9 (in Z)
without knowledge of order Gn. From α6, α7 ∈
Z, we get that α2

6 ≥ 0 and α2
7 ≥ 0, and that α8

and α8 satisfy Eqs. (33) and (34), respectively.
Thus, the lower bound of α4 − �1 or �2 − α4 is

−2k+1p1/2 < α4 − �1,
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and
−2k+1p1/2 < �2 − α1,

respectively, and
0 = �1 − 2k+1p1/2 < α4 < �2 + 2k+1p1/2 = p.

That is, α4 ∈ ]0, p[. Therefore, the group
signature is a honest-verifier statistical zero-
knowledge proof of knowledge of a membership
certificate and corresponding membership key.
On the other hand, from Eq. (37), Eq. (22) rep-
resents

T1 = α4y
α10
2 (mod p),

and thus, a pair of (T1, T6) is an encryption of
α4 by the group manager’s public key y2.

6. Analysis of Our Scheme

6.1 Features
Here we show that our scheme satisfies all

features necessary for group signatures.
Unforgeability : From the proof of Theorem 2,

a set of (Tp̃, Tn, T1, T2, T3, T4, T5, T6, T7, T8)
is an unconditional binding commitment
to a valid membership certificate (Ai, bi)
and corresponding membership key xi. Un-
der the Assumption 3, it is infeasible to
find a certificate (Ai, bi) corresponding a
membership key xi without knowledge of
the group manager’s secret key. There-
fore, only group members who obtain valid
membership certificate by an execution of
the registration protocol with the group
manager are able to generate a signature
on a message;

Exculpability : GM knows a member’s mem-
bership certificate, but he cannot get any
information about the corresponding mem-
bership key xi. Hence, even if GM col-
ludes with some group members, they can-
not sign on behalf of Mi.

Anonymity : Assuming that the function H
is a random function, the SPKs of σ1 and
σ2 do not leak any information since they
are based on the honest-verifier statistical
zero-knowledge. However, an attacker who
has a member listML = {(IDi, Ai, bi)}, he
can decide whether a group member with
certificate (Ai, bi) generated, by checking
TT1

p̃
?= TAi

2 (mod p̃), T3
?= TAi

n (mod n),

or T7
?= T

g
bi
4

p̃ (mod p̃). Therefore, GM
shall keepML secretly.

Traceability : When the signature is valid,
(T1, T6) is coincident with the encryption
of the membership certificate Ai, which can
be uniquely recovered by GM. Therefore,

a member can be traced in case of dispute.
On the other hand, in order to imperson-
ate another signer with (A′

i, b
′
i), they must

forge the membership certificate (A′
i, b

′
i).

Under the Assumption 3, it is infeasible.
Unlinkability : Let {Tp̃, Tn, T1, T2, T3, T4, T5,

T6, T7, T8, σ1, σ2} is valid signature. {Tp̃,
Tn, T2, T6} does not include xi, Ai, or bi,
but {T1, T3, T4, T5, T7, T8} uses xi, Ai or
bi which may cause linkable information.
(T3, T4, T5, T7) use random bases Tp̃ or Tn,
then an attacker has to solve the Decisional
Diffie-Hellman (DDH) problem 13) to derive
linkable information. T1 includes a ran-
dom value yw

2 which can be cancelled to
T

T−1
1

2 = TAi

p̃ (mod p̃). Therefore, an at-
tacker has to solve the DDH problem to de-
rive linkable information. Finally, T8 also
includes a random value gw

4 , which can-
not cancelled by using any commitments.
Thus, the group signatures are unlinkable
if it is difficult to solve the DDH problem.

Revocability : Each group signature must
prove the knowledge of bi with T7 =

T
g

bi
4

p̃ mod p̃, where GM publishes revoked
member’s membership certificate as V =
gb
4 mod p̃. Therefore, if a signer is a revoked

member (i.e., bi = b), then TV
p̃ = T7 mod p̃

for some V holds. The verifier can check
the equation and judge whether the signer
has been revoked or not. In order to forge
the group signature that passes verifica-
tion, a revoked member must substitute an-
other b′ for a part of membership certificate
b, but it is impossible under Assumption 3.
We can say that a revoked member cannot
generate a valid group signature.

