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Verifiable secret sharing schemes proposed so far can only allow participants to verify
whether their shares are correct or not. In this paper, we propose a new protocol which
can allow participants not only to verify the correctness of their shares but also to revise the
faulty shares. It is achieved in a cooperative way by participants, but without any assistance
from the dealer. This protocol, to the best of our knowledge, is the first one providing such
kind of ability. Correcting shares by participants instead of the dealer is important in many
situations. In addition, this protocol is also useful for adding new participants without the
dealer’s assistance.

1. Introduction

Informally, a (k, n)-threshold scheme is a way
of distributing partial information called shares
to n participants in order to allow any k of them
to make an action (e.g., to find a secret value
K or to open a vault in a bank), but also to
ensure that the action cannot be made by any
subset of fewer than k participants.

Threshold schemes based on finite geome-
tries and polynomial interpolations were in-
troduced independently by Blakley 3) and
Shamir 14) in 1979. Since then, many construc-
tions have been given for such cryptographic
schemes 9),10),13),16),17). In the Shamir (k, n)-
threshold scheme, a secret K ∈ GF (p), p a
prime greater than n, is distributed by a special
participant called dealer (D as an abbreviation)
to a set P of participants in the following way.
(1) D chooses n distinct non-zero elements of

GF (p), denoted xl, 1 ≤ l ≤ n. For 1 ≤ l ≤
n, D sends the value xl to Pl ∈ P through
a public channel.

(2) D secretly chooses, independently at ran-
dom, k−1 elements of GF (p), a1, . . . , ak−1.

(3) For 1 ≤ l ≤ n, D computes yl =
f(xl), where f(x) = K +

∑
1≤j≤k−1ajx

j ∈
GF (p)[x] and sends the share yl to Pl ∈ P
through a private secure channel.

At a later time, a subset of participants B ⊆ P
will pool their shares in an attempt to compute
the secret K. If |B| ≥ k, then they should
be able to compute the value of K; if |B| <
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k, then they should not be able to obtain any
information about K.

In many applications, it may be possible that
the dealer D does not trust the participants
completely, and the participants do not trust D
either. For this reason, verifiable secret sharing
(VSS) schemes were proposed. A VSS scheme
enables each participant to verify whether the
share he received from D is consistent with
other shares or not, and/or to check whether
each pooled share is indeed correct or not. Chor
et al. 5) first introduced the notion of a VSS
scheme. Since then, VSS schemes have been
studied by numerous authors (e.g., Refs. 2), 5),
7), 8) and 10)).

On the other hand, VSS schemes proposed so
far do not provide the ability for participants to
revise their shares if some of these shares have
been verified to be incorrect. What they can do
after finding faulty shares is to make complains
to the dealer and ask him to re-distribute new
shares for them, then to verify the new shares
again by the VSS scheme they used previously.
We notice that in the following situations, most
of the current VSS schemes may become inef-
fectual.
( 1 ) In the case if, for security purpose, D is

not permitted to preserve any informa-
tion about the shares and the secret after
distributing the shares.

( 2 ) In the case if the dealer D, after sending
shares to participants, becomes inactive.

Also, in the real world, participants may not
do the verification right after receiving their
shares from D. They may do that at any
time before the secret-recovery phase. There-
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fore, when using a common VSS scheme, it is
necessary that D preserves all the information
concerning the shares and the secret before all
the participants do the verification. If D loses
such information before the verification phase,
the faulty shares will not be able to be cor-
rected successfully. On the other hand, if D
pays scant attention to security management,
an adversary may steal information about the
secret or the shares of the scheme by attack-
ing the dealer’s storage where all of the secret
information are stored on. Therefore, the ad-
versary can avoid the difficulty of attacking the
VSS scheme directly but get the secret informa-
tion of the scheme. From these viewpoints, it is
undesirable that D preserves any secret infor-
mation about the scheme for a long period of
time. Case 2 is also possible if an adversary dis-
turbs the communications between D and the
participants after the initial phase.

