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When a hard drive (HDD) is recycled, it is recommended that all files on the HDD are
repeatedly overwritten with random strings for protecting their confidentiality. However, it
takes a long time to overwrite them. This problem is solved by applying the all-or-nothing
transform (AONT) to the filesystem of the HDD. To use the HDD economically, it is desirable
to use a length-preserving AONT (LP-AONT). Whereas previous AONTs cause the increase of
size of a file, and no LP-AONT is secure under previous security definitions. However, it does
not mean that the LP-AONT is useless; previous security definitions are too strict in practical
applications. Then, by introducing the ambiguity of a message, we propose more practical
security definitions of the AONT. We also show the secure implementation of the LP-AONT
under the proposed security definitions. The analysis shows that our implementation is nearly
optimal in terms of the success probability of an adversary. It means that the ambiguity of
one message block allows us to construct the LP-AONT as secure as previous AONTs.

1. Introduction

The secure management of files on the hard
drive (HDD) is one of important problems in
the area of information security. In particu-
lar all files on the HDD should be completely
deleted before the HDD is recycled. To make it
harder for even expensive HDD probing to re-
cover files, we usually use special software (e.g.,
shred in the GNU Core Utilities 4)), which
repeatedly overwrite files with a random (or
fixed) string. The Japan Electronics and Infor-
mation Technology Industries Association 11)

recommends that the HDD is overwritten with
the fixed string twice. The Under Secretary of
Defense 12) has defined the rule that the HDD is
overwritten with a string, its complement, then
with a random string. However, it probably
takes a long time to overwrite all files on the
HDD with the string.

One may think that this problem can be
solved by using an encrypted filesystem such
that the file is automatically encrypted at writ-
ing, and it is automatically decrypted at read-
ing. Since all files on the HDD have been en-
crypted, it is unnecessary to overwrite them
with the random string. However, the en-
crypted filesystem requires the secure manage-
ment of the decryption key. If the decryption
key is easily guessed, then the encrypted filesys-
tem is useless for protecting files on the HDD.

The use of the all-or-nothing encryption
mode in the encrypted filesystem is effective
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in reducing the overwriting time and avoid-
ing the decryption-key management. The all-
or-nothing encryption mode, which consists
of the all-or-nothing transform (AONT) and
the usual encryption, has been originally pro-
posed for improving the security against brute
force attacks 9), and is also applied to the con-
struction of efficient fixed-blocksize encryption
schemes 5). The remarkable property of the
all-or-nothing encryption mode is that it is in-
feasible to find out information about message
blocks if even one ciphertext block is lost. Over-
writing a part of the encrypted file with the ran-
dom string can be considered as the loss of the
ciphertext blocks. Therefore, if a small part of
the encrypted file is overwritten with the ran-
dom string, then an adversary cannot obtain
any information about the file even if the ad-
versary knows the decryption key.

Since the remarkable property is achieved by
the AONT, a simplified scheme without the
decryption key is possible. Namely, only the
AONT is applied to the filesystem. In usual
use, at the recording, the file is automatically
transformed by the AONT, and the resulting
data are recorded on the HDD, and at the read-
ing, the file is automatically recovered by the in-
verse AONT. When a user recycles the HDD, it
is sufficient that the user overwrites some parts
of files on the HDD.

In both cases we see that the AONT plays an
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essential role in reducing the overwriting time.
We hence focus on the AONT. In this paper, the
AONT such that the size of data increases is
called a length-increasing AONT (LI-AONT),
and the AONT such that it does not increase is
called a length-preserving AONT (LP-AONT).
In the application of the filesystem, it is desir-
able to utilize the LP-AONT for the economical
use of the HDD.

The concept of the AONT has been origi-
nally introduced by Rivest 9). After then, the
AONT has been studied in several models.
Boyko 2) has studied the AONT in the random
oracle model. Stinson 10) has done it in the
information-theoretic model. Canetti, Dodis,
Halevi, Kushilevitz, and Sahai 3) have done it
in the standard model.

