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Conventional TCP fails to achieve optimal TCP performance since it does not handle well
the loss of retransmitted segments, generated by the fast retransmit algorithm and the re-
sponse of partial ACK under fast recovery. This paper introduces an algorithm to recover
these lost retransmissions for NewReno TCP and details the steps to implement it. It provides
careful retransmission by considering the loss of unacknowledged segments. The algorithm
is followed by two options for restoring the congestion control state; both reduce the mod-
erate transmission rate which mitigates network congestion. ns2 simulations show that the
algorithm can overcome the loss of retransmitted segments. Moreover, it also suppresses the
unnecessary throughput degradation more effectively than is possible with the recovery of
lost retransmissions in Reno TCP and equals the performance offered by the SACK-based
algorithm. The two options for restoring the congestion control state are also shown to offer
adequate performance under retransmitted segment loss.

1. Introduction

Internet access via cellular phones using 3G
high-speed mobile communications has become
popular around the world. TCP streams are
widely used for data communication across
wired and wireless links.

In order to provide reliable transfer, one of
the global telecom systems for the IMT2000
3G mobile communication standard, wideband
code division multiple access (WCDMA), uses
radio link control (RLC), a selective repeat
and sliding window auto repeat request (ARQ)
scheme. The ARQ mechanism in WCDMA sup-
ports a packet service with a negligibly small
probability of undetected errors due to RLC
frame retransmission 1). However, the delay jit-
ter caused by error recovery can lead to un-
expected increases in round trip time (RTT).
Moreover, inter-system handover is likely to
trigger a significant delay spike, and can result
in data loss 2).

The weaknesses of wireless links raise many
issues when trying to maximize the efficiency of
TCP transmission. In particular, segment loss
may occur more readily in wireless links than
wired links. Key goals are to strengthen the
segment loss tolerance while both minimizing
unnecessary throughput degradation and miti-
gating network congestion.

The fast retransmit algorithm is described in
RFC2581 3). It retransmits the first unacknowl-
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edged segment, when the sender detects seg-
ment loss upon the receipt of the third duplicate
ACK. Moreover, it reduces the congestion win-
dow and the slow start threshold. The sender
receives duplicate ACKs when the receiver de-
termines that a segment has been received out-
of-order as indicated by the packet sequence
number. The fast retransmit algorithm uses
this information to realize more effective loss re-
covery than is possible with the retransmission
timeout technique. However, it does not work
well if the congestion window is small or a large
number of segments are lost in a single trans-
mission widow, because the sender may fail to
receive the third duplicate ACK.

To avoid this situation, Limited Transmit 4)

and Early Retransmit 5) were proposed. Lim-
ited Transmit allows a new data segment to
be sent in response to each of the first two
duplicate ACKs. Early Retransmit changes
the duplicate ACK threshold that triggers fast
retransmission in special circumstances. Al-
though the probability of segment retrans-
mission is increased without entering costly
retransmission timeout, loss of the retrans-
mitted segment leads to retransmission time-
out 6). The timeout is unavoidable even if
the sender uses the above algorithms in Reno
TCP 7), NewReno TCP 8), and SACK 9),10).
Network studies show that about 5% of time-
outs are caused by the loss of retransmitted seg-
ments 11).

To strengthen TCP against segment loss, an
approach to the recovery of lost retransmissions
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that uses TCP’s ACK-clock was proposed 11).
We call this method the loss recovery algorithm
hereafter. Duplicate acknowledgment counting
(DAC) was proposed as the loss recovery algo-
rithm of NewReno and its loss recovery proba-
bility has been analyzed 12),13). In the event of
the recovery of lost retransmissions, the DAC
has a problem in that it performs unauthorized
segment transmission exceeding the TCP con-
gestion control requirement 3). A revised algo-
rithm was proposed in Ref. 14), however it does
not provide adequate congestion control under
fast recovery.