In this paper, we propose a new protocol for
share-verification and share-correction which
can overcome the drawbacks described above.
Our newly proposed protocol allows partici-
pants not only to verify their shares but also
to revise the faulty shares without the dealer’s
assistance. Though this goal is achieved in a co-
operative way by participants, this protocol is,
to the best of our knowledge, the first VSS pro-
tocol providing such kind of ability. We empha-
size that error-correcting codes such as Reed-
Solomon codes 12) can correct errors only dur-
ing the phase of pooling shares together which
would then reveal the secret.

Our protocol has the following features.
• The dealer D can destroy all of the infor-

mation about the secret and the shares of
the scheme after distributing the shares to
the participants.

• Our protocol is an auxiliary for the Shamir
threshold scheme. That is, if D is reli-
able, participants can just use the “orig-
inal” Shamir threshold scheme and can
avoid the use of the bothersome and/or
resources-consuming VSS scheme. At any
time when they feel doubtful about the sin-
cerity of D, they can apply the proposed
method to verify and revise their shares.

• Only k + 2(t + c) ≤ n of the n partici-
pants are needed to take part in the pro-
tocol whereas all the shares can be verified
and revised (without revealing any infor-
mation about the secret and shares of par-
ticipants, of course.) Those participants

not taking part in the protocol can ver-
ify and revise (if necessary) their shares
according to the public and secret infor-
mation obtained from other participants.
Here k is the threshold value, t is the max-
imum number of faulty shares participants
get from the dealer D and c is the maxi-
mum number of cheaters (dishonest partic-
ipants).

• No secure channel between participants is
required.

• One restriction of our protocol is that it
can only be applied in the Shamir (k, n)-
threshold scheme with n ≥ k + 2(t + c),
where t + c ≤ min{k, �n−k

2 �}.

On the other hand, this protocol can also be
utilized for other purposes. We show in Sec-
tion 4 that this protocol is also useful for adding
new participants without the dealer’s assistance
in a threshold scheme with cheaters.

The rest of this paper is organized as follows.
In Section 2, we give some preliminaries which
will be used in our protocol. Section 3 is the
illustration of our protocol. Section 4 explains
the application of our protocol to participant
enrollment without any assistance of the dealer
in a threshold scheme with cheaters. Finally,
Section 5 makes the conclusion of this paper.

2. Preliminaries

2.1 Homomorphism Property
In Ref. 1), Benaloh introduced a homomor-

phism property in secret sharing, which im-
plies that the compositions of shares of several
schemes are shares of the composition of these
schemes.

Definition 2.1 A function F is said to have
(⊕,⊗)-homomorphism property (or (⊕,⊗)-
homomorphic) if

F (x1, x2, . . . , xn)⊕ F (y1, y2, . . . , yn)
= F (x1 ⊗ y1, x2 ⊗ y2, . . . , xn ⊗ yn)

This property implies that the reconstruction
from the combined shares results in a combined
secret of several secret sharing schemes. It is
easy to see that the Shamir threshold scheme is
(+, +)-homomorphic.

2.2 TMO Algorithm 17)

In Ref. 13), Rees, et al. considered the prob-
lem of determining consistent sets of shares in a
(k, n)-threshold scheme with cheaters (i.e., dis-
honest participants). Their underlying idea is
to find a suitable set system (S, T ), where S is
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the set of all n shares and T is a collection of
k-subsets of S, so that for any t′-subset St′ of
shares (and thus the subset of all fake shares,
if we assume that at most t′ of the n shares
are fake), there is at least one T ∈ T such
that T does not contain any share in this t′-
subset S′

t. Then the k-subset T ∈ T containing
no fake shares can be used to derive the secret
correctly. One drawback of Rees, et al.’s al-
gorithms is that they sacrifice the property of
threshold. That is, no honest participant can be
absent if they decide to reconstruct the secret
while in a (k, n)-threshold scheme, only k of the
n participants are needed to pool their shares.
This drawback is improved by Tso, Miao and
Okamoto in Ref. 17). In both Refs. 13) and 17),
they applied a combinatorial structure called
covering to their schemes which provides an up-
per bound on the number of iterations required
in their algorithms.

