
Vol. 46 No. 10 IPSJ Journal Oct. 2005

Regular Paper

Quantum versus Classical Pushdown Automata in Exact Computation

Yumiko Murakami,† Masaki Nakanishi,† Shigeru Yamashita†

and Katsumasa Watanabe†

Even though quantum computation is useful for solving certain problems, classical com-
putation is more powerful in some cases. Thus, it is significant to compare the abilities
of quantum computation and its classical counterpart, based on such a simple computation
model as automata. In this paper we focus on the quantum pushdown automata which were
defined by Golovkins in 2000, who showed that the class of languages recognized by quantum
pushdown automata properly contains the class of languages recognized by finite automata.
However, no one knows the entire relationship between the recognitive abilities of quantum
and classical pushdown automata. As a part, we show a proposition that quantum push-
down automata can deterministically solve a certain problem that cannot be solved by any
deterministic pushdown automata.

1. Introduction

In computational model theory, some quan-
tum counterparts of classical computational
models, such as quantum finite automata, have
been proposed. These restricted quantum Tur-
ing machines may tell us the essential power
of quantum computation, that is, the gap be-
tween quantum and classical computations. In
particular the considerations of quantum fi-
nite automata 1),2) and quantum counter au-
tomata 3)∼6) are conspicuous. In general, the
quatum computational model is considered to
be stronger than the classical one, however, the
power of the quantum computation varies ac-
cording to the setting, e.g., 1way quantum fi-
nite automata are properly weaker than 1 way
classical finite automata 1). In this paper, we
focus on quantum pushdown automata, QPAs.

QPAs were introduced by C. Moore and
J.P. Crutchfield 9), but the authors were ac-
tually dealing with generalized QPAs whose
evolution does not have to be unitary. Thus,
M. Golovkins 10) reintroduced QPAs including
unitarity criteria. The author showed that
the class of languages recognized by finite au-
tomata is properly contained in the class of lan-
guages recognized by QPAs, and further that
QPAs can recognize some languages that can-
not be recognized by deterministic pushdown
automata, DPAs. Specifically, QPAs can rec-
ognize:
• every regular language with probability 1;
• a non-regular language La=b ={ω∈ (a, b)∗ |

† Nara Institute of Science and Technology

|ω|a = |ω|b} with probability 1;
• a non-context-free language La=b=c = {ω ∈

(a, b, c)∗ | |ω|a = |ω|b = |ω|c} with probabil-
ity 2/3; and

• a non-context-free language Lxor = {ω ∈
(a, b, c)∗ | |ω|a = |ω|b xor |ω|a = |ω|c} with
probability 4/7,

where |ω|a denotes the number of occurrences
of a in the string ω.

His results show that bounded-error QPAs
can be more powerful than DPAs. It remained
open whether QPAs can be more powerful than
classical pushdown automata in a fair setting,
i.e., both in a bounded-error setting or both
in a deterministic setting. In this paper, we
answer the latter case affirmatively, that is,
QPAs can be more powerful in a determinis-
tic case. We show that there exists a prob-
lem that can be solved by QPAs determinis-
tically, but cannot be solved by DPAs. This is
the strict gap between the power of QPAs and
their classical counterpart. The problem is a
promise problem and cannot be directly related
to a language. Instead, we use the setting that
there are “acceptable”, “rejectable”, and “don’t
care” inputs, and discuss whether the accept-
able and the rejectable are correctly recognized.
Promise problems are discussed to show gaps of
the power of quantum Turing machines. The
Deutch-Jozsa promise problem 11) and Simon’s
problem 13), for example. And also sometimes,
in the automaton model 15) and communication
complexity 16),17).

Our main idea utilizes the Deutsch-Jozsa al-
gorithm 11) to construct a QPA that can solve
the problem. Pop operations, which delete the

2471

2472 IPSJ Journal Oct. 2005

stack top symbol, are restricted in QPAs since
delete operations are not unitary in general.
Therefore, it is not trivial to employ the algo-
rithm. For the proof that the problem cannot
be solved by DPAs, we utilize the generalized
Ogden’s lemma 14). It should be noted that we
need to modify the lemma for our purpose since
it is a promise problem.

This paper is organized as follows: following
this introduction, Section 2 defines QPAs, their
configuration and behavior. Section 3 defines a
certain problem and constructs a QPA that can
deterministically solve it. Section 4 introduces
the generalized Ogden’s lemma and shows that
there are no DPAs that solve the problem. Fi-
nally, Section 5 describes conclusions and future
outlooks.