Anonymity after revocation : A CRL includ-
ing information of revoked members’ cer-
tificate, however do not leak any informa-
tion of group member. Therefore nobody
can identify a group member who gener-
ated a signature on a message even after a
group member was revoked.

Unlinkability after revocation : In order to
decide whether or not two signatures σ and
σ′ from different CRLs CRL and CRL′
were generated by the same member Mj

whom information of certificate is includ-
ing CRL′, we need to decide whether or
not logg4

(logTp̃
T7) = logg′

4
V ′

j holds. How-
ever, this is impossible under the DDH as-
sumption 13), and hence group signatures
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Table 1 Comparison among certificate-based type
group signature schemes.

Work
Sign Verification

4) 2020.3 × 103 M (2031.3 + 1.8u) × 103 M
2) + 4) 761.0 × 103 M (768.7 + 1.8u) × 103 M
Ours 710.5 × 103 M (706.0 + 1.8u) × 103 M

The number of revoked members denoted by u.

Signature Size
4) 101.6KByte
2) 10.5KByte
Ours 8.3KByte

are unlinkable even after a group member
was revoked.

6.2 Efficiency
We compare our scheme with Ref. 4) which

uses unknown-order group to issue a member-
ship certificate and Ref. 2) which uses known-
order group to issue a membership certificate.
Our scheme and Ref. 4) have a CRL-based re-
vocation scheme, but Ref. 2) does not have any
revocation scheme. Then we apply the CRL-
based revocation scheme 4) to Ref. 2).

Let k = 160, ε = 150, q, p, or, p̃ = 2p + 1
be primes with 160 bit, 1,200 bit, or 1,201 bit,
respectively, and n be an RSA modulus with
1,200 bit. Here M denotes the computational
work of a multiplication over a 1,200-bit modu-
lus and u denotes the number of revoked mem-
bers. We assume the binary method or the ex-
tended binary method to compute the exponen-
tiation or multiple exponentiations 15), respec-
tively.

Table 1 is a comparison of our scheme, an
RSA signature based group signature scheme
with a CRL-based revocation scheme 4) and
another NR-signature based group signature 2)

combined with CRL-based revocation 4). It
shows our scheme reduces both of sign and ver-
ification work by about 1/3, and signature size
by about less than 1/10 of Ref. 4), maintain-
ing the same security level. Furthermore, our
scheme is slightly more efficient than 2) + 4)
while both use the same membership certificate
based on modified NR-signature.

Table 2 is a comparison of our scheme
and public-key-registration type group signa-
ture scheme with revocation 6), which do not
use SPK of double discrete logarithms, which
is required in our scheme. A CRL-based revo-
cation needs SPK of double discrete logarithm.
As a result, Ref. 6) is more efficient on the com-
putational work for a small group. However, its

Table 2 Comparison of our scheme with public-key-
registration type group signature scheme.

Signature Size
6) 340 + 40v Byte
Ours 8.3KByte

The number of group members denoted by v.

group public key, signature size, and compu-
tational work depend on the number of group
members, and thus public-key-registration type
group signature schemes are less efficient than
our scheme for a group of more than 200 mem-
bers.

7. Conclusion

We have proposed the efficient group sig-
nature based on the modified NR-signature
which has CRL-based revocation and uses an
improved SPK that proves the knowledge of
discrete logarithm in an interval. Our mem-
bership certificate based on the modified NR-
signature makes the signature size and compu-
tational work of signature generation and ver-
ification efficient since they can be computed
on known-order group. On the other hand an
improved SPK uses unknown-order group but
reduces the signature size by well combining
SPKs of knowledge of representations and a dis-
crete logarithm lies in an interval. Our scheme
proves the possession of a valid (non-revoked)
membership certificate at one time, and thus, it
is more efficient than another group signature
scheme based on NR-signature combined with
a CRL-based revocation.

Our scheme uses the proof of knowledge in-
volving double discrete logarithm in the same
way as previous group signatures, which re-
quires many computational work. Furthermore
our scheme uses a membership certificate based
on a special assumption of MDLP. Developing
a membership certificate based on standard as-
sumptions is a challenging open problem. An-
other interesting open question is to find the
relationship among the MDLP and DLP.
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