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Quotient Codes and Their Reliability

Mitsuru Hamada†,††

This article gives a formula to evaluate the performance of a class of algebraic codes. The
class includes quantum codes as well as classical ones. The formula relates a bound on the
weight spectrum (distribution), or its generalization, of a code with an upper bound on its
decoding error probability.

1. Introduction

The first algebraic quantum error-correcting
code (QECC) was invented by Shor 1) in 1995
soon after his discovery of the prime factoring
algorithm for quantum computation. The code
has been extended to a general class of alge-
braic QECCs, which are called symplectic codes
or stabilizer codes 2)∼4) and have a resemblance
with classical linear codes. Due to this resem-
blance, the design of QECCs, in part, reduces to
that of linear codes over finite fields. We discuss
this algebraic coding theoretic part of the de-
sign of QECCs. In particular, this article gives
a formula to evaluate the performance of alge-
braic codes. The resemblance between classical
codes and quantum codes enables us to treat
both of them in the proposed formula, which
relates a bound on the weight spectrum (dis-
tribution), or its generalization, of a code with
an upper bound on its decoding error probabil-
ity. The idea of relating weight spectra with
error probability dates back, at least, to 1963
when Gallager’s book 5) appeared. The present
paper’s approach is closer to that of Goppa’s 6)

and that of Csiszár’s 7).
This paper is primarily of expository nature,

and most parts (the parts except Section 10)
may be viewed as extracted from previous re-
sults of the present author’s 8),9). However, to
clarify the exposition, this paper introduces a
general framework of codes, for which a name
quotient codes is coined. As a byproduct, the
paper shows that the expurgated exponent of
the binary symmetric channel is attainable with
a universal scheme of encoding and decoding
that are independent of the channel parameter,
which resolves a small problem of classical cod-
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ing.
This paper is organized as follows. Section 2

contains preliminaries, Section 3 introduces the
quotient codes, and Section 4 gives the formula
on the performance of codes, which is followed
by an application to classical coding in Sec-
tion 5. Section 6 describes symplectic codes,
and Section 7 gives an application of the for-
mula to symplectic codes. In Section 8, phys-
ical aspects of symplectic codes are explained.
In Section 9, we discuss an important class of
symplectic codes with applications. Sections 10
and 11, respectively, contain other applications
and a summary with remarks.

2. Preliminaries from Classical The-
ory of Information and Coding

Here we will recall well-known notions and
facts in the theory of information and cod-
ing 10)∼12).

The type of a sequence y = (y1, . . . , yn) ∈ Yn
is denoted by Py, which is defined by

Py(s) =
|{i | 1 ≤ i ≤ n, yi = s}|

n
, s ∈ Y .

For a fixed typeQ, we put T n
Q = {y ∈ Yn | Py =

Q}. The set of all probability distributions
on Y and that of all types of sequences in Yn
are denoted by P(Y) and Pn(Y), respectively.
For any P ∈ P(Y), we define Pn ∈ P(Yn)
by Pn(x1, . . . , xn) = P (x1) · · ·P (xn). Given a
random variable X, PX stands for the probabil-
ity distribution of X. The expectation opera-
tion with respect to a random variable X taking
values in X is represented by EX:

EXf(X) =
∑
x∈X

PX(x)f(x)

where f is a real-valued function on X . The
Shannon entropy and the Kullback-Leibler in-
formation are denoted by H and D, respec-
tively:
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H(P ) = −
∑
y∈Y

P (y) logd P (y)

and

D(P ||Q) =
∑
y∈Y

P (y) logd
P (y)
Q(y)

with the convention 0 log 0 = 0 log(0/0) = 0.
Throughout the paper, the base of logarithms
is always d > 1. In what follows, we use the
basic inequalities

∀Q ∈ Pn(Y), |T n
Q | ≤ dnH(Q), (1)

and ∑
y∈Yn: Py=Q

Pn(x) ≤ d−nD(Q||P ). (2)

Given a set C ⊆ Yn, we put MQ(C) = |{y ∈
C | Py = Q}| for types Q. The list of num-
bers (MQ(C))Q∈Pn(Y) is a generalization of the
weight spectrum, and is equivalent to the com-
plete weight enumerator of C (e.g., Ref. 12)). In
this paper, we call (MQ(C))Q∈Pn(Y) the spec-
trum of C simply.

The symmetric group on {1, . . . , n}, which is
composed of all permutations on {1, . . . , n}, is
denoted by Sn. We define an action of Sn on
Yn by

π([x1, . . . , xn]) = [xπ(1), . . . , xπ(n)]
for any π ∈ Sn and [x1, . . . , xn] ∈ Yn, and put

π(C)={π(x) | x ∈ C}, π ∈ Sn, C ⊆ Yn.
For a = 0, 1, we abbreviate the n-tuple
(a, . . . , a) as an.

Additive group codes or additive codes over
Y are subgroups of Yn, where Y is an additive
group and Yn denotes the direct sum of n copies
of Y . When Y is a finite field, additive group
codes may be linear subspaces of Yn, which are
known as linear codes. By B ≤ C, we mean
B is a subgroup of an additive group C. The
finite field of d elements is denoted by Fd.