2. Preliminaries

2.1 Definitions
We cite the definition of QPAs, which are

called simplified QPAs, from Ref. 10). “Simpli-
fied” means that the moving directions of the
input tape head are always related to the next
visiting states. We also cite the definition of
their configuration and evolution.

Definition 2.1. A Quantum Pushdown Au-
tomaton, QPA, is defined as the following 8-
tuple. A=(Q,Σ, T, q0, Qacc, Qrej , D, δ) is spec-
ified by a finite set of states Q, a finite input
alphabet Σ, a finite stack alphabet T, an initial
state q0 ∈ Q, sets Qacc ⊂ Q, Qrej ⊂ Q of ac-
cepting and rejecting states, respectively, with
Qacc ∩Qrej = φ, a function D : Q −→ {↓,→},
where {↓,→} is the set of directions of input
tape head, remaining at the current position or
moving one cell forward, and a transition func-
tion δ : Q × Γ × ∆ × Q × ∆∗ −→ C, where
Γ = Σ ∪ {#, $} is the input tape alphabet of A
and #, $ are endmarkers not in Σ, ∆ = T ∪{z}
is the working stack alphabet of A, and z �∈ T
is the stack bottom symbol. �

The transition function is restricted to the
following requirement:
If δ(q, α, β, q′, τ) �= 0, then
(1) |τ | ≤ 2, and
(2) τ ∈ βT ∗ if |τ | �= 0.

Definition 2.2. The configuration of a QPA is
denoted as |c〉 = |νiqjνk, τl〉, where the automa-
ton is in a state qj ∈ Q, νiνk ∈ #Σ∗$ is a finite
word on the input tape, τl ∈ zT ∗ is a finite word

on the stack tape, the input tape head is above
the first alphabet of the word νk, and the stack
head is above the last alphabet of the word τl. �

Let C be the set of all configurations of a
QPA. Set C is countably infinite. Since ev-
ery configuration |c〉 denotes a basis vector in
Hilbert space HA = l2(C), a global state of A
in space HA has a form |ψ〉 =

∑
c∈C

αc |c〉, where

αc ∈ C denotes the probability amplitude of a
configuration |c〉, and

∑
c∈C

|αc|2 = 1.

Definition 2.3. Let |c〉 = |νiqjσνk, τlτ 〉. A
linear operator UA is defined as follows:
UA|c〉=∑
(q,τ ′)∈Q×{ε,∆,∆2}

δ(qj , σ, τ, q, τ ′) |f(|c〉, q), τlτ ′〉,

where f(|νiqjσνk, τlτ 〉 , q)
=

{
νiqσνk, if D(q) = ‘ ↓ ’
νiσqνk, if D(q) = ‘ → ’. �

For QPA A = (Q,Σ, T, q0, Qacc, Qrej , D, δ),
we define Cacc = {|νiqjνk, τl〉 ∈ C|qj ∈ Qacc},
Crej = {|νiqjνk, τl〉 ∈ C | qj ∈ Qrej}, and
Cnon = C \ (Cacc ∪Crej). Eacc, Erej , and Enon

are subspaces of HA spanned by Cacc, Crej, and
Cnon, respectively. We use the observable O
that corresponds to the orthogonal decomposi-
tion HA = Eacc ⊕Erej ⊕Enon. The outcome of
each measurement is either “accept” or “reject”
or “non-halting.”

The computation of QPA A proceeds as fol-
lows. For an input ω ∈ Σ∗ we assume that com-
putation starts with configuration |q0#ω$, z〉.
Each computation step consists of two parts.
First, linear operator UA is applied to the cur-
rent state, and then the resulting superposi-
tion is measured with respect to the observ-
able O defined above. Let the state before the
measurement be

∑
c∈C

αc |c〉, and then the prob-

ability that the resulting superposition is pro-
jected into subspace Ei, i ∈ {acc, rej, non}, is∑
c∈Ci

|αc|2. Computation continues until the re-

sult of a measurement is “accept” or “reject.”
A QPA is considered valid in terms of quan-

tum theory if its evolution operator is unitary.

Well-formedness conditions.
(1) ∀(q1, σ1, τ1) ∈ Q× Γ × ∆,∑

(q,ω)∈Q×∆∗
|δ∗(q1, σ1, τ1, q, ω)|2 = 1.

(2) For all triples (q1, σ1, τ1) �= (q2, σ1, τ2) in

Vol. 46 No. 10 Quantum versus Classical Pushdown Automata in Exact Computation 2473

Q× Γ × ∆,∑
(q,ω)∈Q×∆∗

δ∗(q1, σ1, τ1, q, ω)×
δ(q2, σ1, τ2, q, ω) = 0.