This paper explains the steps needed to im-
plement the loss recovery algorithm in de-
tail. We also modified the process used in
DAC 12),13) to recover lost retransmissions to
permit the fast recovery and loss recovery al-
gorithms to cooperate. The algorithm provides
careful retransmission by considering the loss
of the unacknowledged segments that were re-
transmitted by the fast retransmit algorithm
and the response to partial ACK under fast re-
covery. Next, this paper proposes two options
for restoring the congestion control state. Both
options share the goal of mitigating network
congestion by reducing the moderate transmis-
sion rate.

The modified loss recovery algorithm for
NewReno TCP isimplemented in the ns2 simu-
lator 15), together with the options, to confirm
its performance. The implementation is also
useful in evaluating individual phenomenon,
such as outstanding segments and congestion
window behavior. Results collected from the
ns2 simulator show that the loss recovery al-
gorithm can overcome the loss of retransmit-
ted segments in both fast retransmit and in
response to a partial acknowledgment. More-
over, it also avoids the unnecessary throughput
degradation more effectively than the loss re-
covery algorithm for Reno TCP and equals the
performance offered by the algorithm that uses
the SACK option. Our options for restoring
the congestion control state also show adequate
performance under retransmitted segment loss.

2. Related Works

In order to strengthen TCP against seg-
ment loss, Lin and Kung originally proposed a
loss recovery algorithm that uses TCP’s ACK-
clock 11). It retransmits the first unacknowl-
edged segment raised by the fast retransmit al-
gorithm if the number of duplicate ACKs un-

der the fast retransmit/recovery phase reaches
the number of outstanding segments plus du-
plicate ACK threshold. In the case of multiple
segment loss, the sender is not well handled in
Reno TCP, even if it uses the loss recovery algo-
rithm. In this case, using the SACK option to
offset the loss of the retransmitted segment is a
useful approach 11). If the connection between
sender and receiver permits the SACK option,
the right edge in the SACK block in the sender
can show the correct timing clearly without re-
sorting to any heuristics. The SACK option is
standardized as RFC2018 9) and RFC3517 10),
and it is implemented in most operating sys-
tems. Unfortunately, it may add a 10 to 34 byte
overhead due to the use of SACK blocks which
are included in ACKs (40 bytes) until an accept-
able ACK, and receiver modification in some
cases, such as Internet access via PCs, PDAs,
and cellular phones.

Duplicate acknowledgment counting (DAC)
was proposed as a loss recovery algorithm for
NewReno and its loss recovery probability has
been analyzed 12),13). In general, SACK needs
one RTT (Round Trip Time) to recover all
losses in a single transmission window, whereas
NewReno requires L × RTT to finish, where L
is the number of lost segments. NewReno TCP,
however, overcomes multiple segment loss with-
out any overhead, and it can support existing
receiver side equipment without any modifica-
tion. The above papers mainly focused on de-
riving the loss recovery probability, so provided
insufficient detail, such as integration with the
fast recovery and loss recovery algorithms; con-
gestion control was not considered either. In
the case of recovering lost retransmissions, the
DAC has a problem in that it performs unau-
thorized segment transmission; that is, two seg-
ments, a new segment and an unacknowledged
segment are transmitted due to the lack of co-
operation between the fast recovery and loss re-
covery algorithms. Segment transmission using
the fast recovery algorithm is allowed by dupli-
cate ACK arrival since the receipt of duplicate
ACK indicates that prior segments have already
left the network. Thus, the transmission of the
above segments in DAC is too aggressive to be
used, and it breaks the TCP congestion control
requirement 3).

A revised algorithm was proposed in 14),
however it does not provide adequate conges-
tion control under fast recovery. Whenever the
algorithm detects the loss of retransmitted seg-
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ments, the congestion window and slow start
threshold are lowered twice, independently of
the fast recovery algorithm, even if the con-
gestion window is artificially inflated for seg-
ment transmission. This means that it restricts
the use of artificial congestion window inflation
and segment transmission, both of which are
required by the fast recovery algorithm. If the
sender faces the loss of multiple segments and
retransmitted segment loss, it transmits only
one segment in response to one partial ACK per
RTT after recovery of the lost retransmission.