In (algebraic) coding theory, a code usually
means a subset of Yn. When the cardinality
of a code C ⊆ Yn is |Y|k, it is called an [n, k]
code. Members of a code are called codewords.
The common scenario is that the sender en-
codes a message from Yk into a codeword of
an [n, k] code C using a one-to-one map, say
ϕ, and sends it through a noisy channel, which
is fed with a symbol from Y and outputs one
from Y at a time, and the receiver decodes the
received word back into a message, usually, first
into a codeword c′ in C by a decoding map ψ,
and then into ϕ−1(c′). This coding scenario can

be summarized schematically as

x ∈ Yk ϕ→ c ∈ C
W→ y′ ∈ Yn

ψ→ c′ ∈ C
ϕ−1

→ x′ ∈ Yk,
where W is a ‘stochastic map’ that represents
the channel.

A decoder for an additive code C can be de-
signed as follows. Let J be a set of represen-
tatives of cosets in the quotient group Yn/C.
Then, we can specify a decoding map, which
makes the code ‘J-correcting’, as follows. As-
sume the receiver has obtained a word y ∈ Yn.
The receiver calculates the unique c ∈ C such
that c + a = y for some a ∈ J , and decodes y
into c.

A good code should have small decoding error
probability as well as an efficient decoding algo-
rithm. This article mostly deals with the issue
of finding codes whose decoding error proba-
bilities, or corresponding quantity if they are
quantum codes, are small.

Then, what is a good choice for J? In this
paper, we adopt the choice made by Goppa 6).
Namely, we fix some real-valued function γ on
Yn and choose a word x that maximizes γ(x)
in each coset lying in Yn/C and have J consist
of those chosen representatives (to break ties,
we use an arbitrarily fixed order, say, a lexico-
graphic order in Yn). We list three examples of
γ with the names of the resulting decoders:
( 1 ) γ(x) = −H(Px): minimum entropy (syn-

drome) decoding ☆
( 2 ) γ(x) = −(Hamming weight of x): mini-

mum Hamming distance decoding
( 3 ) γ(x) = Pn(x): maximum likelihood de-

coding (MLD)
The MLD deserves this name if the channel is
additive, namely, if a channel input x is changed
into y with probability Pn(y − x), x, y ∈ Yn.
The MLD minimizes the decoding error prob-
ability given a code C, but needs the knowl-
edge on the channel characteristics Pn(x), x ∈
Yn. An advantage of the minimum entropy (or
Hamming distance) decoding is that it does not
depend on the channel characteristics.

3. Coding with Equivalence Classes

Motivated by the structure of algebraic quan-

☆ This is different from the minimum-entropy decod-
ing, i.e., the maximum mutual information (MMI)

decoding for constant composition codes 10),13),14),
which is an α-decoding 14). Our decoding is a β de-
coding 6), which may be called a (wide-sense) syn-
drome decoding when Y is a finite field.
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tum codes, which will be explained shortly, we
will slightly modify the coding scenario above
mentioned. Briefly speaking, the idea is to in-
troduce an equivalence relation ∼ in Yn and
have the equivalence classes in Yn/∼ take over
the role of the words in Yn. In particular, as-
suming Y and B ≤ Yn are additive, we use the
cosets in Yn/B as the equivalence classes.

We call either a quotient group C/B or a
pair (C/B, {ρc}c∈C/B) a quotient group code,
or simply, a quotient code, where ρc ∈ P(c) for
each c ∈ C/B. The coding scenario is as fol-
lows. Assume B ≤ C ≤ Yn, |B| = |Y|b and
|C| = |Y|k+b. A sender encodes a message from
Yk into c ∈ C̃ = C/B with a prescribed one-to-
one map, say ϕ. Then, a word in c is chosen ac-
cording to the probability distribution ρc, and
sent through the channel. The receiver decodes
the received word into a member, say c′′, of C̃
and then into a message ϕ−1(c′′). This coding
scenario can be summarized schematically as

x ∈ Yk ϕ→ c ∈ C/B
ρc→ c′ ∈ C

W→ y′ ∈ Yn
ψ→ c′′ ∈ C/B

ϕ−1

→ x′ ∈ Yk.
For quotient codes, we can use essentially the

same decoding principle as in the previous sec-
tion. Namely, after mapping the received word
y′ into ỹ = y′ + B, the map that associates
ỹ ∈ Yn/B with c′′ ∈ C̃ can be constructed as
in Section 2. To be more specific, let us call any
coset in V = Yn/B a B-coset. Choose a set of
representatives of cosets lying in V/C̃, and let
J̃ be the union of those chosen representative
B-cosets. We have the following decoding map,
which makes the code ‘J̃-correcting’ ☆. Assume
the receiver has received a word y′ ∈ Yn, and
put ỹ = y′ + B. The receiver calculates the
unique c′′ ∈ C̃ such that c′′ + a = ỹ for some
B-coset a ⊆ J̃ , and decodes ỹ into c′′, and then
into ϕ−1(c′′).

We remark such a set J̃ can be specified al-
ternatively as follows. Let J be a set of repre-
sentatives of cosets in Yn/C, and put

J̃ = J +B = {x+ y | x ∈ J, y ∈ B}. (3)

If the choice of J is among those of Goppa listed
in Section 2, we also call the resulting decoding
scheme minimum entropy decoding, MLD, etc.
accordingly as which instance of γ is chosen.