(3) ∀(q1, σ1, τ1, τ2) ∈ Q× Γ × ∆2,∑
(q,τ,ω)∈Q×∆×{ε,τ2,τ1τ2}

|δ(q, σ1, τ, q1, ω)|2

= 1.
(4) ∀(q1, σ1, τ1), (q2, σ1, τ2)∈Q×Γ×∆,∀τ3∈∆,

(a)
∑

(q,τ)∈Q×∆

δ∗(q1, σ1, τ1, q, τ) ×
δ(q2, σ1, τ2, q, τ3τ) +∑

q∈Q

δ∗(q1, σ1, τ1, q, ε) ×
δ(q2, σ1, τ2, q, τ3) = 0,

(b)
∑

q∈Q

δ∗(q1, σ1, τ1, q, ε) ×
δ(q2, σ1, τ2, q, τ2τ3) = 0.

Theorem 2.1. Well-formedness conditions are
satisfied iff evolution operator UA is unitary.

Proof. See the literature 10).

Throughout this paper, we consider only uni-
tary QPAs that satisfy Well-formedness condi-
tions.

3. QPAs That Solve a Certain Prob-
lem Deterministically

In this section, we show that QPAs can solve
the following problem deterministically.

Problem I
[Input] A string ω = x%y%z%y′%z′, where
% is a separator symbol, x = xnxn−1· · ·x1, y
= y1y2 · · · ym, and z=z1z2 · · · zl are sequences
of n,m, and l letters in {a, b, c}, respectively,
and y′, z′ ∈ {a, b, c}∗. Let i be an index such
that x1x2 · · ·xi−1 = y1y2 · · · yi−1 and xi �= yi.
Let j be an index such that x1x2 · · ·xj−1 =
z1z2 · · · zj−1 and xj �= zj . It is promised that
yi,zj �= a and ω satisfies either of the following
two:
(p1) |y′|= |yi+1yi+2 · · · ym|= m− i,

|z′|= |zj+1zj+2 · · · zl| = l−j, and i=j;
(p2) |y′| �=m− i and |z′| �= l − j.

[Output] Decide whether the input satisfies
(p1) and yi = zj . In that case the automa-
ton accepts the input. If (p1) and yi �= zj , or
(p2) is satisfied, the automaton rejects it.

Problem I is a promise problem and we use
the following setting : we decompose the set
of input strings into “acceptable,” “rejectable,”
and “don’t care” inputs, and we identify only

Fig. 1 QPA that solves Problem I deterministically.

the “acceptable” and “rejectable” inputs cor-
rectly.

Theorem 3.1. There exists a QPA that solves
Problem I deterministically.

Proof. We construct a QPA M = (Q,Σ, T, q0,
Qacc, Qrej , D, δ) that solves Problem I deter-
ministically as follows. Q = Q↓ ∪Q→, where
Q↓ = {q0, qi, qi

rej} and Q→ = {qi
j} (1 ≤ i ≤ 4,

1 ≤ j ≤ 6), Σ = {a, b, c,%}, T = {a, b, c, u},
Qacc = {q2}, Qrej = {q4, qi

rej}, D(q) =‘→’ if
q ∈ Q→, otherwise ‘↓’. Transition function δ
is defined as Fig. 2. Our main idea utilizes the
Deutsch-Jozsa algorithm 11). We sketch out the
transition along with the algorithm:
|0〉 |1〉

H⊗2−→1
2
{|M0〉 (|0〉−|1〉)+|M1〉 (|0〉−|1〉)} (1)

Uf−→ 1
2
{|M0〉 (|0 ⊕ f(0)〉−|1 ⊕ f(0)〉)+
|M1〉 (|0 ⊕ f(1)〉−|1 ⊕ f(1)〉)}, (2)

=
1
2
(−1)f(0)(|0〉 + (−1)f(0)⊕f(1) |1〉)

⊗(|0〉 − |1〉), (3)
H⊗2−→ (−1)f(0) |(f(0) ⊕ f(1))〉 |1〉 , (4)

=
{

(−1)f(0) |0〉 |1〉 if f is constant,
(−1)f(0) |1〉 |1〉 if f is balanced.

(5)

Let M0 and M1 represent 0 and 1, respectively,
and Uf : |x〉|y〉 −→ |x〉|y⊕f(x)〉, where f(0) =
g(yi), f(1)=g(zj), g(b)=0, and g(c)=1.