Boyko 2) has shown that the optimal asym-
metric encryption padding (OAEP) 1) is the
most secure AONT under the random ora-
cle model. Note that the use of the OAEP
causes the increase of the size of data, i.e., the
OAEP is the LI-AONT. The AONT proposed
by Canetti, Dodis, Halevi, Kushilevitz, and Sa-
hai 3) is also the LI-AONT. Stinson’s AONT 10)

is the LP-AONT, but the security problem has
been pointed out by Boyko. Thus, no secure
LP-AONT has been proposed in spite of the
fact that the LP-AONT is better than the LI-
AONT in terms of the size of data.

Boyko 2) has provided security definitions of
the AONT under the random oracle model,
which are considered as the formal version
of Rivest’s definition 9). Surprisingly, no LP-
AONT is secure under the Boyko’s definitions.
However, it probably suggests that Byoko’s
definitions are too strict rather than the LP-
AONT is totally useless.

Hence, we discuss security definitions and im-
plementations of the LP-AONT. We give new
security definitions under the random oracle
model suitable for evaluating the security of the
LP-AONT in practical applications. Our secu-
rity definitions explicitly introduce the ambigu-
ity of the message. It follows that our security
definitions are slightly weaker than Boyko’s def-
initions, but we believe that they provide suffi-
cient security in practical applications. Boyko
discussed the relation between the number of
lost bits of the output and the size of leaked
information about the whole message. In con-
trast, we discuss the size of leaked information
about the message when one block of the output
is lost. The reason for considering the loss of the

block is that a user can easily overwrite the file
with the random string in blocks (e.g., the byte
of the file, the sector on the HDD) rather than
in bit. Moreover, we show a secure implemen-
tation of the LP-AONT under the new security
definitions. We prove that our implementation
is nearly optimal in terms of the success prob-
ability of the adversary.

The AONT is closely related to a thresh-
old secret sharing scheme 9). For example, the
LI-AONT proposed by Rivest 9) is an s-out-of-
s computational secret sharing scheme. It is
known that the size of a share in the s-out-of-s
computational secret sharing scheme is asymp-
totically 1/s of the size of the secret informa-
tion 6). In other words, the size of a share in
previous s-out-of-s computational secret shar-
ing schemes is always larger than 1/s of the
size of the secret information. The LP-AONT,
which is discussed in this paper, is the s-out-of-
s secret sharing scheme based on the random
oracle such that the size of a share is precisely
1/s of the size of the secret information. Hence,
the LP-AONT is useful for applications of the
s-out-of-s secret sharing scheme.

This paper is organized as follows. In Sec-
tion 2, we summarize notation. In Section 3,
we describe previous definitions and implemen-
tations of the AONT. In Section 4, we give new
security definitions, which are suitable for esti-
mating the security of the LP-AONT. In Sec-
tion 5, we propose the implementation of the
LP-AONT. In Section 6, we analyze the secu-
rity of the proposed implementation, and prove
the optimality of the implementation. in terms
of the success probability of the adversary. In
Section 7, we conclude this paper and describe
an open problem.

2. Notation

For an algorithm A, we denote by A() the dis-
tribution of A’s output on inputs. When A and
B are algorithms, we denote by AB() the distri-
bution of A’s output on inputs when A uses B
as an oracle. We denote by c R← C to choose c
at random according to the distribution C, and
denote by c← C to set x to the result of eval-
uating expression C. For a set S, we denote by
s

R← S to choose s uniformly at random from
S. We denote by

Pr
[
a

R← A(), . . . : p(a, . . .)
]

the probability that a predicate p(a, . . .) is true
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after a R← A(), . . . We denote by

Ev
[
a

R← A(), . . . : f(a, . . .)
]

the expected value of f(a, . . .) after a R← A(), . . .
To specify the distribution of the random oracle
G, we write G R← Ω where Ω is the set of all
maps from finite strings to the set of infinite
strings.