3. Loss Recovery Algorithm for
NewReno TCP

In this section, we explain the loss recovery
algorithm for NewReno TCP and the steps for
implementing it in detail. It is followed by
two options for restoring the congestion control
state of the algorithm.

3.1 Recovery of Lost Retransmission
Steps

NewReno TCP well handles the arrival of
a partial ACK during fast recovery and al-
lows segment retransmission under multiple
segment loss 8). The loss recovery algorithm
for NewReno TCP is proof against failure to
identify the loss of the retransmitted segment
raised by the fast retransmit algorithm and the
response to a partial acknowledgment during
fast recovery. It also provides careful retrans-
mission and avoids any increase in the overhead
in the receiver.

If the number of duplicate ACKs is equal to
the number of outstanding segments plus du-
plicate ACK threshold, the sender retransmits
the first unacknowledged segment transmitted
by the fast retransmit algorithm as in the loss
recovery algorithm for Reno TCP. Moreover, it
monitors the relationship between the number
of duplicate ACKs and the number of transmit-
ted segments during fast recovery, and retrans-
mits the unacknowledged segment raised by a
response to a partial ACK. We clearly show
that the duplicate ACKs represent not only the
response to the original segment, but also the
response to the segment raised by the fast re-
covery algorithm. The algorithm provides care-
ful retransmission by considering the loss of un-
acknowledged segments that were retransmit-
ted by the fast retransmit algorithm and the
response to partial ACK under fast recovery.
Next, the sender waits for an acceptable ACK
while sending the next new segment in response

Step (1) When congestion occurs (the third duplicate
ACK is received):

Store recovery (highest sequence number),
cumulativeFS← FlightSize,
deltaFS← 0,

retransmit the first unacknowledged segment.

Step (2) Set the parameters as follows:
ssthresh← max(FlightSize/2, 2× SMSS)
cwnd← ssthresh+ SMSS × DupThresh.

Step (3) Wait for the arrival of either an acceptable

ACK or a duplicate ACK:
update the variable dupacks, and
proceed to step (4)

Step (4) If an acceptable ACK whose sequence num-
ber covers recovery arrives

then set
cwnd ← ssthresh,

and proceed to step (DONE),
else if partial ACK arrives, set

SND.NXT← SND.UNA,
cumulativeFS← deltaFS+ 1,
deltaFS← 0,
dupacks← 0, and

retransmit the first unacknowledged segment,
and proceed to step (3).

else
proceed to step (5).

Step (5) If the sender is satisfied with the condition
cumulativeFS == dupacks

then retransmit the first unacknowledged
segment,

deltaFS← 0, dupacks← 0,
and proceed to step (3).

Note that this step never increment cwnd, and
transmits only the unacknowledged segment.

else proceed to step (6).

Step (6) For each additional duplicate ACK received,
increment cwnd by SMSS,

If allowed by the new cwnd and RWIN

transmit a segment and increment deltaFS.
proceed to step (3).

Step (DONE) Leave the fast recovery and loss recov-
ery algorithms.

Fig. 1 The loss recovery algorithm for NewReno
TCP.

to the duplicate ACK. As a result, the sender
increases the probability of segment retrans-
mission without entering costly retransmission
timeout.

Figure 1 shows the congestion control and
segment retransmission steps for NewReno
TCP, which are included in the fast retrans-
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mit, fast recovery, and loss recovery algo-
rithms. In Fig. 1, FlightSize, recovery,
SND.NXT, and SND.UNA are sender state vari-
ables. FlightSize is the number of outstand-
ing segments in the network, recovery is the
highest sequence number transmitted after con-
gestion occurs, SND.NXT is the segment se-
quence number of the next segment the TCP
sender will (re-)transmit, and SND.UNA is the
sequence number of the unacknowledged seg-
ment. DupThresh is the duplicate acknowledg-
ment threshold; currently specified as the fixed
value of three 3). RWIN and SMSS are the value
of the receiver’s advertised window and the size
of the largest segment that the sender can trans-
mit, respectively.