Definition 2.2 17) Let v, k and t′ be posi-
tive integers such that v ≥ k ≥ t′. A (v, k, t′)-
covering is a pair (V ,B), where V is a v-set of
elements, called points, and B is a collection
of k-subsets of V , called blocks, such that ev-
ery t′-subset of points occurs in at least one
block of B. The covering number C(v, k, t′) is
the minimum number of blocks in any (v, k, t′)-
covering. A (v, k, t′)-covering (V ,B) is optimal
if |B| = C(v, k, t′).

Suppose that the Shamir (k, n)-threshold
scheme is implemented in GF (p). Let S =
{(xi, yi) : 1 ≤ i ≤ n} ⊆ (GF (p) \ {0})×GF (p)
be the set of n shares, and assume that at most
t′ of the n shares are fake. That is, there ex-
ists a polynomial P0(x) ∈ GF (p)[x] of degree
at most k− 1 such that yi = P0(xi) for at least
n− t′ of the n shares. The secret, which can be
reconstructed from any k genuine shares, is the
value P0(0). In addition, define

– M : a (k + 2t′)-subset of {1, 2, . . . , n}.
– SM : {(xi, yi) : i ∈M} ⊆ S.
– T : a collection of k-subsets of M such

that its complement {M \ T : T ∈ T } is
the collection of blocks of a (k +2t′, 2t′, t′)-
covering with minimum number of blocks.

– PT : the unique polynomial of degree at
most k−1 reconstructed by the subset T ∈
T .

Moreover, define CT = {i : PT (xi) = yi, 1 ≤
i ≤ n} and NCT = {i : PT (xi) 	= yi, 1 ≤
i ≤ n}. Then, Tso, Miao and Okamoto’s algo-
rithm 17) (TMO algorithm as an abbreviation)
can be outlined as follows. In this algorithm, we

denoteM\T = {ri1 , . . . , ri2t′} for each T ∈ T ,
where the subscripts are ordered randomly.

TMO Algorithm 17)

InputM, T , SM, k, t′.
For each T ∈ T , perform the following steps:

( 1 ) compute PT

( 2 ) |NCT | = 0
( 3 ) |CT | = k
( 4 ) for j = 1 to 2t′ do
( 5 ) if yrij

= PT (xrij
), then |CT |+ +

( 6 ) else |NCT |+ +
( 7 ) if |CT | ≥ k + t′, then P0 = PT and

QUIT
( 8 ) else if |NCT | ≥ t′ + 1 then BREAK

The TMO algorithm allows any k +2t′ of the
n participants to achieve the end of determining
a consistent set of shares in a threshold scheme
with at most t′ cheaters.

2.3 Publicly Verifiable Secret Sharing
Scheme

A publicly verifiable secret sharing (PVSS)
scheme is a special type of VSS scheme in which
the validity of the shares distributed by the
dealer D can be verified by any entity instead
of the shareholders only. Here we first review
a basic type of VSS scheme in which the se-
curity is based on the intractability of the dis-
crete logarithm problem, then we describe the
Stadler PVSS scheme 15) based on this basic
VSS scheme. We will adopt the Stadler scheme
later as a sub-protocol in our scheme.

Basic Type of VSS Scheme

Let
– p be a large prime so that q = (p− 1)/2 is

also a prime.
– g be a generator of GF (p) \ {0} so that

computing discrete logarithms to the base
g is difficult.

To share a secret K ∈ GF (p) in a (k, n)-
VSS scheme, the initial setting is the same as
that of the Shamir threshold scheme. xi ∈
GF (p) \ {0} is a publicly known element as-
signed to participant Pi, 1 ≤ i ≤ n. f(x) = K+∑

1≤j≤k−1ajx
j ∈ GF (p)[x] is the polynomial D

secretly chosen and yi = f(xi) (mod p) is the
secret share of Pi obtained from D through a
private secure channel. Beside these, D pub-
lishes the values A = gK and Fj = gaj , j =
1, . . . , k−1. Any group of at least k participants
can compute the secret K ∈ GF (p) using the
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Prover Verifier
repeat l times:

w ∈R GF (q)
th = hw (mod p)
tg = gzw

i th, tg −→
c ∈R {0, 1}

←− c
r = w − c · α (mod q)

r −→
th

?= hr ·M c
1 (mod p)

tg
?=

{
gzr

i if c = 0
Y

M2·zr
i

i if c = 1

Lagrange interpolation formula. In addition,
any participant Pi can verify his/her share yi

by computing Yi = A ·
∏k−1

j=1 F
xj

i

j and checking
whether Yi = gyi .