For a block sequence
x = (x1, x2, . . . , xs)

where xi ∈ {0, 1}�, we denote by x\xu the block
sequence such that xu is replaced with an empty
block ψ, i.e.,

x\xu = (x1, x2, . . . , xu−1, ψ, xu+1, . . . , xs).

The empty block ψ means that the block at
the position is lost (or unknown). We call the
sequence containing ψ the incomplete sequence.
We let ‖ denote the concatenation operator on
blocks.

3. Previous Definitions and Imple-
mentations

Rivest 9) has defined the all-or-nothing trans-
form as follows:

Definition 1 We say that a transform F
mapping a message sequence (x1, x2, . . . , xs)
into a pseudo-message sequence (y1, y2, . . . , ys′)
is an all-or-nothing transform (AONT) if F sat-
isfies the following conditions.
( 1 ) The transform F is invertible.
( 2 ) Both of F and its inverse are efficiently

computable.
( 3 ) It is computationally infeasible to com-

pute any function of any message block
if any one of the pseudo-message blocks
is unknown.

The transform F is called a length-preserving
AONT (LP-AONT) if s = s′, and it is called a
length-increasing AONT (LI-AONT) if s < s′.

The OAEP 1) and the package transform 9)

are implementations of the LI-AONT. The
OAEP is based on the random oracle model,
and the package transform is based on the ideal
cipher model. The LI-AONT based on the stan-
dard model has been also proposed 3).

Stinson 10) has modified Definition 1 to pro-
vide unconditional security as follows:

Definition 2 Let X1, X2, . . . , Xs be ran-
dom variables taking on values in {0, 1}�, and
let F denote a function of them. Suppose

that random variables Y1, Y2, . . . , Ys are given
by F (X1, X2, . . . , Xs). We say that F is an
unconditional AONT if random variables sat-
isfy the following conditions where H denotes
the entropy function.
( 1 ) H(Y1, Y2, . . . , Ys|X1, X2, . . . , Xs) = 0.
( 2 ) H(X1, X2, . . . , Xs|Y1, Y2, . . . , Ys) = 0.
( 3 ) H(Xi|Y1, Y2, . . . , Yj−1, Yj+1, . . . , Ys)

= H(Xi) for i, j = 1, 2, . . . , s.

Stinson 10) has shown the unconditional
AONT F based on the linear function over a
finite field GF(q). Let D denote an invert-
ible s × s matrix on GF(q) such that no en-
try of D is equal to 0. For a message sequence
x = (x1, x2, . . . , xs) where xi ∈ GF(q), F is
defined as

F (x1, x2, . . . , xs)=xD−1 over GF(q), (1)

where x is regarded as a vector and D−1 is the
inverse matrix of D.

For the third conditions of Definition 1 and
Definition 2, Boyko 2) pointed out that the con-
ditions only considered the amount of informa-
tion leaked about a particular message block,
as opposed to the whole message. To solve this
problem, Boyko has given formal security defi-
nitions of the AONT for the whole message in
terms of semantic security and indistinguisha-
bility. As an example, we mention Boyko’s def-
inition of the non-adaptive indistinguishability.

Definition 3 Let F be a transform map-
ping an n-bit message to an n′-bit pseudo mes-
sage and using the random oracle Γ. Let L be
a set of lost bit positions of the pseudo mes-
sage. There are the find stage for finding two
messages x0, x1 and the guess stage for guess-
ing which message was transformed. Auxiliary
data d are used for transmitting information
from the find stage to the guess stage. Alice A
is said to succeed in (T, qΓ, ε)-distinguishing F
if there exists L such that

Pr
[
Γ R← Ω, (x0, x1, d)

R← AΓ(L, find),

b
R← {0, 1}, y R← FΓ(xb) :

AΓ(d, ỹ, guess) = b

]
≥ 1

2
+ ε,

and Alice runs for at most T steps and makes
at most qΓ queries to Γ, where ỹ is the string
such that bits of y are lost according to L.