QPA M consists of two independent sub-
QPAs, M0 and M1 (cf. Fig. 1), which have
analogous behaviors. After reading the left
endmarker, M goes to the superposed state of
q11 , q

2
1 , q

3
1 , and q41 with amplitudes +1

2 ,−1
2 ,+

1
2 ,

and −1
2 , respectively. Expression (1) is con-

2474 IPSJ Journal Oct. 2005

sidered to be this transition, e.g., |M0, 0〉 rep-
resents state q11 (to be exact, the configura-
tion at q11 containing the stack information and
the position of the input tape head). M0 is
a subautomaton that starts in the superposi-
tion of q11 and q21 , searches for i such that yi

first discords from xi, and examines whether
|yi+1 · · · ym| = |y′|. M1 is also a subautomaton
that starts in the superposition of q31 and q41 ,
searches for j such that zj first discords from
xj , and examines whether |zj+1 · · · zl| = |z′|.
M0 and M1 run simultaneously. As will here-
inafter be described in detail, M0 and M1 go
to states q16 , . . . , q

4
6 at the same time iff i = j,

|yi+1 · · · ym| = |y′|, and |zi+1 · · · zl| = |z′|. Note
that if yi(zj) is b, the amplitudes of q16 and q26
(q36 and q46) are +1

2 and −1
2 , while if yi(zj) is c,

then −1
2 and +1

2 . These transitions correspond
to Exp. (2), that is, the application of Uf de-
notes the simultaneous running of M0 and M1.
For example, suppose that i = j, yi = b, and
zj =c, the configuration of M

1
2
{(∣∣q16〉−∣∣q26〉

) + (−∣∣q36〉
+

∣∣q46〉
)},

corresponds to Exp. (2)
1
2
{|M0〉 (|0〉 − |1〉) + |M1〉 (|1〉 − |0〉)}. (6)

By applying the Hadamard transform to
Exp. (6), |1〉 |1〉 is obtained, corresponding to
q4, namely, a rejecting state.

Note that this algorithm successfully func-
tions iff condition (p1) is satisfied, since the two
sub-QPAs must be in the superposed state of
four qi

6’s at the same time and with the same
stack configuration so that the interference of
the second Hadamard transform is performed
well. Thus, M can properly handle inputs that
satisfy (p1). Before considering case (p2), we
illustrate the sub-QPAs (cf. Fig. 2).

Since they have analogous behaviors as pre-
viously described, we will explain only one of
them, M0. Sub-QPA M0

(1) reads x and puts it into the stack, re-
maining at q11 and q21 ;

(2) reads % and goes to the superposed state
of q12 and q22 ;

(3) keeps retrieving a stack top symbol one
by one at the superposed state until dis-
cordance between the stack top symbol
and the input letter occurs, namely, yi is
read;

(4) reads yi and pushes u into the stack, and

goes to
(a) q13 from q12 and q23 from q22 if yi = b,
(b) q13 from q22 and q23 from q12 if yi = c;

(5) continues pushing a into the stack at the
states while reading yi+1 · · · ym,

(6) reads %, goes to the superposed state of
q14 and q24 , and skips z at the state;

(7) reads %, goes to the superposed state of
q15 and q25 , and keeps retrieving a stack
top one by one while reading y′;

(8) reads %, goes to q16 and q26 , and skips the
remainder of the input.

Note that if the input satisfies (p1), M0 and
M1 go to qi

6’s at the same time. Consider (p2).
If yi+1 · · · ym is shorter than y′, at step (7) sym-
bol umust show up at the stack top before read-
ing through y′ and M0 goes to q1,2

rej , namely, re-
jecting states. If yi+1 · · · ym is longer, the stack
top symbol will never be u when reading the
right endmarker, and then the automaton goes
to q1,2

rej . Remember that M1 has a similar be-
havior. Thus it is easy to show that the input
satisfying (p2) leads both M0 and M1 to the re-
jecting states; disagreement of arrival timings
have no need to be discussed. Therefore, M
accepts input (p1) and rejects input (p2) with
certainty.

Finally, we discuss the unitarity of the evolu-
tion of M . Obviously, the transition of M is re-
versible deterministic except for two Hadamard
transforms. Thus, it is straightforward that the
undefined transitions of δ can be defined prop-
erly to satisfy Well-formedness conditions.

Further, we emphasize that this theorem also
holds for 1 way QPAs. Our QPA can be seen
as a 1way QPA since the tape head always
goes right except when it reads $, or the finite
state control comes to the accepting or rejecting
state.

4. No DPAs Can Solve Problem I

In this section, we show that no DPAs can
solve the problem defined in the previous sec-
tion. We first present the generalized Ogden’s
lemma 14), which is one of the most useful re-
sults to give a proof that a language is not
context-free.