Stadler PVSS Scheme 15)

To make this scheme publicly verifiable, the
private secure channels between D and par-
ticipants are replaced by public key encryp-
tion schemes. In the Stadler PVSS scheme,
the encryption scheme is identical to the El-
Gamal public key crypyosystem 6). First, let
h ∈ GF (p) \ {0} of order q be a public infor-
mation selected by D, then each participant Pi

randomly chooses a secret key si ∈ GF (q) and
publishes his/her public key zi = hsi (mod p).
To distribute the share yi ∈ GF (p) \ {0} to Pi

secretly, D encrypts yi with Pi’s public key zi.
D also randomly chooses α ∈ GF (q) \ {0} and
then calculates the pair (M1, M2) where M1 =
hα (mod p), and M2 = y−1

i zα
i (mod p). If

yi = 0 (mod p) for some i, then D should
choose another xi ∈ GF (p)\{0} for Pi or choose
another polynomial so that yi 	= 0 (mod p) for
all i. The ciphertext (M1, M2) can only be de-
crypted by Pi since yi = Msi

1 /M2 (mod p).
To verify the shares, the prover (i.e., the

dealer D) proves to the verifier (i.e., any en-
tity instead of the shareholders only) that the
discrete logarithm of M1 to the base h is equal
to the double discrete logarithm of Y M2

i to the
bases g and zi. It is based on the fact that if
(M1, M2) is equal to (hα, y−1

i zα
i ) (mod p) for

some α ∈ GF (q) \ {0}, then

Y M2
i = gyiM2 = gzα

i .

Consequently, the probability for the prover
to deceive a verifier successfully when repeat-

ing the proof-verification protocol l times is
1/2l. This verification can also be done non-
interactively. The interested readers are re-
ferred to Ref. 15) for more details.

3. Proposed Method

This section describes our share-verification
protocol which is a combination of the above
mentioned methods. The feature of our pro-
tocol is that it provides the ability for partic-
ipants to revise faulty shares in a cooperative
way without the dealer’s assistant. One restric-
tion of our protocol is that the number of par-
ticipants n must be greater than or equal to k+
2(t + c), where k is the threshold value, t is the
maximum number of faulty shares and c is the
maximum number of cheaters (dishonest par-
ticipants). The parameters p, q, g are the same
as those in Section 2.3. In the initial phase, the
dealer D shares a secret K ∈ GF (p) to n partic-
ipants according to the Shamir (k, n)-threshold
scheme. The polynomial D secretly chosen is
f(x) ∈ GF (p)[x], and the share for participant
Pi is (xi, yi), where xi is the public information
for participant Pi and yi = f(xi) for 1 ≤ i ≤ n.
After this initial phase, D destroys all the se-
cret information about the scheme for security
purpose.

If no participant doubts the sincerity of the
dealer D, then the procedure for verification
is not needed. In this case, the secret shar-
ing scheme is just that of the “original” Shamir
threshold scheme, which is believed to be much
more efficient than any kind of VSS schemes.
Since the dealer D has destroyed all the se-
cret information about the scheme, no “cur-
rent” VSS protocol is usable if any participant
feels doubtful about the correctness of his/her
share later. In this situation, with the coopera-
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tion of at least k+2(t+c)−1 of the other n−1
participants, our protocol can be applied and
the verification of their shares can be executed.