If ε is negligibly small, then it is considered
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that F is secure because ỹ does not give even
one bit about the message. Boyko proved that
no AONT can achieve substantially better se-
curity than the OAEP in the sense of this defi-
nition.

Boyko’s definition considers the loss in bits,
as opposed to the loss in blocks. Even if Boyko’s
definition is modified to the loss in blocks, no
LP-AONT is secure. Since the LP-AONT is
deterministic, it is possible to guess b by com-
puting F (x0) and F (x1). We also see that no
LP-AONT is secure in the sense of Boyko’s se-
mantic security.

On the other hand, one may consider that the
third condition of Definition 2 is information-
theoretically extended to the whole message.
The following condition guarantees the security
of the whole message: for j = 1, 2, . . . , s,

H(X1, X2, . . . , Xs|
Y1, Y2, . . . , Yj−1, Yj+1, . . . , Ys)
= H(X1, X2, . . . , Xs). (2)

However, it has been shown that the AONT
satisfying Eq. (2) is the LI-AONT 7).

4. New Definitions

The LP-AONT F is a deterministic permu-
tation on {0, 1}�s where � is the length of one
block and s is the number of blocks. As de-
scribed in Section 3, F is not secure in terms
of the indistinguishability of Boyko’s defini-
tion. However, we do not consider that the
LP-AONT is completely insecure. Although
Boyko’s definitions give the formal security of
information about the message as a whole, they
probably are too strict in practical situation. In
other words, the situation that Alice completely
knows both of x0 and x1 is too advantageous to
Alice. Thus, we relax Boyko’s definitions by
introducing the ambiguity of the message.

Let us consider the following game done by
Alice (adversary) and Bob in terms of the indis-
tinguishability. Let F be the LP-AONT based
on the random oracle Γ.

Find stage: Alice is given u, v and access to
the random oracle Γ. She outputs two in-
complete message sequences x0\xu, x1\xu

and auxiliary data d. She gives the two in-
complete message sequences to Bob. Bob
chooses a random bit b ∈ {0, 1}. He
chooses xu ∈ {0, 1}� at random and sub-
stitutes xu into the u-th block of xb\xu.
He computes

y\yv = FΓ(xb)\yv.

and gives y\yv to Alice.
Guess stage: Given d and y\yv, Alice has

access to Γ. She has to guess b.

Alice uses the auxiliary data d to transmit infor-
mation from the find stage to the guess stage.
For example, d probably contains the incom-
plete message sequences and queries to the ran-
dom oracle Γ. Note that Alice does not com-
pletely know two candidates of the message.
In this respect Definition 4 differs from Defini-
tion 3. If Alice’s probability of correctly guess-
ing b is 1/2, then the AONT F is secure in terms
of the indistinguishability.

Using the application described in Section 1,
we explain the security given by the above
game. The incomplete message sequences
x0\xu, x1\xu are files in compliance with
known formats. For example, Alice knows that
the first line of the Portable Document For-
mat (PDF) file is “%PDF-1.2” and that of the
PostScript file is “%!PS-Adobe-2.0.” The in-
complete pseudo-message sequence y\yv, which
was obtained by Alice, is the no-overwritten
part of the file on the HDD. Alice wants to know
whether the file is the PDF file or the PostScript
file, and wants to obtain information about the
overwritten part of the file if possible. However,
if the probability that Alice’s guess is correct is
1/2, then it means that she cannot distinguish
between the PDF file and the PostScript file.
Since even the known part xb\xu is completely
hidden, it is not easier to extract the unknown
part xu from y\yv. Namely, the knowledge of
file formats is useless to obtain any informa-
tion about the unknown part of the message
sequence from the incomplete pseudo-message
sequence.

