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Dihedral Hidden Subgroup Problem: A Survey

Hirotada Kobayashi† and François Le Gall††,†††

After Shor’s discovery of an efficient quantum algorithm for integer factoring, hidden sub-
group problems play a central role in developing efficient quantum algorithms. In spite of
many intensive studies, no efficient quantum algorithms are known for hidden subgroup prob-
lems for many non-Abelian groups. Of particular interest are the hidden subgroup problems
for the symmetric group and for the dihedral group, because an efficient algorithm for the
former implies an efficient solution to the graph isomorphism problem, and that for the latter
essentially solves a certain lattice-related problem whose hardness is assumed in cryptography.
This paper focuses on the latter case and gives a comprehensive survey of known facts related
to the dihedral hidden subgroup problem.

1. Introduction

The hidden subgroup problem (HSP) nicely
captures the structure of problems for which
quantum computers can (or may be able to) sig-
nificantly outperform classical computers. Be-
sides the integer factoring and discrete loga-
rithm problems for which celebrated quantum
algorithms were presented by Shor 23), most of
the problems having efficient quantum algo-
rithms can be rephrased in terms of HSPs. Typ-
ical examples are Simon’s order finding prob-
lem 24) and Kitaev’s Abelian stabilizer prob-
lem 13). Although HSPs are usually discussed
for finite groups, Pell’s equation problem, one
of the oldest studied problem in number theory
for which Hallgren 9) gave an efficient quantum
algorithm, may also be viewed as an HSP for
the infinite group R.

All of the problems mentioned so far can be
treated as HSPs for some Abelian groups. In
fact, HSPs for all (finite) Abelian groups are
known to have efficient quantum algorithms,
which is essentially due to Kitaev 13) who gave
an efficient construction of quantum Fourier
transformations over Abelian groups. For HSPs
for most of non-Abelian groups, however, it is
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unclear if they are tractable by quantum com-
puters. Two important cases remaining open
are HSPs for the symmetric group and dihedral
group, since the graph isomorphism problem is
reducible to the former 3),4) and a certain lat-
tice problem which is important in cryptogra-
phy is reducible to the problem of solving the
latter via some standard approach 21). This pa-
per concentrates on the latter and tries to give a
comprehensive survey of known facts related to
the dihedral hidden subgroup problem (DHSP).

This paper is organized as follows. After for-
mally defining the hidden subgroup problem,
and in particular, the dihedral hidden subgroup
problem in Section 2, we start in Section 3
with the connection between lattice problems
and the DHSP pointed out by Regev 21). This
gives a strong motivation to study algorithms
for the DHSP. Section 4 revisits two quan-
tum algorithms for the DHSP. The first is the
subexponential-time quantum algorithm due to
Kuperberg 14), which is the current fastest al-
gorithm for the DHSP. The second is the al-
gorithm due to Regev 22). This algorithm still
requires subexponential time, and is slightly
slower than Kuperberg’s actually, but runs in
polynomial space, which is in contrast to that
Kuperberg’s algorithm requires subexponential
space. Section 5 reviews a latest result by Ba-
con, Childs, and van Dam 2) that shows an opti-
mal measurement for the DHSP. For HSPs for
some non-Abelian groups closely related to the
dihedral group, efficient quantum algorithms
have been known already. Friedl, Ivanyos, Mag-
niez, Santha, and Sen 7) gave an efficient quan-
tum algorithm for the HSP for the semidirect
product group Z

n
pr � Z2 with p a fixed odd

prime. Moore, Rockmore, Russell, and Schul-
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man 15) solved the case of the q-hedral group.
Very recently, the case of the semidirect prod-
uct group Zpr � Zp with p a prime has also been
settled by Inui and Le Gall 11). Such results are
summarized in Section 6. Finally, we conclude
with Section 7 by mentioning some future di-
rections.

2. Preliminaries

We start with reviewing several fundamental
notions used in this paper. Let N, Z, Z

+, and
R denote the sets of natural numbers, integers,
nonnegative integers, and real numbers, respec-
tively. For n ∈ N, Zn denotes the set of all non-
negative integers less than n. Furthermore, for
m,n ∈ Z satisfying m < n, Z[m,n] denotes the
set of all integers at least m and at most n.
Throughout this paper it is assumed that all
groups discussed are finite. The unit element
of a group G is denoted by 1G.