W.l.o.g., we assume Q={P1,P2,· · ·,Pk+2(t+c)}
be the (k+2(t+c))-subset of the n participants
which will take part in the share-verification
protocol. According to Definition 2.2 and the
TMO algorithm, the value of t + c should be
less than or equal to k and �n−k

2 �, that is,
t + c ≤ min{k, �n−k

2 �}. We also assume that
there is a public information☆ h ∈ GF (p) \ {0}
of order q and a bulletin board available for all
the participants. Before the verification phase,
each participant Pi, 1 ≤ i ≤ n, randomly
chooses a secret key si ∈ GF (q) and publishes
his/her public key zi = hsi (mod p) so that
other participants can send encrypted message
to him/her using the ElGamal public key cryp-
tosystem.

Share-Correctable Protocol
( 1 ) Each participant Pi ∈ Q in turn plays

the role of the dealer of the Stadler PVSS
scheme 15). That is, Pi secretly selects a
polynomial gi(x) = ai,0 + ai,1x + · · · +
ai,k−1x

k−1 ∈ GF (p)[x] of degree k − 1
and sends the related share dij

= gi(xj)
(mod p) to participant Pj for 1 ≤ j ≤
n using Pj ’s public key. Here xj for Pj

is the same as that the original dealer
D chose for Pj . The public information
Ai(= gai,0), Fi,l(= gai,l), 1 ≤ l ≤ k− 1, is
also published by Pi. At the end of this
stage, each participant Pj , 1 ≤ j ≤ n,
has shares dij

from Pi, 1 ≤ i ≤ k + 2(t +
c), and the original share yj = f(xj) from
the dealer D. We will call the shares dij

for all i and j the auxiliary shares for the
convenience of notation.

( 2 ) Each participant Pi ∈ Q verifies the
auxiliary shares according to the Stadler
PVSS scheme. Participants distributing
incorrect auxiliary shares to other par-
ticipants intentionally will be disclosed
in this stage. Also, any cooperation be-
tween cheaters (dishonest participants) is
invalid because all the auxiliary shares
are publicly verifiable. Note that not all
the dishonest participants may cheat in
this stage.

( 3 ) Participants in Q make complains on

☆ This information can be pre-selected by D or by
the cooperation of participants before the share-
verification phase.

a bulletin board against the dishonest
participants who distributed incorrect
shares. They also abandon the auxil-
iary shares obtained from those dishonest
participants. Other participants not in
Q can also know which auxiliary shares
should be abandoned from the complains
on the bulletin board. (Of course, partic-
ipants not in Q can also do the verifica-
tion of the auxiliary shares if they would
like.)

(Since there are at most c cheaters, each
honest participant abandons at most c
auxiliary shares from other participants.
In other words, each participant retains
at least k + 2t + c(> k) auxiliary shares.
All of these auxiliary shares will be used
in the next steps. W.l.o.g., we may as-
sume that each honest participant Pj re-
tains exactly k + 2t + c auxiliary shares
dij

for 1 ≤ i ≤ k + 2t + c.)

( 4 ) Each Pj sums up his/her share yj with
his/her remaining auxiliary shares dij

,
1 ≤ i ≤ k + 2t + c. Consequently, each
Pj , 1 ≤ j ≤ n, has a summed share
uj = yj +d1j

+ · · ·+d(k+2t+c)j
(mod p).

( 5 ) Participants in Q broadcast their
summed shares uj , 1 ≤ j ≤ k+2(t+c), on
the bulletin board (note again that there
are at most c participants who may in-
tentionally broadcast incorrect values at
this stage).

( 6 ) Any participant Pj who wants to ver-
ify and revise his/her share yj can apply
the TMO algorithm. First replace t′ de-
scribed in Section 2.2 with t + c, and use
the k + 2(t + c) broadcasted information
on the bulletin board (at most t + c of
the information may be incorrect), then
he/she will derive a unique polynomial
H(x), where

H(x) = f(x) + g1(x) + · · ·+ gk+2t+c(x)
∈ GF (p)[x].