The formal definition of indistinguishability
based on the above game is given as follows:

Definition 4 Let F be a transform map-
ping x=(x1, x2, . . . , xs) into y=(y1, y2, . . . , ys)
and using the random oracle Γ. Let u, v (1 ≤
u, v ≤ s) be integers. Alice A is said to suc-
ceed in (T, qΓ, ε)-distinguishing F if there exist
u and v such that

Pr
[
Γ R← Ω,

(x0\xu,x1\xu, d)
R← AΓ(u, v, find),

b
R← {0, 1}, xu

R← {0, 1}�,



Vol. 46 No. 8 Secure Length-Preserving All-or-Nothing Transform 1847

y\yv
R← FΓ(xb)\yv :

AΓ(d,y\yv, guess) = b

]
≥ 1

2
+ ε,

and Alice runs for at most T steps and makes
at most qΓ queries to Γ.

Next, let us consider the following game in
terms of the semantic security.

Find stage: Alice is given u, v and access to
the random oracle Γ. She outputs x\xu,
and gives it to Bob. Bob chooses xu ∈
{0, 1}� at random, and substitutes xu into
the u-th block of x\xu. He computes

y\yv = FΓ(x)\yv,

and gives y\yv to Alice.
Guess stage: Given u, v and y\yv, Alice has

access to Γ. She has to guess f(x) where f
is an arbitrary deterministic function.

Alice cannot transmit any information about
x\xu from the find stage to the guess stage.
Otherwise she will transmit the value of
f(x\xu) to the guess stage. Note that she out-
puts the incomplete message sequence in the
find stage. This respect is different from the
semantic security of Boyko’s definitions. If Al-
ice cannot guess the value of f(x) substantially
better than always outputting the most proba-
ble value of f(x), then she cannot obtain any
useful information from the incomplete pseudo-
message sequence.

Using the application described in Section 1,
we explain the security given by the above
game. Suppose that Alice obtains an incom-
plete digital image file y\yv by the HDD prov-
ing. Since Alice does not know what the im-
age is, she attempts to recover the image even
if the resolution of the recovered image is low.
In this case, f(x) means the low-resolution im-
age of the image x. However, if Alice cannot
guess f(x) substantially better than always out-
putting the most probable f(x), then she can-
not obtain any new information about the im-
age.

The formal definition of the semantic security
based on the above game is given as follows:

Definition 5 Let F be a transform map-
ping x=(x1, x2, . . . , xs) into y=(y1, y2, . . . , ys)
and using the random oracle Γ. Let u, v (1 ≤
u, v ≤ s) be integers, and let f denote any de-
terministic function. Alice A is said to succeed
in (T, qΓ, ε)-predicting f if there exist u, v such

Fig. 1 Proposed LP-AONT.

that

Pr
[
Γ R← Ω, x\xu

R← AΓ(u, v, find),

xu
R← {0, 1}�, y← FΓ(x) :

AΓ(u, v,y\yv, guess) = f(x)
]

≥ pf + ε,

where
pf = Ev

[
Γ R← Ω :

max
z

Pr
[
x\xu

R← AΓ(u, v, find),

xu
R← {0, 1}� : f(x) = z

]]
and A runs for at most T steps and makes at
most qΓ queries to Γ.

Stinson’s LP-AONT given by Eq. (1) does not
use the random oracle, i.e., the linear transform
D is explicitly given. Stinson’s LP-AONT is not
secure in the sense of Definition 4 and Defini-
tion 5 because of the linear transform. For given
D, it is easy to find x0\xu and x1\xu such that
ε of Definition 4 is equal 1/2. It is also easy to
construct an algorithm A such that ε of Defini-
tion 5 is not negligibly small.

5. Implementation

We propose a new LP-AONT as shown in
Fig. 1. Let x = (x1, x2, . . . , xs) be the mes-
sage sequence where xi ∈ {0, 1}�. Let G be
a mapping {0, 1}� into {0, 1}�(s−1), and let H
denote a mapping {0, 1}�(s−1) into {0, 1}�. An
LP-AONT F is defined as

F (x) = y1‖y2‖ . . . ‖ys

= (xL ⊕G(r))‖(r ⊕H(xL ⊕G(r))),

where
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xL = x1‖x2‖ · · · ‖xs−1, (3)
r = x1 ⊕ x2 ⊕ · · · ⊕ xs. (4)

The pseudo-message sequence is given by
y = (y1, y2, . . . , ys),

where yi ∈ {0, 1}�. The inverse of F is com-
puted straightforwardly. Thus, F is the effi-
ciently invertible permutation on {0, 1}�s.