If we use a quotient code and the decoding
method as just described on a memoryless ad-

☆ Conversely, a quotient code C/B being J̃-correcting
means J̃ can be chosen in this way.

ditive channel that changes an input symbol
x into y with probability P (y − x), x ∈ Y ,
then the decoding error probability is Pn(J̃c)
for any sent ‘code-coset’ c ∈ C/B and for any
probability distribution ρc ∈ P(c). Note that
as compared to the previous section, the set
of correctable errors J has been augmented to
J̃ = J+B. Our goal is to find codes with small
Pn(J̃c).

We remark that the coding schemes in this
section fall within the conventional framework
of coding in the previous section if either B =
{0n} or for any c ∈ C/B, there exists a word
t ∈ c with ρc(t) = 1. Indeed, for the pur-
pose of transmission of classical data only, one
would concentrate the probability of ρc, say, on
a word t ∈ c that achieves the minimum decod-
ing error probability in c, for any ‘code-coset’
c ∈ C/B ☆☆. However, it will be turned out that
quotient codes are useful, at least, for analyses
of channel codes, especially, of quantum codes.

4. Bound on Decoding Error Probabil-
ity

The following is the basic lemma that relates
a bound on the spectrum of a code with its
performance.

Lemma 1 Assume subgroups B and C
with B ≤ C ≤ Yn satisfy

MQ(C \B)
|T n
Q | ≤ and

−nT , Q ∈ Pn(Y)

with some real numbers d > 1, an ≥ 1 and T .
Then, choosing J as in item (1) of the above
list (minimum entropy decoding), we have for
any Pn ∈ P(Yn),

EπPn(π(J̃)c) ≤
an|Pn(Y)|

∑
Q∈Pn(Y)

Pn(T n
Q )d−n|T−H(Q)|+ .

where c denotes complement, J̃ is defined in
(3), |t|+ = max{t, 0}, and the random variable
π is uniformly distributed over Sn.

Corollary 1 Assume subgroups B and C
with B ≤ C ≤ Yn have MQ(C \ B) bounded
as in Lemma 1. Then, with J and J̃ as in the
lemma, we have for any P ∈ P(Y),

☆☆ More quantitatively, with the codelength n and the
size |M| of the set of messages M fixed, the mini-
mum of the decoding error probability of a conven-
tional code cannot be improved by a quotient code
(C/B, {ρc}c∈C/B) (or a more general coding scheme
in which a code, i.e., the image of an encoder, has
form {ρc ∈ P(Yn) | c ∈ M}).
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Pn(J̃c) ≤ an|Pn(Y)|2d−nE(n)(P,T )

where
E(n)(P, T ) =

min
Q∈Pn(Y)

[D(Q||P ) + |T −H(Q)|+].

A proof of Lemma 1 is given in the appendix
though it is almost the same as the proof of
Theorem 1 of Ref. 9), which gives an upper
bound on the ‘error probability’ of CSS codes.

Proof of Corollary 1. Clearly, EπP
n(π(J̃)c)

= Pn(J̃c). Then, inserting the estimate
of Pn(T n

Q ) in Eq. (2) into the bound on
EπP

n(π(J̃)c) in the lemma, we have
Pn(J̃c) ≤ an|Pn(Y)|∑

Q∈Pn(Y)

d−n[D(Q||P )+|T−H(Q)|+]

and hence, the corollary.
In general, the spectra of specific codes are

hard to calculate. However, calculating the av-
erage of the spectra over an ensemble is some-
times easy, in which case, the next lemma is
useful to obtain bounds on the spectra of de-
terministic codes.

Lemma 2 Suppose Y is a finite set (not
necessarily a group), and A is a family of sub-
sets of Yn. Let S be a random variable taking
values in A. Then, there exists a subset S ∈ A
such that

∀Q∈Pn(Y), MQ(S) ≤ |Pn(Y)|ESMQ(S).
The easy proof of Lemma 2 of Ref. 9) applies

directly to this lemma.

5. Applications of Lemma 1 to Classi-
cal Coding

Fix a set B ∈ Yn, and suppose A is an en-
semble of subsets of Yn that contain B. If there
exists a constant V such that |{C ∈ A | x ∈
C \ B}| = V for any word x ∈ Yn \ B, the en-
semble A is said to be balanced except B. An
ensemble balanced except B = {0n} is simply
called balanced. Then, by Lemma 2, we have
the next lemma.

Lemma 3 Suppose an ensemble A of [n, k]
additive codes over Y is balanced. Then,

MQ(C \ {0n})
|T n
Q | ≤ |Pn(Y)||Y|−n(1−R),

Q ∈ Pn(Y)
for some code C ∈ A of rate R = k/n.

A generalization of this lemma will appear
below as Lemma 6 with a proof. If we apply

Corollary 1, putting d = |Y| and T = 1−R, to
the code in Lemma 3, we have the next theorem.

Theorem 1 Suppose an ensemble A of
[n, k] additive codes over Y is balanced. Then,
there exists a J-correcting code in A such that

Pn(Jc) ≤ |Pn(Y)|3d−nEr(P,R)

for any P ∈ P(Y), where R = k/n and
Er(P,R) =

min
Q∈P(Y)

[D(Q||P ) + |1 −R −H(Q)|+].

