
An Adaptive Power Management System for Wearable Devices

based on CPU Mode Switching and DVS technique

ZIXIAN LU†1 LEI JING†2 ZIXUE CHENG†2

Abstract: With the development of mobile computing, we have created a wearable device named WonderRing, which consists

of an acceleration sensor and wireless communicator, and can be used to detect user’s hand gestures to control appliances, or

communicate with others, etc. However, one problem is the power consumption of hardware components. In this paper we

consider to use dynamic techniques to reduce energy consumption not only at CPU level, but also try to save energy of the

overall system.

Keywords: Wearable computing, embedded system, wearable devices, power saving, CPU mode switching, DVS.

1. Instruction

 With ubiquitous and wearable computing, wearable

technology shares the vision of interweaving technology into the

daily life. Wearable devices will likely replace appliance

controllers, communication terminals, portable computers, and

become the main portable electronic devices of the next

generation. It has features such as compact and simplicity of

operator, which are different from the traditional equipment,

improve efficiency, and save more time for us. In the near future,

the range and frequency of using wearable devices may expand

indefinitely.

Since battery-operated wearable devices have been widely

used in ubiquitous computing and wireless communication

applications, charging time and frequency is directly related to

the evaluation of wearable devices. Maximizing battery lifetime

is an important design factor for wearable systems, and it is also

a big challenge for greatly improving user experiences.

 We have constructed and produced a wearable device named

WonderRing, while an important problem is the power

consumption of hardware components. To prolong battery life,

we have to save the power consumption on each level of the

system.

 In our vision of wearable device, it consists of SoC,

Communicator, and Sensors, which are the main energy

consumers. First of all, we construct the power consumption

model based on the hardware architecture of the wearable

device; then we propose a mode switching method according to

running status of SoC based on DVS algorithm; moreover, we

use the method to control the CPU in the normal working state

of the power consumption at software level; furthermore, we

improve the power-saving solution by considering the issues of

tasks execution in low power, device sleep, and wake-up

management. Given the status of the components, we propose

synthetic power-saving system by the means of mode switching

and adjustment to other components.

We also consider novel power control technology for user

 †1 Graduate School of Computer Science and Engineers, University of Aizu,

Aizuwakamatsu, Fukushima, 965--8580, Japan, m5171121@u-aizu.ac.jp

 †2 School of Computer Science and Engineers, University of Aizu,

Aizuwakamatsu, Fukushima, 965--8580, Japan

behavior-driven power control. Specifically, our system detects

user behavior by WonderRing (WR for short). Our method can

change the mode of SoC base on the patterns of the users’

behaviors to get the balance between convenience and response

time, and optimize energy saving.

2. Related research

 The wearable device WR which we created, could be used to

control appliances by finger gestures, or support simple

communications, and record life log data, etc. As the

introduction section above, WR is mainly constituted by the

components as SoC CC1110, sensors, communicator, and

circuits which integrate the components.

Figure1: Basic Mode of CC1110[1]

CC1110 has 4 basic modes as shown in Figure 1. The sensor

detects movement of the finger and sends data to SoC, and the

algorithm running on SoC will be in charge of gesture

identification by processing the sensor data, and sends

corresponding pre-defined control command to the

communication unit. Currently, the battery life is only up to 4 to

5 hours, since there is no specialized power saving functions in

WR except turning the power off manually.

To minimize the number of charge cycles and improve energy

efficiency, we consider to constitute the power saving system of

entire device in both hardware and software aspects. On the

hardware side, we can make the SoC switch the model between

the full power output, when it is used intentionally, and power

saving mode when stopping using the WR, thus extending the

overall time of using. On the software side, we consider using

DVS algorithm to save the power consumption when the WR is

on its working mode.

Conventional DVS (Dynamic Voltage Scaling) algorithm

(Wiser [2] and Govil [3]) multi-cell model is based on

― 1837 ―

「マルチメディア，分散，協調とモバイル
(DICOMO2014)シンポジウム」 平成26年7月

optimization, but no attempt on the battery accurate modeling of

physical and chemical phenomena. In fact the behavior of

different cells corresponding to different current load on the

battery cell behavior under different circumstances for accurate

modeling can improve battery efficiency and prolong its life, so

further study of the characteristics associated with the battery

DVS strategy is very meaningful.

 DVS strategy is mainly based on the fact that: deterministic

processor energy consumption and operating voltage was

proportional to the square of the relationship. Therefore, under

the premise of guaranteed performance, it is important to

dynamically adjust the voltage to achieve the purpose of

reducing energy consumption according to the system working

state. DVS algorithm considers the battery characteristics not

only on the state of the system in order to dynamically adjust the

working voltage, but also the characteristics of the battery based

scheduling policy to the rational use of the battery, so that the

battery life is further extended. Luo et al. [4] studied the

proposed DVS strategy by reducing the peak power of the

battery to optimize energy consumption; Rakhmatov et al. [5]

proposed the use of a battery self-healing effect of increasing the

capacitance in order to save energy, these findings are based on

the battery characteristics and obtain better energy efficiency.