The proposed LP-AONT is similar to the LI-
AONT OAEP, but they are different in the
input of G. In the case of the proposed LP-
AONT, it is the exclusive-OR result of message
blocks. In the case of the OAEP, it is an �-bit
random string that is independent of message
blocks.

We mention the relationship between the
proposed LP-AONT and the s-out-of-s se-
cret sharing scheme. Let us consider x and
(y1, y2, . . . , ys) as a secret information and s
shares, respectively. The size of x is �s bits
and that of yi is � bits, i.e., the size of a share
is precisely 1/s of that of the secret informa-
tion. As described in Section 6, x cannot be re-
covered without using all the s shares. There-
fore, the proposed LP-AONT can be used in-
stead of conventional s-out-of-s secret sharing
schemes. Note that the proposed LP-AONT is
not an information-theoretically secure s-out-
of-s secret sharing scheme.

6. Security Analysis of the Implemen-
tation

We assume that G and H are random oracles.
Let qG and qH be the numbers of queries to G
and H, respectively.

Theorem 1 Suppose that Alice A (T, qG +
qH , ε)-distinguishes F where the u-th message
block and the v-th pseudo-message block are
lost, qG ≤ 2�−1 and � ≥ 2. If v = s, then

ε ≤ 2qG2−�,

otherwise

ε ≤ 2qG

(
e ln 2�

ln ln 2�
+ 1

)
2−�, (5)

where e is the base of the natural logarithm.

We prove the above theorem. Let AC be the
event that Alice’s guess is correct. Let rB de-
note the input of G used by Bob in this game,
i.e., Eq. (4). Let AskRB be the event that Alice
asks about the value of G(rB). Let FAskRB and
GAskRB be events that such a query is made in

the find stage and in the guess stage, respec-
tively. We have

Pr
[
AC

]
= Pr

[
AC | ¬AskRB

] · Pr
[¬AskRB

]
+Pr

[
AC | AskRB

] · Pr
[
AskRB

]
≤ Pr

[
AC | ¬AskRB

]
+ Pr

[
AskRB

]
= Pr

[
AC | ¬AskRB

]
+ Pr

[
FAskRB

]
+Pr

[
GAskRB | ¬FAskRB

]
·Pr

[¬FAskRB

]
≤ Pr

[
AC | ¬AskRB

]
+ Pr

[
FAskRB

]
+Pr

[
GAskRB | ¬FAskRB

]
. (6)

Since Bob uniformly chooses xu from {0, 1}�
at random, the distribution of rB is uniform
on {0, 1}� because of Eq. (4). Since G(rB) is
random if Alice does not ask about G(rB), we
have

Pr
[
AC | ¬AskRB

]
=

1
2
.

Moreover, since Bob computes rB after he re-
ceived two incomplete message sequences, we
have

Pr
[
FAskRB

] ≤ qFG2−�

where qFG is the number of queries to G in the
find stage. Hence, Eq. (6) is written as

Pr
[
AC

] ≤ 1
2

+ qFG2−�

+ Pr
[
GAskRB | ¬FAskRB

]
.(7)

We evaluate the probability Pr
[
GAskRB |

¬FAskRB

]
. Let qGG be the number of queries

to G in the guess stage, and let GAskRi
B denote

the event that Alice’s i-th query to G in the
guess stage is rB.
Pr

[
GAskRB | ¬FAskRB

]
=

qGG∑
i=1

Pr
[
GAskRi

B | ¬FAskRB

]

=
qGG∑
i=1

Pr
[
GAskRi

B |
i−1∧
j=1

¬GAskRj
B ∧ ¬FAskRB

]