The function Er is known as the random cod-
ing exponent for the additive memoryless chan-
nel10) W characterized by P via W (y|x) =
P (y − x) [or W (y|x) = P (x− y)].

An example of ensembles balanced except an
arbitrarily fixed subspace B is the set of all
[n, k] linear codes containing B over a finite field
Y . To see this, we only need to notice that given
any pair of words from Yn \B, say, x and y, we
have a one-to-one linear map on Yn that sends
x to y.

6. Symplectic Codes

Throughout, H is a Hilbert space of dimH =
d. A scenario of quantum error correction is
that provided n primitive quantum systems,
each represented by H, are available, a dk-
dimensional subspace of the n-th tensor power
H⊗n of H, 0 < k < n, is protected against quan-
tum noise so as to be used for k-quantum-digit
computation.

The 2n-dimensional linear space F
2n
d over Fd

equipped with the standard symplectic form
fsp((x1, z1, . . . , xn, zn), (x′1, z

′
1, . . . , x

′
n, z

′
n))

=
∑
i

xiz
′
i − zix

′
i

plays a crucial role in algebraic QECCs. We can
define the dual L⊥sp of L by L⊥sp = {y ∈ F

2n
d |

∀x ∈ L, fsp(x, y) = 0}. Let us call a subspace L
with L⊥sp ⊆ L an fsp-dual-containing code or a
dual-containing code (with respect to the sym-
plectic form fsp). Then, we have a quantum
code whose performance is closely related to
that of the classical code L. The code is called a
symplectic (quantum) code with parity check set
(g1, . . . , gn−k), where g1, . . . , gn−k ∈ F

2n
d form a

basis of L, or a symplectic code with stabilizer
NL. Here, N : u �→ Nu is Weyl’s projective
representation 15) of F

2n
d (see Section 8), and

NJ = {Ny | y ∈ J}.
Suppose A′ = A′

n,k is the ensemble of
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[2n, n + k] fsp-dual-containing codes over Fd.
We can regard them [n, (n + k)/2] additive
codes over Y = F

2
d if we pair up the coordi-

nates of any word (x1, z1, . . . , xn, zn) to have
((x1, z1), . . . , (xn, zn)) ∈ Yn. We can associate
with an [n, (n+k)/2] fsp-dual-containing code a
set of dk-dimensional subspaces of H⊗n, which
can be used for quantum error correction2)∼4).
Namely, we have the next lemma, which is a
slight reformulation of the original one 2),3).

Lemma 4 Suppose a subspace L ∈ A′
n,k

and a set J of representatives of cosets of L in
F

2n
d are given. Then, we have a dk-dimensional

subspace of H⊗n that works as anN
J̃
-correcting

code with a suitable recovery operator, where
J̃ = J + L⊥sp = {x+ y | x ∈ J, y ∈ L⊥sp}.

For a proof, see Ref. 3) or, e.g., Refs. 16), 17).
Roughly speaking, given a set of operators E ,
a quantum code being E-correcting or a code
corrects ‘errors’ in E means that it recovers any
state in the code subspace perfectly after the
state suffers ‘errors’ belonging to E 18). The
precise definition of E-correcting is not requi-
site for evaluating the performance of quan-
tum codes. Indeed, the next fact is enough
to treat symplectic codes: If we properly de-
fine the performance measure, called fidelity,
of symplectic codes, it equals the probability
PA(J̃), where PA ∈ P(Yn) is associated with
the considered quantum channel (completely
positive map) A in a definite manner 9),17),19).
It might be said that the structure of quo-
tient codes were inherent in quantum error-
correcting codes and some codes used in quan-
tum cryptography (Sections 9 and 10.3).

7. Application of Lemma 1 to Quan-
tum Coding

Noticing A′ in the previous section is bal-
anced in the sense of Section 5, we obtain the
next theorem either from Theorem 1 or from
Lemma 3 and Corollary 1 with an = |Pn(F2

d)|
and T = 1 − k/n.

Theorem 2 For any prime or power of a
prime d and any integers n, k with 0 ≤ k ≤ n,
there exists a dual-containing [n, (n+k)/2] code
C over F

2
d with respect to the symplectic form

fsp and a set of coset representatives for F
2n
d /C

such that for any P ∈ Pn(F2
d),

Pn(Jc) ≤ |Pn(F2
d)|3d−nEq(P,R)

where R = k/n and

Eq(P,R) =
min

Q∈P(F2
d
)
[D(Q||P ) + |1 −R −H(Q)|+].

Here, we emphasizeH andD are defined with
logarithms of base d. This recovers the bound
on the fidelity of symplectic quantum codes in
Refs. 8), 19). In fact, this is better than those
in Refs. 8), 19), in that the choice of L in The-
orem 2 does not depend on the channel param-
eter P ☆. Such a property is referred to as uni-
versality in information theory.