 Sukwon Choi et al. [6] modeled the unit behavior of the

buttery corresponding cyclical current load, and divided the

process of battery discharge into three distinct phases based on

the strength of various factors, and provided different strategies

in every phase to reduce the power consumption. But this

method need some improvements.

(1) Using the model of unit behavior of the buttery

corresponding non-cyclical current load will apply to a more

general case.

(2) For the non-cyclical and random tasks, computational

model based on the previous utilization of the processor can be

changed by new strategy to accord with the characteristics of

random tasks.

(3) By combining with DPM (Dynamic Power Management)

strategy and using reasonable sleep/wake algorithm on the

system units, it’s able to reduce unnecessary consumption of

energy.

3. System design

3.1 Basic idea

Human beings have many activities in daily life. We classify

these activities into 2 kinds. One kind is slow, regular, or

unconscious likes moving and sleeping that does not need to use

WR. Therefore, we can save the power consumption of system

for this kind. And the other kind is to control the appliances with

WR, or use it to detect/record the data of jogging, eating, etc.

Therefore, we have to use full working mode for detecting

gestures or actions.

As we mentioned in the previous section, we can adjust the

CPU mode according to situation of the device, and thereby

reducing unnecessary power consumption. At first, we define 3

state modes of the systems, i.e. work, sleep, and power-off, as

shown in Fig. 2. Each of them corresponds to the power

consumption of situation of the device. On the work mode, the

system provides full power under normal operating conditions.

If the device has not detected intentional gestures for a certain

time, the mode will be transited into sleep mode. If the device

cannot detected any movement (intentional or unconscious ones

for a long time, the mode will be changed into power-off.

Figure2: State Transition Diagram of Power Control

3.2 Algorithm Design: changing power mode of SoC

We use PMW, PMS, and PMO to denote the Power Mode of

CPU in WORK state, SLEEP state and POWER OFF state

respectively. The Tl1 and Tl2 represent the limited time (time

out) of the mode switching as PMW →PMS and PMS →PMO,

respectively.

Variable:

Mode ∈ { PMW, PMS, PMO };

Mode = PMW;

PMTimer = 0; /* starting timer */

Input

Detection of Signal /* detect a signal of gesture */

Action

PMTimer := 0; /* reset the timer */

If Mode = PMW then

Begin

End /* keep the mode being PMW */

If Mode = PMS then

Begin

Mode := PMW; /* sleep to working */

End

Input

PMTimer = Tl1. /* no signal during period (0, Tl1) */

Action

If Mode = PMW then

Begin

Mode := PMS;

End

Input

PMTimer = Tl2. /* no signal during period (0, Tl2) */

Action

If Mode = PMS then

Begin

Mode := PMO;

End

Figure3: Algorithm for changing CPU’s power mode

― 1838 ―

Just as shown in Fig. 3, our algorithm works as follows:

 When CPU is in a power on mode (work mode or sleep mode),

any signal received from sensors caused the sleep-timer be reset.

If CPU is at work mode, and sleep-timer is reset, so that the

value of the timer will not be equal to the time Tl1, and then

CPU doesn’t switch its mode. Otherwise CPU will be switched

to sleep mode, when sleep-timer is reaching the setting time Tl1.

When CPU is in the sleep mode and sleep-timer is reaching

the setting time Tl2, (i.e. the timer has not be reset by any

detection of device signal,), CPU will be switched to power-off

mode. In order to switch CPU from power-off mode to work

mode, an external interrupt, such as switching on is necessary.

Let's consider an actual example:

We could control the appliances such as changing channel of

the TV and adjusting volume by using WR in its full power

working mode with short response time. The trigger from work

to sleep is the case when no acceleration signal is received or

the signal duration is more than the still time Tl1 (e.g. 2

minutes).

Oppositely, the sleep mode could save most of the power

consumption. We can imagine such a state that a user is looking

at TV quietly without body/posture changing or moving. If any

activity happened, the system will turn to the work mode

immediately as soon as any signal of acceleration is detected.

When the system does not change to the work mode for a longer

stable time Tl2 (e.g. 15 minutes), since it became sleep mode, the

system will switch to the power off mode. Depending on the rate

of usage on each mode, it is possible to continuous use more

than 10 times by reducing power consumption.

When the system has changed to power-off mode, we can

only press a switch to give an external interrupt to turn it on

again.