For a subgroup H of a group G and ev-
ery group element g ∈ G, the left coset and
right coset of H determined by g are the sets
gH = {gh | h ∈ H} and Hg = {hg | h ∈ H},
respectively. In this paper we simply say a
coset to mention a left coset. For a finite set
X, a function f : G→ X is H-periodic if, for
all g1, g2 ∈ G, f(g1) = f(g2) if and only if g1
and g2 are in the same coset of H.

Now we are ready to define the hidden sub-
group problem (HSP).

Definition 1 Given a generating set of a
group G and a black box that computes a func-
tion f that is promised to be H-periodic for
some unknown subgroup H of G, the hidden
subgroup problem (HSP) is the problem of find-
ing a generating set of H.

The complexity of the HSP is discussed with
respect to log(|G|), because only the generating
set of G is given as input.

The dihedral group DN of order 2N is the set
{x, y | xN = y2 = yxyx = 1DN

}.
This is the set of the N reflections and the N
rotations that leaves the regular N -gon invari-
ant, and the group is in fact generated by the
reflection y and the rotation x of angle 2π

N . Al-
gebraically it is denoted by the semidirect prod-
uct DN

∼= ZN � Z2. Each element of DN can
be represented of the form ysxt for some s ∈ Z2

and t ∈ ZN .
Definition 2 The dihedral hidden sub-

group problem (DHSP) is an HSP in which the
underlying group G is dihedral.

One established method to solve HSPs is the
coset sampling, which is often referred to as the
“standard method”. In the coset sampling, we
first prepare the uniform superposition of all the
elements of the underlying group G, and then
evaluate the function f to have the state

|φ〉 =
1√|G|

∑

g∈G

|g〉|f(g)〉.

Now we measure the second register of |φ〉. If
this results in, say, f(g0), then we have obtained
the state

1√|H|
∑

h∈H

|g0h〉

in the first register, which is the uniform super-
position of all the elements of the coset g0H.
This procedure is repeated many times until
sufficiently many samples are obtained. Thus,
the HSP is reduced to the problem of finding H
from these coset samples.

In the case of the DHSP, Ettinger and
Høyer 5) proved that it is sufficient for the
DHSP to solve the case where the hidden sub-
group is of the form 〈yxd〉. Note that each el-
ement ysxt of DN may be represented as (s, t)
for s ∈ Z2 and t ∈ ZN . Therefore, the DHSP is
reduced to the following dihedral coset problem
(DCP).

Definition 3 For N ∈ N, let d ∈ ZN be an
unknown constant. Given a black box that
chooses t ∈ ZN arbitrarily and outputs a pure
quantum state

1√
2
(|0, t〉 + |1, (t+ d) mod N〉)

of (1 + �logN�) qubits, the dihedral coset prob-
lem (DCP) is the problem of finding d by using
this black box.

The complexity of algorithms for the DCP is
discussed with respect to logN . We say that
the DCP has an efficient algorithm if it runs in
time polynomial and solves the problem with
some noticeable probability. The result by Et-
tinger and Høyer 5) implies that linearly many
samples from the black box are sufficient to
solve the DCP, although their method requires
exponential time to find the solution from these
samples. Ettinger, Høyer, and Knill 6) general-
ized this by showing that polynomially many
coset states are sufficient to solve the HSP for
any finite group.

3. Relation to Lattice Problems

Besides the fact that the dihedral group is a
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non-Abelian group having a simple expression,
perhaps the primal reason why the DHSP is
so intensively studied among other non-Abelian
HSPs would be that it is closely related to
certain lattice problems whose hardness is as-
sumed in some cryptographic systems. Indeed,
lattice-based cryptosystems are one of the most
likely candidates that may replace RSA or other
factoring- or discrete-log-based ones, which are
no longer secure against adversaries using quan-
tum computers.

A lattice of dimension n is a set of all integer
linear combinations of n linearly independent
vectors in R

n. These n linearly independent
vectors form a basis of the lattice. The shortest
vector problem (SVP) in a lattice is a natural
problem of finding the shortest nonzero vector
in the lattice, or in other words, of finding the
lattice point closest to the origin.

Definition 4 Given a basis of a lattice, the
shortest vector problem (SVP) is the problem
of finding the shortest nonzero vector in the lat-
tice.

For cryptographic use, we often consider a
special version of the SVP having additional
promises, which is called the f(n)-unique short-
est vector problem (f(n)-uSVP).

Definition 5 Let f : Z
+ → R be a function.