8. A Bit of Physics

We have seen in Section 6 that a symplec-
tic quantum code can be characterized by the
corresponding fsp-dual-containing code L. Note
that instead of specifying a dual-containing
code we can specify a self-orthogonal code, i.e.,
a subspace S with S ⊆ S⊥sp . This is because
L⊥sp is uniquely determined from L and vice
versa due to the property (L⊥sp)⊥sp = L. As
compared with Refs. 8), 19), the roles of L and
L⊥sp are interchanged in this article in order
to emphasize the next respect. Given a sub-
space L with L⊥sp ⊆ L, the performance of a
symplectic quantum code with stabilizer NL is
closely related to that of the classical code L,
not L⊥sp .

On the other hand, the self-orthogonal sub-
space L⊥sp has a direct physical meaning.
Namely, the symplectic quantum codes corre-
sponding to a dual-containing code L are de-
fined as simultaneous eigenspaces of Nu, u ∈
L⊥sp , where N : u �→ Nu is Weyl’s projec-
tive representation of F

2n
d . Specifically, let d

be prime, and X and Z be a pair of unitary
operators on H of dimension d satisfying

XZ = ωZX, (4)
for a primitive d-th root of unity ω in the
field of complex numbers (such as ei2π/d). Let
X(x1,...,xn) denote Xx1 ⊗ · · · ⊗Xxn , etc. Then,
N is defined by

N(x1,z1,...,xn,zn) = X(x1,...,xn)Z(z1,...,zn).

What is important is the commutation relation

NuNv = ωfsp(u,v)NvNu (5)

☆ There was an attempt20) to derive a similar bound
from a result on classical constant composition codes
and the MMI decoding10),11). However, Ref. 20)
did not give a quantum operation (completely pos-
itive map) to decode the symplectic code, whereas
we have such an operation that generalizes a (wide-

sense) syndrome decoding for classical codes17),19).
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which follows from Eq. (4). Observe that Nu
and Nv commute if and only if fsp(u, v) = 0.
Hence, specifying a set of commuting oper-
ators in {Nu | u ∈ F

2n
d } is equivalent to

specifying a self-orthogonal subspace of F
2n
d .

From the engineering point of view, the role
of NL⊥sp (more precisely, Ng1 , . . . , Ngn−k

for
a basis (g1, . . . , gn−k) of L⊥sp) is a syndrome
measurement. More details may be found in
Refs. 2), 3), or Appendix A of Ref. 17).

9. Calderbank-Shor-Steane Codes

9.1 Symmetric CSS Codes
We have explained the scenario of using sym-

plectic codes for protection of quantum states.
It is known that a class of symplectic codes
are also useful for quantum key distribution
(QKD). In particular, Shor and Preskill 21) ar-
gued that the security of the famous Bennett-
Brassard 1984 (BB84) QKD protocol could be
proved by evaluating the fidelity of quantum
error-correcting codes underlying the protocol.
The codes are called Calderbank-Shor-Steane
(CSS) codes.

First, we consider a class of CSS codes of sim-
ple structure. Given a classical code C ⊆ F

n
d

with C⊥ ⊆ C, where C⊥ is the dual of C
with respect to the bilinear form

∑
i xiyi, a si-

multaneous eigenspace of the commuting op-
erators XxZz, x, z ∈ C⊥, is called a CSS
code. Given a set of coset representatives Γ for
F
n
d/C, with a suitable decoding (recovery) op-

erator, the CSS code can correct errors XxZz

for x ∈ Γ′ = Γ + C⊥ and z ∈ Γ′, so that the
‘decoding error probability’ (one minus fidelity)
of the quantum code is upper-bounded by ☆

1 − Pr[Xn ∈ Γ′ and Zn ∈ Γ′]
≤ Pr[Xn ∈ Γ′c] + Pr[Zn ∈ Γ′c]. (6)

9.2 Applications of Lemma 1 to CSS
Quantum Coding

We can show that the ensemble of dual-
containing codes with respect to the bilinear
form

∑
i xiyi has a good balance, though it may

not be completely balanced in the sense of Sec-
tion 5, which leads to the next lemma and the-
orem 9). The case of d ≥ 3 is more tractable 9).

Lemma 5 Assume d = 2 and n ≥ 2 is even.
Then, for any κ with n/2 ≤ κ ≤ n, there ex-
ists a κ-dimensional subspace C of F

n
d such that

☆ The Xn stands for (X1, . . . ,Xn), etc., and the prob-
ability distribution of (X1,Z1, . . . ,Xn,Zn), is PA
mentioned in Section 6.

{1n} ⊆ C⊥ ⊆ C and for any Q ∈ Pn(Fd),
MQ(C \ {0n, 1n})

|T n
Q | ≤ |Pn(Fd)|dκ−n+1.

Theorem 3 Assume d = 2. Let a number
0 ≤ R ≤ 1 be given. There exists a sequence of
pairs (Cn,Γn), n = 2, 4, 6, . . . , each consisting
of a subspace Cn ⊆ F

n
d with {1n} ⊆ C⊥

n ⊆ Cn
and 2 dimFd

Cn − n ≥ nR, and a set of coset
representatives Γn of F

n
d/Cn, such that for any

probability distribution P on Fd,

P (Γ̃c
n) ≤ 4(n+ 1)3d−nEr((1+R)/2,P )

where Γ̃n = span 1n + Γn = Γn ∪ {1n + x | x ∈
Γn}, and Er is defined in Theorem 1.