Lemma 4.1. For any context-free language L,
∃n ∈ N such that ∀z ∈ L, if p positions in z are
“distinguished” and q positions are “excluded,”
with p > nq+1, then ∃u, v, w, x, y, such that z =
uvwxy and;

Vol. 46 No. 10 Quantum versus Classical Pushdown Automata in Exact Computation 2475

Fig. 2 The behaviors of the sub-QPAs. (σ, τ/τ ′) represents the transition
that when the input symbol is σ with the stack top τ , τ is retrieved
and τ ′ is pushed into the stack, where σ ∈ Σ and τ ∈ T .

(1) vx contains at least one distinguished po-
sition and no excluded positions;

(2) if p′ is the number of distinguished po-
sitions and q′ is the number of excluded
positions in vwx, then p′ ≤ nq′+1;

(3) ∀i ∈ N, uviwxiy ∈ L.

Proof. See the literature 14).

It is straightforward to see that the lemma
can be applied not only to a string of termi-
nal symbols but also to a string including non-
terminal symbols or a string derived from a non-
terminal symbol by a context-free grammar G.
Thus, it is obvious that the following corollary

holds.

Corollary 4.1. For any context-free grammar
G, ∃n ∈ N such that for all z ∈ (T ∪ V)∗ de-
rived from a non-terminal symbol (including a
start symbol) X which is in itself derived by G,
where T and V are sets of terminal and non-
terminal symbols, respectively, if p positions in
z are “distinguished” and q positions are “ex-
cluded,” with p > nq+1, then ∃u, v, w, x, y, such
that z = uvwxy and
(1) vx contains at least one distinguished po-

sition and no excluded positions,
(2) if p′ is the number of distinguished po-

sitions and q′ is the number of excluded

2476 IPSJ Journal Oct. 2005

positions in vwx, then p′ ≤ nq′+1,
(3) ∀i ∈ N, uviwxiy is derived from X by G.

Since DPAs are special cases of non-
deterministic pushdown automata, NPAs, the
following theorem indicates that there are no
DPAs that solve Problem I.

Theorem 4.1. There exist no NPAs that solve
Problem I.

Proof. (Outline) If there were NPAs that
solved Problem I, there would exist a context-
free grammar G that derives every acceptable
input string of the problem and some “don’t
care” strings, and does not derive any rejectable
inputs. Thus, by Ogden’s lemma, for any string
z derived by G, there exists a decomposition
z = uvwxy such that for all i≥ 0, uviwxiy is
also derived by G. (cf. Fig. 3) We call such a
decomposition a good decomposition. We will
show that there exist no good decompositions,
that is, G is not context-free.

However, Lemma 4.1 is insufficient for our
purpose. Since Problem I is a promise prob-
lem, an awkward problem emerges that there
can be a decomposition such that for some i,
uviwxiy is a “don’t care” input derived by G.
The modified Ogden’s lemma, that is, Corol-
lary 4.1 can be applied to the string to which
the lemma or the corollary is already applied,
so that such an awkward problem can be re-
solved as follows. If such an awkward decom-
position is a good decomposition, there exists
a non-terminal symbol X such that uXy +⇒
uvXxy

+⇒ uvwxy = z, where ‘A +⇒ B’ repre-
sents that A is derived from B by one or more
applications of the production rule of G. For
such a z, we consider z′ = uXy or z′ = w. By
Corollary 4.1, similarly, there exists a decom-
position z′ = u′v′w′x′y′ such that for all j ≥ 0,
u′v′jw′x′jy′ is also derived by G. (cf. Figs. 4
and 5) In this way, by implementing the in-
dependent multiparameter of iterations, say i
and j such that (uviwxi..)v′jw′x′jy′ in Fig. 4,
we show the contradiction that for a certain
string derived by G, there are no good decom-
positions.

(Details) Let L1 be the set of YES instances
of Problem I and L2 be the set of NO instances,
with L1 ∩ L2 =φ. We show that no NPAs can
recognize any language that contains all s ∈
L1 but does not contain any s ∈ L2. Assume
that there exists a context-free grammar G by

Fig. 3 Syntax trees of z = uvwxy and uviwxiy
generated by G.

Fig. 4 Syntax trees of z′ = uXy and
(uviwxi..)v′jw′x′jy′ generated by G.

Fig. 5 Syntax trees of z′ = w and
u′v′j(..viwxi..)x′jy′ generated by G.

which all s ∈ L1 and no s ∈ L2 are derived. By
Lemma 4.1, we can decompose s ∈ L1, where
|s| > n and n is the constant of the lemma,
as s = uvwxy such that for all i, uviwxiy is
derived by G.