( 7 ) Participant Pj in step 6 verifies if
H(xj) = uj (mod p). If not, then
revise his/her share yj to the value of
H(xj) − d1j

− d2j
− · · · − d(k+2t+c)j

(mod p).
In step 5, at most c cheaters may broadcast

incorrect values of their summed shares. On the
other hand, there are at most t faulty shares dis-
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tributed by the dealer D. Therefore, in order to
use the TMO algorithm to construct the unique
polynomial H(x), we need at least k + 2(t + c)
participants in our protocol.

Security Analysis

No adversary can obtain any secret informa-
tion from step 1 to step 3, since he/she suf-
fers from the intractability of the discrete log-
arithm problem. Also note that although the
polynomial H(x) can be derived by any partic-
ipant, the polynomials f(x) and gi(x), 1 ≤ i ≤
k + 2t + c, are still kept secret because of the
homomorphism property. A conspiracy of less
than k participants still can not get f(x) from
H(x) or gi(x) from their reconstruction because
f(x) is still masked by at least 2t + c polyno-
mials gi′(x) constructed by other participants.
Consequently, no secret information about the
secret and the shares belonging to other partic-
ipants will be leaked out in this protocol.

4. Adding Participants without the
Dealer’s Assistance

In most of the current secret sharing schemes,
only dealers have the ability to enroll new par-
ticipants in their schemes. Also, in order to
achieve this goal of adding new participants,
dealers have to preserve some or all of the secret
information of their schemes. This results in the
same problem as we have claimed at the begin-
ning of this paper. We claimed in Section 1 that
for security purpose, it is undesirable that the
dealer preserves any secret information about
the scheme for a long period of time. On the
other hand, the goal of adding new participants
into the scheme may be impossible if the dealer
becomes inactive after the initial phase. These
problems can be solved by using our protocol.
We explain it in the following.

Assume the dealer D is honest so no faulty
shares have been distributed to participants ☆.
Then, with a little modification, the protocol
we have described in Section 3 can also be used
as a protocol for adding new participants in the
scheme without the dealer’s assistance. More-
over, according to Definition 2.2 and the TMO
algorithm, c cheaters with c ≤ min{k, �n−k

2 �}
are tolerant in the scheme.

Under the agreements of at least k + 2c par-
ticipants, by the cooperation of these partici-

☆ If D may be dishonest, participants can first apply
our protocol to revise their faulty shares.

pants, any group of, say n′, new participants
can get their shares of the scheme in only one
run of the protocol where n + n′ < p. As-
sume N is the n-set of all participants in the
Shamir (k, n)-threshold scheme, N ′ is the n′-
set of new participants that want to join in the
scheme where N ′ ∩ N = Ø. In the same fash-
ion as that described in Section 3, w.l.o.g., we
assume Q = {P1, P2, · · · , Pk+2c} is the subset
of N which will cooperate to construct and dis-
tribute new shares to participants in N ′. In
addition, h ∈ GF (p) \ {0} of order q is a public
known information and there is a bulletin board
available for all participants. With these as-
sumptions, then the modified protocol for new
participants enrollment can be described as fol-
lows.

Enrollment Protocol
( 1 ) Each participant Pi ∈ Q randomly

chooses an si ∈ GF (q) as his/her secret
key and publishes zi = hsi (mod p) as
his/her public key.

( 2 ) Each participant P ′
j ∈ N ′ randomly

chooses an s′j ∈ GF (q) as his/her
secret key and publishes z′j = hs′

j

(mod p) as his/her public key. He/She
also randomly chooses a random value
x′

j ∈ GF (p) \ {0} and publishes it as
his/her public information of the thresh-
old scheme. Here x′

j must be different
from other participants’ public informa-
tion.

( 3 ) Each participant Pi ∈ Q in turn plays
the role of the dealer of the Stadler PVSS
scheme. Pi secretly selects a polynomial
gi(x) = ai,0 + ai,1x + · · · + ai,k−1x

k−1 ∈
GF (p)[x] of degree k−1 and sends the re-
lated share (auxiliary share) dij

= gi(xj)
(mod p) to participants Pj ∈ Q and
P ′

j ∈ N ′ using Pj and P ′
j ’s public keys.