Proof. Put B = {0n, 1n}, Y = Fd, an =
d2|Pn(Y)| and T = (1−R)/2. Then, Theorem 3
follows from Corollary 1 applied to the codes in
Lemma 5.

This lemma and Eq. (6) ensure the existence
of a CSS code whose ‘decoding error probabil-
ity’ is upper-bounded by 8(n+1)3d−nE(R,PX,PZ)

where

E(R,PX, PZ) = min{Er((1 +R)/2, PX),
Er((1 +R)/2, PZ)},

and PXZ = PA1 is associated with the consid-
ered memoryless quantum channel A1 in the
manner described in Refs. 9), 17), 19). The
resulting achievable rate is not so large as
1 −H(PXZ) obtained from Theorem 2.

10. Other Applications

10.1 Ensemble of Quotient Codes
The ensemble average of MQ(C \B) over

those (B,C) with B = C⊥ and B ≤ C was
evaluated to prove the existence of codes of ‘bal-
anced’ spectra in Lemma 5. We treat other en-
sembles in this section.

Lemma 6 Let Y be a finite set and integers
k, b with 0 < k ≤ n− b be given. Suppose A is
a family of pairs of subsets (B,C) of Yn with
B′ ⊆ B ⊆ C ⊆ Yn, |B| = |Y|b, |C| = |Y|k+b
for some B′ ⊆ Yn such that the number V =
|{(B,C) ∈ A | x ∈ C \ B}| does not depend on
x ∈ Yn \B′. Then, there exists a pair (B,C) ∈
A such that for any Q ∈ Pn(Y),

MQ(C \B)
|T n
Q | ≤ |Pn(Y)||Y|k+b−n.

Corollary 2 Let a b-dimensional subspace
B of Yn, where Y is any finite field, and an
integer k, 0 < k ≤ n − b be given. Let A′ be
the family of all (k + b)-dimensional subspaces
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C with B ≤ C ≤ Yn. Then, the bound on
MQ(C \ B) in the lemma is fulfilled by some
subspace C ∈ A′.

Proof. Put d = |Y|. Counting the
pairs (x, (B,C)) such that x ∈ C \ B and
(B,C) ∈ A in two ways, we have (dn − db)V ≤
(dn − |B′|)V ≤ |A|(dk+b − db), from which
EB,CMQ(C \ B) ≤ |T n

Q |dk+b−n follows, where
(B,C) is a random variable uniformly dis-
tributed over A, and hence, the desired estimate
follows by Lemma 2. The corollary follows from
the last remark in Section 5.

Theorem 4 Let an additive group Y of or-
der d and integers k, b with 0 < k ≤ n − b be
given. Suppose we have a quotient code C/B,
i.e., a pair (B,C) with B ≤ C ≤ Yn, |B| = db,
and |C| = dk+b such that

MQ(C \B)
|T n
Q | ≤ and

k−n, Q ∈ Pn(Y).

Then, if an ≥ 1, its decoding error probability
with the minimum entropy decoding on addi-
tive memoryless channel P is upper-bounded
by

an|Pn(Y)|2d−nEr(P,R)

where R = k/n and Er(P,R) is defined in The-
orem 1. The same code C/B have its decoding
error probability upper-bounded by

|Pn(Y)|db−nEex(P,R+[logd an]/n)

with the MLD, where R = k/n,
Eex(P,R) =

min
Q∈P(Y): H(Q)≥1−R

[
1 −R −H(Q)

−
∑
s∈Y

Q(s) log
∑
a∈Y

√
P (a)P (a+ s)

]
.

Recall that the decoding error probability
is given by Pn(J̃c) as in Section 3. We re-
mark that the code in Corollary 2 satisfies the
premise, and hence, both bounds in the theo-
rem with an = db|Pn(Y)| or an = db(n+ 1)d−1.

10.2 Implication on Classical Coding
With b small, say, b = 0, 1, the combination of

the two bounds in Theorem 4 gives the asymp-
totically best bound among those known for ad-
ditive memoryless channels (for the rates below
the critical rate, the random coding exponent
Er(P,R) is optimum, and the expurgated ex-
ponent Eex(P,R) improves this for high rates).
Note that whereas Er(P,R) is attainable by
universal systems of encoding and decoding,

we have used the MLD in Theorem 4 to prove
the attainability of Eex(P,R), and this is true
for any derivations of Eex(P,R) known (to the
present author). A natural question arises (Cf.
Csiszár and Körner 14)): For which class of
channels can we find a good code and its decod-
ing that attain the expurgated exponent and do
not depend on the channel characteristics?

Theorem 4, together with Corollary 2 or
Lemma 5, ensures the existence of such a sys-
tem of encoding and decoding that works for
all binary symmetric channels. In fact, for
Y = {0, 1} and B = {0n, 1n}, the minimum
entropy decoding and the MLD (together with
the minimum Hamming distance decoding) de-
scribed in Section 3 happen to be the same.