The f(n)-unique shortest vector problem (f(n)-
uSVP) is the SVP in which the given lattice
of dimension n is promised to have the unique
shortest nonzero vector whose length is shorter
at least by a factor of f(n) than all the other
nonparallel vectors.

For instance, the cryptosystem by Ajtai and
Dwork 1) is based on the hardness of the O(n8)-
uSVP (and that of the O(n7)-uSVP in its modi-
fied version 8)) and the one recently proposed by
Regev 20) is based on that of the O(n

3
2 )-uSVP ☆.

Regev 21) showed that the DHSP is closely
related to the f(n)-uSVP. Loosely speaking,
what he proved is that an efficient algorithm
for the DCP could be used to efficiently solve
the f(n)-uSVP for some polynomially bounded
function f . This essentially implies that if the
☆ It does not mean that efficient algorithms for the un-

derlying lattice problems can break these cryptosys-
tems; here it is claimed that breaking them is at least
as hard as such lattice problems. This is in contrast
to the case of RSA in which breaking the cryptosys-
tem is at most as hard as factoring integers. As for
the upper bound for the Ajtai-Dwork cryptosystem,

it is known that an efficient n
4
3 -approximating al-

gorithm for the closest vector problem (CVP) could

be used to break it 19).

DHSP is efficiently solvable using the “stan-
dard method” of coset sampling, the f(n)-
uSVP has efficient algorithms for some polyno-
mially bounded function f . The following two-
point problem is the key to connect the DCP
and the uSVP.

Definition 6 For N,n ∈ N, let a vec-
tor d ∈ Z

n
[−(N−1),N−1] be unknown but fixed.

Given a black box that chooses t ∈ Z
n
N arbi-

trarily such that t + d ∈ Z
n
N and outputs a pure

quantum state
1√
2
(|0, t〉 + |1, t + d〉)

of (1 + n�logN�) qubits, the two-point problem
is the problem of finding d by using this black
box.

The complexity of algorithms for the two-
point problem is discussed with respect to
n logN . The concept of efficient algorithms is
defined in a manner similar to the case of the
DCP.

It is not so hard to see that this two-point
problem is reducible to the DCP. The harder
part is the reduction from the uSVP to the two-
point problem. Given a basis of a lattice of the
f(n)-uSVP to solve, we take some space large
enough and create a superposition of many lat-
tice points in this space. Then we partition
the space into small regions of some appropri-
ate size so that at most two lattice points are
inside the same region. It is easy to compute
which region each lattice point belongs to, and
thus, by measuring the information of the re-
gion we can obtain a superposition of at most
two lattice points that belong to the measured
region. Using this idea, Regev showed that the
f(n)-uSVP is quantumly reducible (in a truth-
table-like manner) to (a modified version of)
the two-point problem.

More precisely, consider some modified ver-
sions of the DCP and two-point problem: the
dihedral coset problem with failure parameter δ
(δ-DCP) and two-point problem with failure pa-
rameter δ in which now only a certain imperfect
black box is given instead of the ideal black box
in their original definitions.

Definition 7 For N ∈ N, let d ∈ ZN be an
unknown constant. For a positive real num-
ber δ, the dihedral coset problem with failure
parameter δ (δ-DCP) is the DCP of finding d
in which the given black box works well with
probability at least 1 − 1

(log N)δ and otherwise
outputs a state |s, t〉 by choosing s ∈ Z2 and
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t ∈ ZN arbitrarily.
Definition 8 For N,n ∈ N, let a vector

d ∈ Z
n
[−(N−1),N−1] be unknown but fixed. For

a positive real number δ, the two-point prob-
lem with failure parameter δ is the two-
point problem of finding d in which the given
black box works well with probability at least
1 − 1

(n log 2N)δ and otherwise outputs a state
|s, t〉 by choosing s ∈ Z2 and t ∈ Z

n
N arbitrarily.

The concepts of efficient algorithms for these
two problems are defined in a manner simi-
lar to the cases of the original DCP and two-
point problem. Using these problems, Regev 21)

proved the following statement, which is actu-
ally a stronger claim than what has been men-
tioned above.

Theorem 9 Let δ be a positive real num-
ber. If the δ-DCP has an efficient algorithm,
then there exists a polynomial-time quantum
algorithm that solves the Θ(n

1
2+2δ)-uSVP with

high probability.