The loss recovery algorithm provides care-
ful retransmission against the response to par-
tial acknowledgment during fast recovery, and
strengthens the segment loss tolerance. It needs
only small modification of the sender side TCP,
so it can support existing receiver side equip-
ment, such as PCs, PDAs, and Internet ac-
cess cellular phones, without any modification.
The difference from the loss recovery algorithm
for Reno TCP and SACK is mainly the trig-
ger of the unacknowledged segment transmis-
sion in steps (4) and (5). Moreover, we also
modified the recovery of lost retransmissions in
the DAC 12),13) to permit the cooperation of the
fast recovery and loss recovery algorithms; Step
(5) in Fig. 1 does not increment cwnd and sup-
presses new segment transmission from the fast
recovery algorithm.

The recovery of lost retransmissions also de-
pends on the number of duplicate ACKs and
might lose the chance to retransmit, the same
as the loss recovery algorithm for Reno TCP,
if a large number of duplicate ACKs are lost.
In contrast, it will trigger unnecessary segment
transmission of the first unacknowledged seg-
ment if a malicious receiver generates dupli-
cate ACKs. However, a sender using the algo-
rithm never experiences unnecessary through-
put degradation caused by false congestion con-
trol. In that case, the fast recovery algorithm
in conventional TCP also allows transmission
of the next segment. Thus, the algorithm of-
fers conservative behavior as does conventional
TCP.

3.2 Restoring the Congestion Control
State

In the previous subsection, we described a
method that restores the congestion control

state during the fast retransmit/recovery and
loss recovery; it proceeds as follows:

(I) ssthresh = cwnd_old/2,
cwnd = ssthresh

where cwnd_old represents the value of cwnd
when the third duplicate ACK was received at
the sender. It keeps the congestion window size
reasonably small, because segment retransmis-
sion by the fast retransmit and loss recovery al-
gorithms are done within a single transmission
window.

In order to make the process more conser-
vative, we propose the following two options
(II and III) for restoring the congestion control
state:

(II) ssthresh = cwnd_old/4,
cwnd = ssthresh

(III) ssthresh = cwnd_old/2,
cwnd = 1

In the congestion control of TCP, the cooper-
ation of end hosts and the response to conges-
tion signals (i.e., dropped segments) by AIMD
(Additive Increase and Multiplicative Decrease)
prevents congestion collapse. Since the conges-
tion control at the loss of retransmitted seg-
ments is not well considered, options (II) and
(III) are proposed based on the regulation in
RFC2581.

From the point of view of RFC2581 ☆, cwnd
and ssthresh are lowered twice in Option (II).
When (II) is applied, the fast retransmit and
loss recovery algorithms are independent, and
congestion control is performed on each. Ac-
cording to Step (1) and (2) in Fig. 1, the fast
retransmit algorithm uses the arrival of the
third duplicate ACK as an indication of seg-
ment loss. It retransmits the first unacknowl-
edged segment and sets parameters, cwnd and
ssthresh using the process in option (I). In
addition to the fast retransmit algorithm, the
loss recovery algorithm sets ssthresh which is
lowered twice. To avoid excessive reduction in
ssthresh, the proposed algorithm reduces the
parameter only once during loss recovery. If the
acceptable ACK whose sequence number cov-
ers “SDN.HIGH” arrives, the sender sets cwnd to
ssthresh. As per the above process, the loss

☆ RFC2581 mentions the application of congestion
control under retransmitted segment loss as follows:

Loss in two successive windows of data, or
the loss of a retransmission, should be taken
as two indications of congestion and, therefore,
cwnd (and ssthresh) MUST be lowered twice
in this case.
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Step (5) If the sender is satisfied with the condition
cumulativeFS == dupacks

then retransmit the first unacknowledged segment,
deltaFS← 0, dupacks← 0,
ssthresh← max(cwnd_old/2, 2× SMSS)

and proceed to step (3).

Note that this step never increments cwnd, and
transmits only the unacknowledged segment.

else proceed to step (6).