3.3 DVS for saving power when CPU is working

According power curve characteristics of the dynamic

characteristics of the battery, which is the key to design

appropriate strategies: The DVS algorithm makes strategic

switch based on residual power. The traditional approach

divided the remaining battery power based on the two regions of

rate capacity effect and the recovery effect. However, when we

consider the charge of battery while using the device, the power

curve characteristics becomes more complex. Therefore, we will

also consider the transient characteristics of the curve, to

determine its current status instantly, rather than dividing them

into fixed area as mentioned in traditional strategy.

We tried to analyze characteristic of each time point, by

observing and recording the voltage values at this time point and

the previous point.

3.4 The total management system

 Fig. 3 shows the total management system including the

management of hardware part, management of software part,

and charging part. To achieve this goal, we have to consider not

only the coordination between the hardware and software layers,

but also methods for collecting and charging power, temporary

storage of excess electricity, reasonable control of the system

clock and external interrupts, etc. Effective way to reduce

energy consumption in embedded systems in real-time is

currently a hot research. The power control issues give us a lot

of challenges. We can consider user behavior, habits, and

preferences, by using some methods of intelligence analysis and

self-learning to make more improvement on power management.

Figure4: Power management system of entire system

4. Toward Implementation

We have not completed the management system. Now we are

focusing on the hardware layer management, and did some

preparation for the implementation.

As we mentioned in the previous sections, we installed and

tested the power saving system on the Foundation Board which

has the same structures and components with WR and equipped

with a few of external access ports. In the computer side, we

choose windows8 OS which is currently widely used, 「IAR

Embedded Workbench」— the development environment that

includes a C/C++ compiler and debugger, and 「FlashPro-CC

Elprotronic」— the USB Flash Programmer to install program in

Foundation Board through hardware adapter (USB-FPA).

We use four AA batteries provide power to the entire board,

we measured at the input voltage is stable 4.87V, and the voltage

which continuous supply SoC is 3.30V. When the equipment is

operated in work mode (PM0), we detected the current on SoC

is 8.16mA (MCU (Micro Controller Unit) running at full speed

(26mHz), XOSC running. No Peripherals). When switching the

mode to sleep mode (PM1), it is changing to 0.58mA (Digital

regulator on, High Speed RCOSC and crystal oscillator off.

32.768kHz XOSC, POR and ST active. RAM retention). When

SoC is switched to the Power-off mode (PM3), the detected

current has fallen below 1μA (No clocks. RAM retention.

Power On Reset (POR) active).

 According to the measured data, we can see that the current in

sleep mode becomes about one-sixteenth of the work mode, and

the power consumption difference value is the exponential

relationship with the difference of current. While in the actual

using case, we still need to calculate the degree of power saving

― 1839 ―

according to the user's usage, but the extension of use time and

buttery life is predictable.

5. Conclusion

Right now, the power management system for wearable

devices we have achieved is only the first stage of our expected.

As mentioned before, now we have done some experiment for

the design of hardware layer for power saving. We need fully

implement the algorithm for control the mode of hardware, and

develop the software control based on DVS to control and

coordinate the hardware systems in order to achieve saving

energy as much as possible in every specific situation of battery.

Reference

[1] True System-on-Chip with Low-Power RF Transceiver and

8051 MCU (Rev. H), Texas Instruments Incorporated, 2014,

http://www.ti.com/lit/ds/symlink/cc1110f32.pdf

[2] M. Weiser, B. Welch, A. Demers, S. Shenker, Scheduling for

reduced CPU energy, Proceedings of USEN/X Symposium on

Operating Systems Design, Monterey, California, United States,

1994. pp. 13–23.

[3] K. Govil, E. Chan, H. Wasserman, Comparing algorithms for

dynamic speed-setting of a low-power CPU, International Conference

on Mobile Computing and Networking, Berkeley, California, United

States, 1995. pp. 13–25.

[4] J. Luo, J.K. Niraj, Battery-aware static scheduling for distributed

realtime embedded systems design, Proceedings of ACM/IEEE

Conference on Design Automation, Las Vegas, Nevada, United States,

2001 pp. 444–449.

[5] D.Rakhmatov, S. Vrudhula, Energy management for battery-powered

embedded systems, ACM Transactions on Embedded Computing

System 2 (3) (2003) pp. 277–324.

[6] Sukwon Choi, Hojung Cha, Rhan Ha, A selective DVS technique

based on battery residual, Microprocessors and Microsystems, Yonsei

University, 2005 pp. 1–10

― 1840 ―

http://www.ti.com/lit/ds/symlink/cc1110f32.pdf?keyMatch=datasheet%20cc1110&tisearch=Search-EN
http://www.ti.com/lit/ds/symlink/cc1110f32.pdf?keyMatch=datasheet%20cc1110&tisearch=Search-EN
http://www.ti.com/lit/ds/symlink/cc1110f32.pdf