4. Quantum Algorithms for DHSP

We now present two quantum algorithms for
the DHSP, both of which are subexponential-
time algorithms. The first one is the 2O(

√
log N)-

time algorithm due to Kuperberg 14), where N
is the parameter specifying that the underlying
dihedral group is DN . Although this is the cur-
rent fastest algorithm for the DHSP, it unfortu-
nately requires 2O(

√
log N) quantum space. The

second algorithm due to Regev 22) modifies Ku-
perberg’s algorithm to a polynomial-space one
at the cost of slight slow-down with time com-
plexity.

4.1 Kuperberg’s Algorithm
The key element for Kuperberg’s algorithm

is the Sample Creation Procedure described in
Fig. 1.

In the case of f hiding the subgroup
H = {(0, 0), (1, d)} of DN , the first two steps of
the Sample Creation Procedure are essentially
the dihedral coset sampling, and we obtain a
state of the form

1√
2
(|0〉|t〉 + |1〉|(t+ d) mod N〉),

where t is chosen from ZN uniformly at random.
Now at the end of Step 3, if the measurement

outcome is k chosen from ZN uniformly at ran-
dom, the qubit in the first register collapses to
the state (up to a phase)

|ψd,N
k 〉 =

1√
2
(|0〉 + e2πi kd

N |1〉),

Sample Creation Procedure over DN

Input: an integer N and a black box that com-
putes a function f : Z2 × ZN → X, where
X is some finite set

Output: a one-qubit quantum state

1. Prepare the state
1√
2N

1∑

s=0

n∑

t=0

|s〉|t〉|f(s, t)〉.
2. Measure the third register.
3. Apply the quantum Fourier transformation

over ZN

|j〉 	→ 1√
N

N−1∑

k=0

e2πi jk
N |k〉

to the second register and measure it.
4. Output the first register.

Fig. 1 The sample creation procedure.

which is the output of the Sample Creation Pro-
cedure. Notice that, when the state |ψd,N

k 〉 is
obtained, the values of k and N are already
known and only d is unknown. We now show
how to find d using such samples.

4.1.1 Case of N a Power of Two
We first consider the easier case where N =

2n. In this case, the problem of finding
d is easily reduced to the problem of find-
ing the parity b of d. To see this, sup-
pose that, given N and a black box that
computes an H-periodic f , we have an algo-
rithm that finds b with high probability, where
H = {(0, 0), (1, d)} is the hidden subgroup to
find. We can thus write d = 2d′ + b where b
is known. Define a function f ′ : Z2 × Z N

2
→ X

as f ′(s, t) = f(s, 2t+ b). Then this f ′ is H ′-
periodic where H ′ = {(0, 0), (1, d′)} is a sub-
group of DN

2
. Therefore, the parity of d′ can

be found with high probability, and all the bits
of d can be computed with high probability by
repeating the same procedure.

We thus have only to show how to find
the parity of d. The point is the fol-
lowing observation. If we could obtain
|ψd,N

2n−1〉 = 1√
2
(|0〉 + eπid|1〉), it is easy to know

the parity of d by applying the Hadamard trans-
formation. However, the probability of obtain-
ing this state from the Sample Creation Proce-
dure is 1

N , which is exponentially small. Kuper-
berg settled this by using a sieve method to ob-
tain the state |ψd,N

2n−1〉 in subexponential time.
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The key construction is as follows. For two
samples |ψd,N

k 〉 and |ψd,N
l 〉, the product state

|ψd,N
k 〉 ⊗ |ψd,N

l 〉 can be rewritten as
1
2
(|00〉+e2πi ld

N |01〉+e2πi kd
N |10〉+e2πi

(k+l)d
N |11〉).

Therefore, applying CNOT using the first qubit
as the control qubit yields the state
1
2
(|00〉+e2πi ld

N |01〉+e2πi
(k+l)d

N |10〉+e2πi kd
N |11〉).

Now, measuring the second qubit in the
{|0〉, |1〉} basis gives, up to a phase, either the
state |ψd,N

k+l 〉 with probability 1/2 or the state
|ψd,N

k−l 〉 with probability 1/2. Moreover, we can
know which of the two states has been obtained
from the outcome of the measurement.