10.3 Asymmetric CSS Codes
A general d-ary CSS code is a simultaneous

commuting operators XxZz, x ∈ C2, z ∈ C⊥
1

for some C1, C2 ⊆ F
n
d . For d prime, these oper-

ators really commute if (and only if) C2 ⊆ C1

as can be easily checked with Eq. (5). Then,
by the general principle of symplectic codes in
Lemma 4, it is easy to see that if the quotient
codes C1/C2 and C⊥

2 /C
⊥
1 are both good, then

the CSS codes are good. This was stated by
Mayers 22), where the goodness of a quotient
code was measured by minimal distance ☆. In
the framework of quotient codes, this can be
said more clearly: If C1/C2 is Γ̃1-correcting and
C⊥

2 /C
⊥
1 is Γ̃2-correcting, then the CSS code is

N
J̃
-correcting with

J̃ = {[x, z] | x ∈ Γ̃2 and z ∈ Γ̃1}
where

[(x1, . . . , xn), (z1, . . . , zn)]
= (x1, z1, . . . , xn, zn).

In applications of CSS codes to quan-
tum cryptography, either the quotient code
C1/C2 or C⊥

2 /C
⊥
1 should be efficiently decod-

able 21),22). Then, it was proposed to use known
classical codes as C1 and a randomly chosen
subspace of C1 as C2

22). If we knew which spe-
cific subspace were good as C2, we would use
it rather than random ones as C2. Moreover,
the deterministic choice of C2 saves randomness
and public communication.

Then, a natural question arises: After a
(good) code C1 over a finite field Y is arbitrar-
ily fixed, how good C⊥

2 /C
⊥
1 can be by a proper

☆ Related metrics for quotient spaces are proposed in
Appendix A.3.



Vol. 46 No. 10 Quotient Codes and Their Reliability 2435

choice of C2 ≤ C1? Corollaries 1 and 2 an-
swer this question. Namely, putting B = C⊥

1 ,
C = C⊥

2 , b = (1 − R1)n, and k = (R1 − R2)n,
we conclude from these corollaries the exis-
tence of a Γ̃2-correcting quotient code C⊥

2 /C
⊥
1

with Pn(Γ̃2) ≤ |Pn(Y)|3d−nEr(1−R2) for any
P ∈ P(Y).

If we use the random selection of C2 in-
stead as in Refs. 22), 23), the resulting bound
is EC2P

n(Γ̃2) ≤ |Pn(Y)|2d−nEr(1−R2) by Corol-
lary 3 in the next subsection. Observe the
bound is better by the factor of |Pn(Y)| be-
cause the process of choosing a deterministic
good code (Lemma 2), where the factor stems
from, is not necessary in this case.

Note the argument in this section is applica-
ble to the case where Y = F

m
d for some m ≥ 1

(we define the duals of codes as before viewing
Yn as F

nm
d ), which recovers the result of Ap-

pendix B of Ref. 9), though the decoding com-
plexity is sacrificed slightly for the generality of
the argument.

10.4 Random Codes
Expecting possible applications in the future,

this subsection gives general forms of Lemma 1
and Corollary 1, which are applicable to ran-
dom codes. The proof of Lemma 1 in the ap-
pendix and that of Corollary 1 can be accommo-
dated to this case only by applying EB,C where
appropriate.

Lemma 7 Assume a pair of random vari-
ables (B,C) that take values in a set {(B,C) |
B ≤ C ≤ Yn} satisfy

EB,C
MQ(C \ B)

|T n
Q | ≤ and

−nT , Q ∈ Pn(Y)

with some real numbers d > 1, an ≥ 1 and
T . Then, choosing JC as in item (1) of the list
in Section 2 (minimum entropy decoding), we
have for any Pn ∈ P(Yn),

EB,CEπPn(π(J̃B,C)c)

≤an|Pn(Y)|
∑

Q∈Pn(Y)

Pn(T n
Q )d−n|T−H(Q)|+

where J̃B,C = JC+B = {x+y | x ∈ JC , y ∈ B}.
Corollary 3 Assume a pair of random vari-

ables (B,C) fulfills the condition of Lemma 7.
Then, for the above choice of JC and for any
P ∈ P(Y), we have

EB,CP
n(J̃B,C

c) ≤ an|Pn(Y)|2d−nE(n)(P,T )

where E(n)(P, T ) is given in Corollary 1.

11. Summary and Remarks

This article gave a formula to evaluate the
performance of an algebraic code in terms of
its (weight) spectrum.

The achievable rate 1 − H(P ) for quantum
channels resulting from Theorem 2 is not the
best 24),25). The optimum rate achievable by
general quantum codes is now known (see, e.g.,
Ref. 26) and the references therein, especially,
Refs. 27), 28) for details). The problem of de-
termining the optimum attainable exponent is
left open17),29).
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Appendix

A.1 Proof of Lemma 1
In the proof, Pn(Y) is abbreviated as Pn. We

will show that G = EπPn(π(J̃)c) is bounded
above by the claimed quantity.

Imagine we list up all words in π(C \ B) for
all π ∈ Sn allowing duplication. Clearly, the
number of appearances of any fixed word y ∈
Yn in the list only depends on its type Py ∈
Pn. Namely, for any Q ∈ Pn, there exists a
constant, say LQ, such that |{π ∈ Sn | y ∈
π(C \ B)}| = LQ for any word y with Py =
Q. Then, counting the number of words of a
fixed type Q in the list in two ways, we have
|T n
Q |LQ = |Sn|MQ(C \B). Hence, for any type

Q ∈ Pn(Y)

LQ
|Sn|

=
MQ(C \B)

|T n
Q | ≤ and

−nT

by assumption. This implies that for y ∈ Yn,
we have

|Ay(C \B)|
|Sn|

≤ and
−nT (7)
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where
Ay(C \B) =

{
π ∈ Sn | y ∈ π(C \B)

}
.