·Pr
[i−1∧
j=1

¬GAskRj
B | ¬FAskRB

]

≤
qGG∑
i=1

Pr
[
GAskRi

B |
i−1∧
j=1

¬GAskRj
B ∧ ¬FAskRB

]
(8)

We first consider the case of v = s, i.e., the
last pseudo-message block ys is lost. Since xu
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is uniformly distributed on {0, 1}�, rB and ys

are uniformly done on it. It follows that the
value of H(y1‖y2‖ . . . ‖ys−1) is useless to guess
rB. Eq. (8) is bounded as follows:

qGG∑
i=1

Pr
[
GAskRi

B |
i−1∧
j=1

¬GAskRj
B ∧ ¬FAskRB

]

=
qGG∑
i=1

1
2� − (qFG + (i− 1))

≤ qGG

2� − qG
For r asked by Alice in the find stage, Alice does
not ask about G(r) to the oracle G in the guess
stage because such a G(r) is probably included
in the auxiliary data d. Using the assumption
of qG ≤ 2�−1, we have

Pr
[
AC

] ≤ 1
2

+ qFG2−�

+Pr
[
GAskRB | ¬FAskRB

]
≤ 1

2
+
qFG

2�
+

qGG

2� − qG
≤ 1

2
+
qFG

2�
+

2qGG

2�

≤ 1
2

+
2qG
2�

.

Next, we consider the case of v �= s. Pseudo-
message blocks yi except for yv have been fixed
in the guess stage. We define a function V :
{0, 1}� → {0, 1}� as

V (z)=H(y1‖ . . . ‖yv−1‖z‖yv+1‖ . . . ‖ys−1)
⊕ ys

where z ∈ {0, 1}�. Since H is the random or-
acle, V is a random function. Note that Al-
ice does not need to guess the lost yv correctly
to guess rB because a preimage z such that
V (z) = rB is not necessarily unique. The fol-
lowing lemma is useful for computing the num-
ber of such preimages 2),8).

Lemma 1 Let W : {0, 1}� → {0, 1}� be a
random function where � ≥ 2. Then,

Ev
[

max
y∈{0,1}�

∣∣W {−1}(y)
∣∣] ≤ e ln 2�

ln ln 2�
+ 1

where the expected value is taken on all func-
tions from {0, 1}� to {0, 1}� and

∣∣W {−1}(y)
∣∣ is

the number of w such that y = W (w).

Let γ = (e ln 2�/ ln ln 2�) + 1. Since γ > 8 if
� ≥ 2, Eq. (8) is bounded as follows:

qGG∑
i=1

Pr
[
GAskRi

B |
i−1∧
j=1

¬GAskRj
B ∧ ¬FAskRB

]

=
qGG∑
i=1

γ

2� − (qFG + (i− 1))

≤ γ qGG

2� − qG .
Therefore, we have

Pr
[
AC

] ≤ 1
2

+ qFG2−�

+Pr
[
GAskRB | ¬FAskRB

]
≤ 1

2
+
qFG

2�
+

γ qGG

2� − qG
≤ 1

2
+
qFG

2�
+

2γ qGG

2�

≤ 1
2

+
2qGγ

2�
.

We have proved Theorem 1.

Theorem 2 Suppose that Alice A (T, qG +
qH , ε)-predicts f where the u-th message block
and the v-th pseudo-message block are lost,
qG ≤ 2�−1 and � ≥ 2. If v = s, then

ε ≤ 2qG2−�,

otherwise

ε ≤ 2qG

(
e ln 2�

ln ln 2�
+ 1

)
2−�,

where e is the base of the natural logarithm.

The bounds of Theorem 2 are the same as
those of Theorem 1 because the proof of Theo-
rem 2 is very similar to that of Theorem 1. We
have Eq. (6), i.e.,

Pr
[
AC

]≤ Pr
[
AC | ¬AskRB

]
+ Pr

[
FAskRB

]
+Pr

[
GAskRB | ¬FAskRB

]
Since G(rB) is random if Alice does not ask

about G(rB), we have

Pr
[
AC | ¬AskRB

] ≤ pf .