Now the sieve algorithm starts with 2Θ(
√

n)

samples of the form |ψd,N
k 〉 with k uniformly

distributed over ZN . Denote this set of states
by L0. The sieve algorithm will find all the
pairs |ψd,N

k1
〉 and |ψd,N

k2
〉 such that the last

m = �√n− 1� bits of k1 and k2 are identical.
Then, for each of these pairs, use the previous
procedure to generate, with probability 1/2, the
state |ψd,N

k1−k2
〉. Denote the set of all these states

by L1. The point is that all the states in L1 are
of the form |ψd,N

k 〉 such that the m trailing bits
of k are all zeros. By repeating the procedure
m times, we obtain a set Lm of states of the
form |ψd,N

k 〉 such that k has n− 1 trailing ze-
ros. Now the only possibilities are k = 0 and
k = 2n−1.

We have just to show that, with high proba-
bility, the final set contains at least one state
of the form |ψd,N

2n−1〉. Intuitively, this is be-
cause, if |Lj | � 2Θ(

√
n) for 0 ≤ j ≤ m, then al-

most all states in Lj can be used to form a pair
(|ψd,N

k1
〉, |ψd,N

k2
〉) such that k1 − k2 is divisible by

2jm. Thus |Lj+1|/|Lj | ≈ 1/4. A precise anal-
ysis shows that taking |L0| = 2Θ(

√
n) is indeed

sufficient to obtain, with high probability, a set
Lm that contains at least one sample of |ψd,N

2n−1〉.
4.1.2 Case of General N
Now consider the case of generalN , and write

N = 2lN ′ with N ′ odd. Then the last l bits
of d can be determined as before. Moreover,
by denoting d = 2ld′ + r we can do as above to
obtain states of the form |ψd′,N ′

k 〉. Thus we have
only to consider the case where N is odd.

The idea is to create all the states |ψd,N
2j 〉 for

0 ≤ j ≤ logN . Then the well-known phase esti-
mation algorithm enables us to find d with high

probability.
First, we explain how to obtain the state

|ψd,N
1 〉. Once again write m = �√logN − 2�.

We start with the set L0 of 2Θ(
√

N) samples
of the form |ψd,N

k 〉 randomly generated by the
Sample Creation Procedure. Then divide the
set into pairs of |ψd,N

k1
〉 and |ψd,N

k2
〉 satisfying

k1 − k2 ≤ 2m2−m+1. The set L1 now consists
of the states of the form |ψd,N

k1−k2
〉. We re-

peat this m times. At the jth step, the set
Lj contains the states of the form |ψd,N

k 〉 with

0 ≤ k < 2m2−mj+1. Now the states |ψd,N
k1

〉 and
|ψd,N

k2
〉 in Lj satisfying k1 − k2 ≤ 2m2−m(j+1)+1

are coupled to form the states in the set Lj+1.
Then, each state in the final set Lm must be ei-
ther |ψd,N

0 〉 or |ψd,N
1 〉, and it can be proved that,

with high probability, Lm contains at least one
sample of |ψd,N

1 〉.
Now, for 1 ≤ q ≤ logN , define the function

f (q) : Z2 × ZN → X as f (q)(s, t) = f(2qs, t).
Using the Sample Creation Procedure with the
integerN and the black box that computes f (q),
we obtain samples of the form |ψ2qd,N

k 〉. Then,
using the method described above yields the
state |ψd,N

2q 〉 with high probability. From the
collection of the states {|ψd,N

2q 〉}�log N�
q=0 we can

recover d with high probability by applying the
phase estimation algorithm.

Theorem 10 There is a quantum algo-
rithm that solves the hidden subgroup problem
for the dihedral groupDN with high probability
in 2O(

√
log N) time.

4.2 Polynomial-Space Algorithm
Kuperberg’s algorithm described in the last

subsection needs to store a subexponential
number of samples to create the final set with
sufficiently high success probability. Regev 22)

modified the algorithm so that it runs only in
polynomial space.

The idea is to work online, i.e., not to wait
to proceed the step for creating the states
in the set Lj+1 until having obtained all the
states in the set Lj , but to create the states
in the set Lj+1 as soon as possible, keeping
only a polynomial number of samples at a time.
With the pairing method of the original Ku-
perberg’s algorithm, however, it is not possible
to make it online with a good success proba-
bility. Regev 22) showed another way of pair-
ing that can be performed in an online man-
ner. The running time of Regev’s algorithm
is only slightly slower than Kuperberg’s algo-
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rithm, namely 2O(
√

log N log log N).
Theorem 11 There is a quantum algo-

rithm that solves the hidden subgroup problem
for the dihedral groupDN with high probability
in 2O(

√
log N log log N) time and O(logN) space.