Here xj for Pj ∈ Q is the same as that
the original dealer D chose for Pj . x′

j

for P ′
j ∈ N ′ is the value P ′

j chose and
published in step (2). Pi also publishes
Ai(= gai,0), Fi,l(= gai,l), 1 ≤ l ≤ k − 1.
At the end of this stage, each participant
Pj ∈ Q and P ′

j ∈ N ′ has auxiliary shares
dij

from Pi, 1 ≤ i ≤ k + 2c. In addi-
tion Pj ∈ Q also has the original share
yj = f(xj) from the dealer D.

( 4 ) Each participant Pj ∈ Q and P ′
j ∈ N ′

verifies the auxiliary shares according to
the Stadler PVSS scheme. Participants



1886 IPSJ Journal Aug. 2005

distributing incorrect auxiliary shares to
other participants intentionally will be
disclosed in this stage. Also, any coop-
eration between dishonest participants is
invalid because all the auxiliary shares
are publicly verifiable.

( 5 ) Participants in step (4) make complains
on the bulletin board against the dis-
honest participants who distributed in-
correct shares. They also abandon the
auxiliary shares obtained from those dis-
honest participants.

(Since there are at most c cheaters, for
the convenience of description, we as-
sume that there remain exactly k + c
auxiliary shares dij

for each participant
Pj ∈ Q and P ′

j ∈ N ′, where 1 ≤ i ≤ k+ c
and j is the subscription of Pj ∈ Q and
P ′

j ∈ N ′.)

( 6 ) Each Pj ∈ Q sums up his/her share yj

with his/her remaining auxiliary shares
dij

, 1 ≤ i ≤ k + c. Consequently, each
Pj ∈ Q has a summed share uj = yj +
d1j

+ · · ·+ d(k+c)j
(mod p).

( 7 ) Participants Pj ∈ Q broadcast their
summed shares uj , 1 ≤ j ≤ k+2c, on the
bulletin board. (Note again that there
are at most c participants who may in-
tentionally broadcast incorrect values at
this stage.)

( 8 ) Each participant P ′
j ∈ N ′ applies the

TMO algorithm by first replacing t′ de-
scribed in Section 2.2 with c, and then
using the k + 2c broadcasted informa-
tion uj , 1 ≤ j ≤ k + 2c, on the bulletin
board (at most c of the information may
be incorrect). Then he/she can derive a
unique polynomial H(x), where H(x) =
f(x) + g1(x) + · · ·+ gk+c(x) ∈ GF (p)[x].

( 9 ) P ′
j ∈ N ′ derives his/her share y′

j by com-
puting
y′

i = H(x′
i)− d1i′ − d2i′ − · · · − d(k+c)i′

(mod p),
where dji′ = gj(x′

i) are the remaining
auxiliary shares after step (5) obtained
from participants Pj ∈ Q.

Consequently, every new participant P ′
i in N ′

obtains a share y′
i of the scheme and the (k, n)-

threshold scheme has modified into a (k, n+n′)-
threshold scheme successfully.

Security Analysis

The security of this protocol can be analyzed

in the same way as that in Section 3. In addi-
tion, only a cooperation of at least k +2c (≥ k)
participants can have the ability of adding new
participants to the original scheme. Therefore,
it is impossible for a conspiracy of less than k
malicious participants to execute this protocol
and add new participants siding with them for
the purpose of reconstructing the secret of the
original (k, n)-threshold scheme.

5. Conclusion

Most verifiable secret sharing schemes pro-
posed so far do not provide the ability for par-
ticipants to correct the faults of their shares.
Error-correcting codes such as Reed-Solomon
codes can correct errors only during the phase
of pooling shares together which would then re-
veal the secret. In this paper, we proposed a
new type of share-verification protocol for the
Shamir threshold scheme. Our protocol allows
participants not only to verify the correctness
of their shares but also to revise any fault of
their shares in a cooperative way without any
assistance of the dealer. We also showed that
our protocol can be utilized to add new par-
ticipants in a threshold scheme with cheaters
without the dealer’s assistance.
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