We have

G =
1

|Sn|
∑
π∈Sn

∑
x/∈π(J̃)

Pn(x)

=
∑
x∈Yn

Pn(x)
|{π∈Sn | x /∈π(J̃)}|

|Sn|
. (8)

Since x /∈ π(J̃) occurs only if there exists a
word u ∈ Yn such that H(Pu) ≤ H(Px) and
u− x ∈ π(C \B) from the design of J̃ specified
above (minimum entropy decoding), it follows

|{π ∈ Sn | x /∈ π(J̃)}|/|Sn|
≤

∑
u∈Yn:H(Pu)≤H(Px)

|Au−x(C \B)|/|Sn|

≤
∑

u∈Yn:H(Pu)≤H(Px)

and
−nT

=
∑

Q′∈Pn:H(Q′)≤H(Px)

an|T n
Q′ |d−nT

≤
∑

Q′∈Pn:H(Q′)≤H(Px)

and
nH(Q′)−nT (9)

where we have used Eq. (7) for the second
inequality, and Eq. (1) for the last inequal-
ity. Then, using the inequalities min{at, 1} ≤
amin{t, 1} and min{s + t, 1} ≤ min{s, 1} +
min{t, 1} for a≥1, s, t≥0, we can proceed from
Eq. (8) as follows, which completes the proof:

G ≤
∑
x∈Yn

Pn(x) min
{ ∑
Q′∈Pn:H(Q′)≤H(Px)

and
nH(Q′)−nT , 1

}
≤ an

∑
Q∈Pn

Pn(T n
Q )

min
{ ∑
Q′∈Pn:H(Q′)≤H(Q)

dnH(Q′)−nT , 1
}

≤ an
∑
Q∈Pn

Pn(T n
Q )

∑
Q′∈Pn:H(Q′)≤H(Q)

min
{
d−n[T−H(Q′)], 1

}
≤ an|Pn|

∑
Q∈Pn

Pn(T n
Q )

max
Q′∈P(Fd):H(Q′)≤H(Q)

d−n|T−H(Q′)|+

= an|Pn|
∑
Q∈Pn

Pn(T n
Q )d−n|T−H(Q)|+ .

A.2 Proof of Theorem 4
The first bound with the random coding ex-

ponent in theorem immediately follows from
Corollary 1. We proceed to proving the second.

By the choice of J (MLD),

Pn(J̃c) ≤
∑

x̃∈Yn/B

|B|

∑
ỹ∈C/B\B

√
max
x∈x̃

Pn(x) max
y∈ỹ

Pn(x+ y)

This can be seen by noticing that when the
additive error falls in a coset x̃ ∈ Yn/B, the
decoding error occurs only if there is a coset
z̃ ∈ Yn/B with max

z∈z̃ P
n(z) ≥ max

x∈x̃ P
n(x)

and z̃ − x̃ ∈ C/B \B. Hence, we have
Pn(J̃c)

≤ |B|
∑

ỹ∈C/B\B

∑
x̃∈Yn/B∑

y∈ỹ

∑
x∈x̃

√
Pn(x)Pn(x+ y)

≤ |B|
∑

y∈C\B

∑
x∈Yn

√
Pn(x)Pn(x+ y)

= |B|
∑

y∈C\B

d
n
∑

s∈Y Py(s) log
∑

a∈Y
√
P (a)P (a+s)

= |B|
∑

Q∈Pn(Y)

MQ(C \B)

d
n
∑

s∈Y Q(s) log
∑

a∈Y
√
P (a)P (a+s)

.
Note that the premise in the theorem implies

MQ(C \B) ≤ d−n[1−R−H(Q)−(log an)/n],

Q ∈ Pn(Y),

by Eq. (1), and hence, MQ(C \ B) = 0 if
1 − R − H(Q) − (log an)/n > 0 (incidentally,
this implies that the code satisfies the Gilbert-
Varshamov bound asymptotically). Thus, we
have the second bound in the theorem.

A.3 Metrics for Quotient Spaces
We have treated spaces of the form V = Z/B,

where B ≤ Z are finite additive groups. In
this appendix, a natural way to derive metrics
on V from those on Z, such as the Hamming
metric on Z = Yn, is introduced. Given a non-
negative function W on Z, a function D on Z×
Z defined by D(x, y) = W(y − x) is a metric if
W satisfies (i) triangle inequality W(x + y) ≥
W(x) + W(y), x, y ∈ Z, (ii) W(x) = 0 if and
only if x is zero, and (iii) W(x) = W(−x).
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Lemma 8 Given a function W on Z, define
WB(x̃) = min

x∈x̃ WB(x) for x̃ ∈ Z/B. Then,
whichever of properties (i), (ii) and (iii) W has,
WB inherits the same properties from W.

The easy proof is omitted. A broad class of
metrics that include metrics of this type are
known as combinatorial metrics 30) or combi-
natorial metrics with cost 31).