Note that ssthresh is reduced only once
in the loss recovery algorithm.

Fig. 2 The loss recovery algorithm with (II):
ssthresh=cwnd old/4, cwnd=ssthresh.

Step (4) If an acceptable ACK whose sequence number
covers recovery arrives and segment retransmission is
experienced in Step(5)

then set
cwnd ← 1,

and proceed to step (DONE),
else if partial ACK arrives, set

SND.NXT← SND.UNA,
cumulativeFS← deltaFS+ 1,
deltaFS← 0,
dupacks← 0, and

retransmit the first unacknowledged segment
else

proceed to step (5).

Fig. 3 The loss recovery algorithm with (III):
ssthresh=cwnd old/2, cwnd=1.

recovery algorithm with option (II) can cooper-
ate with the fast recovery algorithm. Figure 2
shows this modification of Fig. 1 for option (II).
The difference from Step (5) in Fig. 1 is only
the calculation of the sender state variable,
ssthresh. The comparison between cwnd_old/2
and 2 × SMSS is the same as for the fast re-
transmit algorithm.

The loss recovery algorithm avoids the re-
transmission timeout caused by loss of retrans-
mitted segments in NewReno TCP. Upon time-
out, cwnd is set to 1 full-sized segment, while
ssthresh is set to one half of the previous
cwnd. After that, the sender uses the slow start
algorithm, which controls the number of out-
standing segments being injected into the net-
works. The increase in slow start continues
until ssthresh is reached, at which point it
is replaced by the congestion avoidance algo-
rithm. By introducing this conventional con-
gestion control, i.e., the retransmission timeout,
to option (III), congestion control state restora-
tion is made very conservative. Figure 3 shows
the modification of Fig. 1 for option (III). The

difference from Step (4) in Fig. 1 is the change
in sender state variable cwnd. The load on
the networks under a retransmission timeout is
actually increased due to the large number of
unnecessary retransmissions 16). It is expected
that option (III) will mitigate network conges-
tion by reducing the overall transmission rate.
Accordingly, option (III) is better for handling
severe congestion states.

4. Performance Evaluation

In the case of duplicate ACK arrival fol-
lowing fast retransmit and retransmitted seg-
ment loss, the sender using the loss recovery
algorithm transmits the next new segments as
well as retransmitting the unacknowledged seg-
ment. However, the algorithm shows improve-
ment only for corner cases. That is, if the fast
retransmit does not occur or duplicate ACKs
do not arrive, the algorithm is not triggered and
so provides no improvement in the connection’s
throughput. It is difficult to define a realis-
tic wireless communication model that includes
fast retransmit and retransmitted segment loss
for throughput evaluations. Accordingly, this
paper generated several scenarios and examined
the time-sequence, congestion window size, and
its throughput in the face of duplicate ACKs
arriving after fast retransmit and the case of
retransmitted segment loss.

4.1 Simulation Model
In this subsection, we implement the modified

loss recovery algorithms for NewReno TCP as
described in Table 1 using the ns2 simulator
(ns-2.26) 15). It was originally developed in the
VINT project, and aimed to build a network
simulator that would allow the study of scale
and protocol interaction in the context of cur-
rent and future network protocols. We evaluate
the algorithms in Table 1 using a communica-
tion model based on Fig. 4. The TCP sender
in the wired network communicates with the re-
ceiver in the wireless network. Retransmitted
segments may be lost more often than expected
from just network congestion given the unstable
nature of the wireless link.

Figure 5 shows the topology used in our
experiments. The sender is connected to the
BS via a 10 Mbps wired link with 20 ms de-
lay, and the receiver is connected to the BS
via a 384 kbps wireless link with 500 ms delay.
The TCP segments of SMSS = 1,460 bytes
are transmitted from the sender to the receiver.
The BS has enough queue depth and does not
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Table 1 List of algorithms evaluated.