We consider a string s1 = acN1 b
N
1 %bN2 cN2 b̂bN3 %

bN4 c
N
3 b̂c

N
4 %bN5 %cN5 ∈ L1, where bi and b̂ repre-

sent the letters ‘b’ and ci does ‘c’. Hereafter,
throughout this proof, we let a, b̂, %, and both
end letters of bi’s and ci’s be excluded. Let
the number of the excluded be p (=27) and let
N =np+1 + 3. Let each letter of b1’s be distin-
guished except both end letters (which are ex-
cluded). By Lemma 4.1, ∃u1, v1, w1, x1, y1 such
that s1 = u1v1w1x1y1 and ∀i ≥ 0, u1v

i
1w1x

i
1y1

is derived by G. We consider the following three
cases as candidates of good decompositions and
show that none of them are good decomposi-

Vol. 46 No. 10 Quantum versus Classical Pushdown Automata in Exact Computation 2477

Fig. 6 Decompositions of Cases 1, 2, and 3.

Fig. 7 Decompositions of Cases 1-1 and 1-2.

tions, leading to a contradiction.

Case 1: v1 =b+1 , x1 =b+2 , and |v1|= |x1|;
Case 2: v1 =b+1 , x1 =b+4 , and |v1|= |x1|;
Case 3: otherwise.

Figure 6 illustrates intuitively how each case
decomposes s1. Consider Case 1:

s1 =acN1 b1..
u1

...
v1

..b1%b2..
w1

...
x1

..b2c
N
2 ..c

N
5

y1

.

Note that for all i, u1v
i
1w1x

i
1y1 �∈ L2. Thus

we consider the string u1X1y1, where X1 is
a non-terminal symbol such that u1X1y1

+⇒
u1v1X1x1y1

+⇒ u1v1w1x1y1. Let s2 = u1X1y1
and let each letter of c1’s except both end
letters be distinguished. By Corollary 4.1,
∃u2, v2, w2, x2, y2 such that s2 = u2v2w2x2y2
and ∀j ≥ 0, u2v

j
2w2x

j
2y2 is derived by G. We

consider the following two cases as candidates
of good decompositions (Fig. 7).

Fig. 8 Layered decomposition.

Case 1-1: v2 =c+1 , x2 =c+2 , and |v2|= |x2|;
Case 1-2: otherwise.

Afterward, in this way we employ a layered de-
composition as shown in Fig. 8. If none of the
lower layers are good decompositions, it is as-
sured that the upper layer is not a good decom-

2478 IPSJ Journal Oct. 2005

Fig. 9 Decompositions of Cases 1-1-1 and 1-1-2.

Fig. 10 Decompositions of each case.

position. Consider Case 1-2 ((i) in Fig. 7).

s2 =ac1..
u2

...
v2

..c1b1..
w2

...
x2

..b2c2.. X1
v1w1x1

...c5.

For i = 1 and j = 0, u2v
j
2w2x

j
2(u

′
1v

i
1w1x

i
1y1)

= acN−|v2| bN−|x2| %bN cNbbN % bNcNbcN

%bN%cN , where the round brackets stand for
the substring y2. This string satisfies (p2) and
so is in L2. Thus, this is not a good decomposi-
tion. Similarly, all of the others in Case 1-2 are
not good decompositions. Consider Case 1-1.
Note that for all i and j, u2v

j
2(..u

i
1w1x

i
1..)x

j
2y2

�∈ L2. Let X2 be a non-terminal symbol such
that u2X2y2

+⇒ u2v2X2x2y2
+⇒ u2v2w2x2y2.

Let s3 = u2X2y2 and let each letter of b5’s
except both end letters be distinguished. By
Corollary 4.1, ∃u3, v3, w3, x3, y3 such that s3 =
u3v3w3x3y4 and ∀k ≥ 0, u3v

k
3w3x

k
3y3 is derived

by G. We consider the following two cases as
candidates of good decompositions (Fig. 9).

Case 1-1-1: v3 =b+3 , x3 =b+5 , and |v3|= |x3|;
Case 1-1-2: otherwise.

In Case 1-1-2, it can be shown that there exist
some i, j, and k such that respective decompo-

sitions are not good decompositions. Consider
Case 1-1-1. Note that for all i, j and k,
(u2v

j
2(..u

i
1w1x

i
1..)x

j
2..)v

k
3w3x

k
3y3 �∈ L2. Let X3

be a non-terminal symbol such that u3X3y3
+⇒ u3v3X3x3y3

+⇒ u3v3w3x3y3. Let s4 = w3

and let each letter of c3’s except both end
letters be distinguished. By Corollary 4.1,
∃u4, v4, w4, x4, y4 such that s4 = u4v4w4x4y4
and ∀l ≥ 0, u4v

l
4w4x

l
4y4 is derived from X3 by

G. We consider the following four cases as can-
didates of good decompositions (Fig. 10).

Case 1-1-1-1: v4x4 =c+3 ;
Case 1-1-1-2: v4 =b+4 , x4 =c+3 ;
Case 1-1-1-3: v4 =c+3 , x4 =c+4 ;
Case 1-1-1-4: otherwise.