Moreover, we have

Pr
[
FAskRB

]
= qFG2−�.

Since no information is transmitted from the
find stage to the guess stage, the bound of
Pr

[
GAskRB | ¬FAskRB

]
is slightly different

from that of Theorem 1. Namely, values of G(r)
obtained in the find stage cannot be transmit-
ted to the guess stage. It follows that for v = s
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qGG∑
i=1

Pr
[
GAskRi

B |
i−1∧
j=1

¬GAskRj
B ∧ ¬FAskRB

]

=
qGG∑
i=1

1
2� − (i− 1)

≤ qGG

2� − qGG

≤ qGG

2� − qG ,
and for v �= s

qGG∑
i=1

Pr
[
GAskRi

B |
i−1∧
j=1

¬GAskRj
B ∧ ¬FAskRB

]

=
qGG∑
i=1

γ

2� − (i− 1)

≤ γ qGG

2� − qGG

≤ γ qGG

2� − qG .
Therefore, the bound of Pr

[
AC

]
is the same as

that of Theorem 1.
Theorem 1 and Theorem 2 show that no ad-

versary (Alice) can do substantially better than
by the exhaustive search of the lost pseudo-
message block because the advantage of the ad-
versary is O(�/ log �). It follows that no LP-
AONT can achieve substantially better security
than the proposed implementation.

Using the example of the filesystem on the
HDD described in Section 1, we explain the
meaning of the above theorems. Suppose that
Bob wants to give his HDD to Alice where all
files on his HDD have been recorded with the
proposed implementation. Bob first overwrites
the first blocks of all files with the random
string according to appropriate ways 11),12). It
follows that Alice cannot recover the original
blocks from the overwritten blocks even if she
uses expensive HDD probing. After Alice got
his HDD, she attempts to know files on his
HDD. However, the above theorems imply that
her attempt fails, i.e., no attempt gives new in-
formation about files on his HDD to her.

7. Concluding Remarks

We have given new security definitions of the
LP-AONT under the random oracle model, and
proposed the secure implementation of the LP-
AONT. Since the assumption of the ambiguity
of one message block is not so unrealistic, new
definitions offer the sufficient security in appli-
cations. We have also proved that the proposed

implementation is nearly optimal in terms of
the success probability of the adversary. In ad-
dition, the proposed implementation is practi-
cal since it consists of a pseudo-random gener-
ators G and a hash function H.

In this paper, we have assumed that the mes-
sage and the pseudo message are lost in blocks.
For the application of the filesystem, it is a rea-
sonable assumption that the pseudo message is
lost in blocks since the user usually overwrites
the file in sectors of the HDD or bytes of the
file. However, from the theoretical viewpoint,
the security for the loss of the pseudo message
in bits is an interesting open problem.

Applications of the LP-AONT include the se-
cure filesystem on the HDD. The use of the
proposed implementation is probably effective
if the size of each of files on the HDD are large,
for example, the HDD of a video server. Con-
versely, if the size of each of files on the HDD
is very small, the use of the proposed imple-
mentation is possibly ineffective because the
time for overwriting all the first blocks of files
is nearly equal to the time for overwriting the
whole HDD. We will evaluate the practical per-
formance of the proposed implementation.
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Editor’s Recommendation

We have a security thereat from an unautho-
rized access to data on a recycled hard disk
drive (HDD). With the all-or-nothing transform
(AONT) we can decrypt the data only when we
have all the encrypted data. AONT is expected
for a use in the variety of applications such as
protection of recycle HDD. It has a drawback
that the size of the encrypted data increases
compared to the plain text, hence, not practi-
cal. This paper proposes a solution with more
relaxed security definitions of the AONT, and
shows the proposed scheme works as secure as
the previous ones. The work is novel and pre-
sented clearly.

(Chairperson of SIGCSEC Yuko Murayama)
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