Base- Fast retransmit Loss recovery Congestion control after
protocol /recovery retransmitted segment loss

Loss recovery for Reno Reno ◦ ◦ ssthresh = cwnd_old/2
cwnd = ssthresh

Loss recovery for SACK SACK ◦ ◦ ssthresh = cwnd_old/2
cwnd = ssthresh

Loss recovery for NewReno (I) NewReno ◦ ◦ ssthresh = cwnd_old/2
cwnd = ssthresh

Loss recovery for NewReno (II) NewReno ◦ ◦ ssthresh = cwnd_old/4
cwnd = ssthresh

Loss recovery for NewReno (III) NewReno ◦ ◦ ssthresh = cwnd_old/2
cwnd = 1

NewReno NewReno ◦ × ssthresh = 2☆

cwnd = 1

Fig. 4 System model.

Receiver BS Sender

384kbps 10Mbps

TCP segmentACK

500ms 20ms

Fig. 5 Simulation model.

drop any original outstanding segments. In the
following simulations, the wireless link drops
three original segments (38, 42, and 46) and
one of the retransmitted segments in the fast
retransmit or in the response to a partial ac-
knowledgment.

4.2 Loss Retransmission Evaluation
Figures 6, 7, and 8 show the segment num-

ber versus time (simply called time-sequence
graph) with three original segments and the
first retransmitted segment loss. These graphs
plot data collected from the ns2 simulator on
the sender side. The graph convention used in
the time-sequence graph is similar to that in-
troduced in Ref. 17). The thick and thin (up-
per and lower) solid lines plot the segments,
advertised window size, and acknowledgments,
respectively. Symbol “R” shows the segment
retransmitted by the fast retransmit algorithm,
loss recovery algorithm, or retransmission time-
out. A small tick on the bottom Acknowledg-
ment line indicates that a duplicate ACK has
been received. The slow start algorithm allows

Fig. 6 Loss recovery for Reno TCP with the loss of
three original and first retransmitted segments.

Fig. 7 Loss recovery for SACK with the loss of three
original and first retransmitted segments.

two or three segments to be injected in response
to each of acceptable ACKs into the network
until 9:00:03.1, and the number of outstanding

☆ According to the congestion control for retrans-
mission timeout (caused by retransmitted segment
loss), ssthresh must be set to no more than the

value given the following equation 3):
ssthresh = max(FlightSize/2, 2× SMSS).
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Fig. 8 Loss recovery for NewReno (I) with the loss of
three original and first retransmitted segments.

segments increases exponentially. In contrast, a
new segment is transmitted in response to each
of the duplicate ACKs towards the advertising
window using the fast recovery algorithm.

The loss of three original segments at
9:00:02.5 triggers the fast retransmit/recovery
algorithms. The loss recovery algorithms for
Reno TCP, SACK, NewReno (I) identify the
loss of the first unacknowledged segment and
retransmit the segment using the loss recovery
algorithm at 9:00:3.9. New segments are con-
tinuously transmitted towards the advertising
window using the fast recovery algorithm. In
this case of multiple segment loss, the sender
using the loss recovery algorithm for Reno TCP
fails to handle the duplicate ACKs well, because
Reno TCP uses “bugfix” ☆ 8) to restrict multi-
ple fast retransmit. Even if it allows multiple
fast retransmit, the sender still faces a shortage
of duplicate ACKs. Thus, the sender enters a
costly retransmission timeout; the congestion
window size reduction leads to an unnecessary
degradation in throughput.

In contrast, the loss recovery algorithm for
SACK and NewReno (I) monitor the SACK
block and the number of the duplicate ACKs,
respectively, to detect the retransmitted seg-
ment loss. Figure 9 shows the step for the loss
recovery algorithm with SACK. The difference
from the loss recovery algorithm for Reno TCP
is not the count of duplicate ACKs but the eval-
uation in Fig. 9 performed as Step (5) in Fig. 1.
If the right edge in a SACK block advances the

☆ The current Reno TCP uses “recovery” variable
that records the highest sequence number for lost
segment recovery, and avoids the performance prob-
lems caused by multiple fast retransmits. So, this
modification is originally called “bugfix” in 18).