Consider Case 1-1-1-1. Note that for all i, j, k
and l, (u2v

j
2(..u

i
1w1x

i
1..)x

j
2..)v

k
3 (..ul

4w4x
l
4..)x

k
3y3

�∈ L2. Let X5 be a non-terminal symbol such
that u5X5y5

+⇒ u5v5X5x5y5
+⇒ u5v5w5x5y5.

Let s5 = u3X3y3 and let each letter of c5’s
except both end letters be distinguished. By
Corollary 4.1, ∃u5, v5, w5, x5, y5 such that s5 =
u5v5w5x5y5 and ∀m ≥ 0, u5v

m
5 w5x

m
5 y5 is de-

rived by G. We consider the following five cases

Vol. 46 No. 10 Quantum versus Classical Pushdown Automata in Exact Computation 2479

Fig. 11 Decompositions of (7)..(11).

(Fig. 11).
v5x5 =c+5 , (7)
v5 =b+5 and x5 =c+5 , (8)
v5 =b+3 and x5 =c+5 , (9)
v5 =c+2 and x5 =c+5 , and (10)
v5 =c+1 and x5 =c+5 . (11)

As shown below, for each of the above there ex-
ist i, j, k, l, and m such that the iterated string
is in L2.
In case (7), for i = j = k = 1, (l −

1)|v4x4| = (m−1)|v5x5|, acNbN%bN cNbbN
%bNcN1bcN%bN%cN2 ∈ L2, where N1 =
N+(l−1)|v4x4| and N2 =N+ (m−1)|v5x5|.

In case (8), for i = j = k = 1, l =
m = 0, acNbN%bN cNbbN%bNcN1bcN%
bN2%cN3 ∈ L2, where N1 = N − |v4x4|,
N2 =N − |v5| and N3 =N − |x5|.

In case (9), for i = j = k = 1, l =
m = 0, acNbN%bN cNbbN1%bN cN2bcN

%bN%cN3 ∈ L2, where N1 = N − |v5|,
N2 =N − |v4x4| and N3 =N − |x5|.

In case (10), for i = j = k = l = 1,
and m = 2, acNbN%bN cN1bbN%bNcNbcN
%bN%cN2 ∈ L2, where N1 =N+ |v5| and
N2 =N + |v4x4|.

In case (11), for i = j = k = l = 1,
and m = 0, acNbN%bN cN1bbN%bNcNbcN
%bN%cN2 ∈ L2, where N1 =N− |v5| and
N2 =N − |v4x4|.

The same goes for Cases 1-1-1-2, 1-1-1-3, and
1-1-1-4. Thus, Case 1 is not a good decomposi-
tion. Cases 2 and 3 are also similar to Case 1.
Therefore, there exist no good decompositions
on s1 ∈ L1.

5. Conclusions and Future Works

In the third section, we showed that QPAs

can solve a certain problem deterministically.
The inputs of the problem are strings in the
form of x%y%z%y′%z′. To construct such
QPAs, we utilized two sub-QPAs, where one ex-
amined some relationships among x and y and
y′, and the other examined some relationships
among x and z and z′. We ran the two sub-
QPAs in parallel and utilized the Deutsch-Jozsa
algorithm, which is a deterministic quantum al-
gorithm for Deutsch’s XOR problem, when we
got a deterministic solution.

Furthermore, in the fourth section, we
showed that no DPAs can solve the problem
by using extended generalized Ogden’s lemma.

We should consider languages recognized by
QPAs but not by DPAs, as future work.

Acknowledgments This work was sup-
ported in part by Grants-in-Aid for Scientific
Research (No.15700014 and No.16092218).

References

1) Kondacs, A. and Watrous, J.: On the power of
quantum finite state automata, Proc.FOCS’97,
pp.66–75 (1997).

2) Ambainis, A. and Freivalds, R.: 1-way quan-
tum finite automata: strengths, weaknesses
and generalizations, Proc. FOCS’98, pp.332–
341 (1998).

3) Kravtsev, M.: Quantum Finite One-Counter
Automata, Proc. SOFSEM 1999, Vol.1725 of
Lecture Notes in Computer Science, pp.431–
441 (1999).