Step (5) If the SACK block reports as follows:
Right edge in SACK block > recovery

then retransmit the first unacknowledged segment,
store recovery again, and proceed to step (3)

else proceed to step (6).

Fig. 9 The loss recovery algorithm for SACK.

Fig. 10 Throughput comparison: Reno, SACK, and
NewReno.

value recovery, the sender retransmits the first
unacknowledged segment immediately. Next,
the sender waits for an acceptable ACK while
sending the next new segment in response to
a duplicate ACK. In Figs. 7 and 8, the sender
then retransmits the unacknowledged segment
at 9:00:03.8, and avoids the costly retransmis-
sion timeout and subsequent congestion win-
dow size reduction. The loss recovery algorithm
for SACK shows effective segment loss recov-
ery at the cost of increasing the receiver over-
head due to the use of the SACK algorithm.
On the other hand, the loss recovery algorithm
for NewReno (I) is based on the number of du-
plicate ACKs; that is, the sender waits for 0.8
seconds until the acceptable ACK arrives. How-
ever, it transmits the new segments in response
to the duplicate ACK during fast recovery. This
ensures that it keeps one half of the congestion
window and offers the same throughput as the
algorithm using SACK option without increas-
ing receiver overhead.

Figure 10 shows the relationship between
data size and throughput among the loss re-
covery algorithms for Reno TCP, SACK, and
NewReno TCP. It also shows the scenario in
Figs. 6, 7, and 8. The wireless link drops
three original segments and one of the retrans-
mitted segments in the fast retransmit or in
the response to a partial acknowledgment, and
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(a) Time-sequence graph

(b) Sender state variables, cwnd and ssthresh

Fig. 11 Loss retransmission for the original NewReno
TCP with the loss of three original and second
retransmitted segments.

never generates segments loss after that. The
throughput is obtained by dividing the amount
of data shown in the x-axis by the transmission
time including the slow start and the loss re-
covery periods. The wireless link speed includes
the overheads of TCP/IP header information as
given by the following equation:

Link speed = 384 [kbps] × 1,460 [bytes]
1,500 [bytes]

= 373.8 [kbps].

In Fig. 10, Reno TCP needs excessive data
size to recover the throughput. If the sender
uses the Keep-Alive extension to HTTP 19) for
long-lived HTTP sessions, it takes much more
time for sending than the others after loss re-
covery. In contrast, NewReno (I) and SACK
offer superior performance to Reno TCP, and
they effectively approach the wireless link speed
by increasing the amount of data. NewReno
(I) offers performance comparable to that of
SACK, even though it takes additional time
to recover from the second and third segment

(a) Time-sequence graph

(b) Sender state variables, cwnd and ssthresh

Fig. 12 Loss recovery for NewReno (I) with the loss of
three original and second retransmitted seg-
ments.

loss and waits for the arrival of duplicate ACKs
(beyond the number specified by the duplicate
ACK threshold) to detect retransmitted seg-
ment loss. Moreover, SACK and NewReno (I)
utilize the wireless link speed efficiently even
though the amount of data transferred is rela-
tively small.

4.3 Congestion Control State Evalua-
tion

Figures 11 and 12 plot the time-sequence
graph and sender state variable, cwnd and
ssthresh with the loss of three original
segments and the second retransmitted seg-
ment. In Fig. 11, the sender using the original
NewReno TCP 8), i.e., without the loss recovery
algorithm, enters a costly retransmission time-
out at 9:00:04.8, and the sender state variables
are reduced, cwnd = 1 and ssthresh = 5. In
Fig. 12, the sender using the loss recovery algo-
rithm for NewReno (I) monitors the relation-
ship between the number of duplicate ACKs
and transmitted segments during fast recovery,
so it retransmits the unacknowledged segment
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(a) Time-sequence graph

(b) Sender state variables, cwnd and ssthresh

Fig. 13 Loss recovery for NewReno (II):
ssthresh=cwnd old/4, cwnd=ssthresh.

at 9:00:04.2. That is, the loss recovery algo-
rithm for NewReno (I) avoids the costly re-
transmission timeout even if it loses the sec-
ond retransmitted segment that was in response
to the partial ACK. Moreover, it keeps one
half of cwnd and ssthresh during fast recovery
and loss recovery, and avoids the unnecessary
throughput degradation.

Figures 13 and 14 plot the time-sequence
graph and sender state variable of the loss re-
covery algorithm for NewReno TCP, which uses
conservative restoration of the congestion con-
trol states, (II) and (III). In Fig. 13, the sender
using the loss recovery algorithm for NewReno
(II) retransmits the unacknowledged segment
at 9:00:04.2, and it sets ssthresh = 5 by Step
(5) in Fig. 2, so the congestion window is still
increased by SMSS. That is, the new seg-
ment can be transmitted in response to each
duplicate ACK using the fast recovery algo-
rithm. When the sender receives an accept-
able ACK which covers more than “recovery” at
09:00:05.0, cwnd is set to ssthresh = 5. After

(a) Time-sequence graph

(b) Sender state variables, cwnd and ssthresh

Fig. 14 Loss recovery for NewReno (III):
ssthresh=cwnd old/2, cwnd=1.

that, the fast recovery and loss recovery algo-
rithms are replaced by the congestion avoidance
algorithm. In Fig. 14, the sender using the loss
recovery algorithm for NewReno (III) retrans-
mits the unacknowledged segment at 9:00:04.2
and sets parameters, cwnd and ssthresh, the
same as with option (I). When the sender re-
ceives an acceptable ACK that covers more
than “recovery” at 09:00:05.0, cwnd is set to
1 by Step (4) in Fig. 3. After that, the sender
transmits new segments using the slow start al-
gorithm while cwnd is less equal than ssthresh
(= 11) and then is replaced by the congestion
avoidance algorithm. By using the slow start al-
gorithm, option (III) reduces the transmission
rate more than option (II) and so better miti-
gates network congestion.

Figure 15 shows the relationship between
data size and throughput for the loss recov-
ery algorithms for NewReno (I), (II), and (III)
and the original NewReno TCP. It also shows
the scenarios in Figs. 11, 12, 13, and 14. The
original NewReno TCP needs excessive time to
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Fig. 15 Throughput comparison between the
proposed and original NewReno.

recover the throughput because of the reduc-
tion in the sender state variables due to the
retransmission timeout. In contrast, the loss
recovery algorithms for NewReno (II) and (III)
offer better throughput than the original, and
more effectively utilize the wireless link speed
even if the sender transmits a small amount of
data. In Fig. 15, option (III) for the loss re-
covery algorithm realizes throughput nearer to
those of option (I) than option (II). Although
the sender set cwnd = 1 to avoid network con-
gestion states, one half of ssthresh was kept
during first recovery and loss recovery and re-
alizes throughput comparable to that of option
(I). Therefore, applying option (III) seems to
be the most attractive choice in this simulation
model.

5. Conclusions

In this paper, we introduced a loss recov-
ery algorithm for NewReno TCP and detailed
the steps needed for its implementation. The
loss recovery algorithm allows careful retrans-
mission by considering segment loss without in-
curring the overhead of the SACK algorithm;
receiver side modification is not needed. Sim-
ulation results allow us to draw the following
conclusions:
( 1 ) A sender using the loss recovery algo-

rithm can overcome the loss of retrans-
mitted segments generated by either fast
retransmit or in response to a partial ac-
knowledgment.

( 2 ) A sender using the loss recovery algo-
rithm for NewReno avoids unnecessary
throughput degradation, and its per-
formance is comparable to that of the
SACK-based algorithm.

( 3 ) The options proposed here for restoration
of the congestion control state in the loss
recovery algorithms offer better through-
put than the original NewReno TCP.

( 4 ) Option (III) for the loss recovery algo-
rithm realizes throughput comparable to
that of option (I) while mitigating net-
work congestion by reducing the trans-
mission rate.
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