4) Bonner, R.F., Freivalds, R. and Kravtsev, M.:
Quantum versus probabilistic one-way finite
automata with counter, Proc. SOFSEM 2001,
Vol.2234 of Lecture Notes in Computer Sci-
ence, pp.181–191 (2001).

5) Yamasaki, T., Kobayashi, H., Tokunaga, Y.
and Imai, H.: One-way probabilistic reversible
and quantum one-counter automata, Theoret-
ical Computer Science, Vol.289, No.2, pp.963–

2480 IPSJ Journal Oct. 2005

976 (2002).
6) Yamasaki, T., Kobayashi, H. and Imai, H.:

Quantum versus deterministic counter au-
tomata, Proc. COCOON 2002, LNCS 2387,
pp.584–594 (2002).

7) Shor, P.: Polynomial-time algorithms for
prime factorization and discrete logarithms
on a quantum computer, SIAM J. Comput.,
Vol.26, 1484–1509 (1997).

8) Grover, L.: A fast quantum mechanical al-
gorithm for database search, Proc. STOC’96,
pp.212–219 (1996).

9) Moore, C. and Crutchfield, J.P.: Quantum
Automata and Quantum Grammars, Theoreti-
cal Computer Science, Vol.237, No.1-2, pp.275–
306 (2000).

10) Golovkins, M.: Quantum Pushdown Au-
tomata, SOFSEM 2000, LNCS 1963, pp.336–
346 (2000).

11) Deutsch, D. and Jozsa, R.: Rapid Solution of
Problem by Quantum Computation, Proc. R.
Soc. Lond., A Vol.439, pp.553–558 (1992).

12) Cleve, R., Ekert, A.K., Macchiavello, C.,
and Mosca, M.: Quantum algorithms revisited,
Proc. R. Soc. Lond., A Vol.454, pp.339–354
(1998).

13) Simon, D.R.: On the power of quantum com-
putation, SIAM J. Comput., Vol.26, No.5,
pp.1474–1483 (1997).

14) Bader, C. and Moura, A.: A Generalization of
Ogden’s lemma, Journal of the Association for
Computing Machinery, Vol.29, No.2, pp.404–
407 (1982).

15) Amano, M., Iwama, K. and Raymond, R.: Ex-
ploiting the Difference in Probability Calcula-
tion between Quantum and Probabilistic Com-
putations, IEICE Trans. Fundamentals, Vol.E-
87A, No.5, pp.1004–1011 (2004).

16) Buhrman, H., Cleve, R. and Wigderson, A.:
Quantum vs.classical communication and com-
putation, Proc. 30th Annual ACM Symposium
on Theory of Computing, pp.63–68 (1998).

17) Raz, R.: Exponential separation of quantum
and classical communication complexity, Proc.
31st Annual ACM Symposium on Theory of
Computing, pp.358–367 (1999).

(Received January 31, 2005)
(Accepted July 4, 2005)

(Online version of this article can be found in
the IPSJ Digital Courier, Vol.1, pp.426–435.)

Yumiko Murakami was
born in 1978. She received
the B.E. and M.E. degrees from
Tokyo Institute of Technology
and Nara Institute of Science
and Technology, respectively.
She is currently working toward

the Ph.D. degree at Graduate School of In-
formation Science, Nara Institute of Science
and Technology. Her currenet interests include
quantum computation and cryptographic pro-
tocols.

Masaki Nakanishi was born
in Osaka, Japan, in 1973. He re-
ceived the B.E., M.E. and Ph.D.
degrees from Osaka University,
Japan, in 1996, 1998 and 2002
respectively. He is currently
with the Graduate School of In-

formation Science, Nara Institute of Science
and Technology, as a Research Associate. His
current interests include quantum computation
and design of combinatorial algorithms.

Shigeru Yamashita received
the B.E., M.E. and Ph.D. de-
grees in Information Sience from
Kyoto University, Kyoto, Japan,
in 1993, 1995 and 2001, respec-
tively. He is a Associate Profes-
sor of Graduate School of Infor-

mation Science, Nara Institute of Science and
Technology. His research interests include new
types of computation including quantum com-
putation and reconfigurable computing. He re-
ceived the 2000 IEEE Circuits and Systems So-
ciety Transactions on Computer-Aided Design
of Integrated Circuits and Systems Best Paper
Award.

Katsumasa Watanabe re-
ceived the B.E., M.E. and Dr.
Eng. degrees from Kyoto Uni-
versity, Kyoto, Japan. He is
a Professor at Nara Institute
of Science and Technology from
1992. His current interests in-

clude the active software, and the design and
implementation of programming languages in
hardware/software codesign environment.