5. Optimal Measurement for DHSP

In the previous section, we have seen that
the DHSP can be solved in polynomial space
using a subexponential number of samples cre-
ated by the Sample Creation Procedure. More
precisely, we have seen that the DCP can be
solved in polynomial space using a subexponen-
tial number of samples from the black box. On
the other hand, Ettinger and Høyer 5) proved
that a linear number of such samples are suffi-
cient to solve the DCP, although their method
requires a post-processing of exponential time.
Now a natural question is if there is an algo-
rithm that solves the DCP using a sublinear
number of such samples.

Very recently Bacon, Childs, and van Dam 2)

negatively answered this question by using
the framework of quantum information the-
ory. That is, no quantum algorithm can solve
the DCP with high probability with only us-
ing sublinear number of samples from the black
box. Actually, they succeeded in characteriz-
ing the optimal measurement for the DCP, that
is, the joint measurement of the samples from
the black box that solves the problem with the
highest probability, assuming that the DCP in-
stances are uniformly distributed.

Consider the mixed state

ρd =
1
N

N−1∑

k=0

(|ψd,N
k 〉〈ψd,N

k | ⊗ |k〉〈k|),

which is the state just after Step 3 of the Sample
Creation Procedure, and let A =

∑N−1
j=0 ρ⊗m

j .
Then the argument using quantum informa-
tion theory shows that the optimal positive
operator-valued measure (POVM) identifying
the solution d from ρ⊗m

d is the so-called “pretty
good measurement” 10) {Ej}N−1

j=0 where
Ej = A− 1

2 ρ⊗m
j A− 1

2

corresponds to the decision that the solution
would be j.

It turns out that the probability that this
measurement correctly answers the solution d is
exponentially small if m

log N ≤ c for any constant
c < 1. Thus we have the following theorem.

Theorem 12 No quantum algorithm can
solve the DCP with high probability with only

using sublinear number of samples from the
black box.

Moore and Russell 16) extended this result
and proved that the pretty good measurement
defined above is optimal for the HSP for any
group G if G and its hidden subgroup H forms
a so-called Gel’fand pair.

6. Efficiently Solvable Non-Abelian
HSPs

The dihedral group is an instance of the
semidirect product groups. Although no ef-
ficient quantum algorithm is known for the
DHSP, there are some semidirect product
groups for which the HSP is efficiently solvable.
Actually, the notion of semidirect products is
not uniquely defined, and the one used in the
definition of the dihedral group is only one ex-
ample of them. For instance, Friedl, Ivanyos,
Magniez, Santha, and Sen 7) gave a quantum
algorithm for the HSP for the group Z

n
pr � Z2,

for a definition of the semi-direct product that
generalizes the product of the dihedral group,
that runs in time polynomial in n when p is
an odd prime. More general definition of the
semidirect product groups is as follows.

Definition 13 Given two integers n and q
and a homomorphism φ from Zn to the group
of automorphisms of Zq, the semidirect prod-
uct group Zn �φ Zq is the group generated
by x and y satisfying xn = yq = 1Zn�φZq

and
yx = xφ(1)(1)y.

However, for arbitrary n and q, the unique-
ness of the homomorphism φ is not guaranteed.
In the case of n a power of a prime and q a
prime, Inui and Le Gall 11) classified the semidi-
rect groups into five classes.

Theorem 14 The semi-direct product
groups Zpr �φ Zq for p and q primes and r an
integer are exactly the groups of the following
five classes.
Class 1. The direct product groups Zpr × Zq.
Class 2. The q-hedral groups defined for p, q,

and r such that r ≥ 1 and q|(p− 1), which
are groups G generated by x and y satis-
fying xpr

= yq = 1G and yx = xγy with γ
verifying γq ≡ 1 mod p.

Class 3. The dihedral groups D2r for r > 2,
which are groups generated by x and y sat-
isfying x2r

= y2 = 1D2r and yx = x2r−1y.
Class 4. The quasi-dihedral groups quasi-D2r

for r > 2, which are groups generated by x
and y satisfying x2r

= y2 = 1quasi-D2r and
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yx = x2r−1−1y.
Class 5. The groups Pp,r for r ≥ 2, which

are groups generated by x and y satisfying
xpr

= yp = 1Pp,r
and yx = xpr−1+1y.

Thus there are three non-isomorphic groups
Z2r �φ Z2, depending on the definition of φ:
D2r , quasi-D2r , and P2,r. It is usual to use
the symbol � when there is no ambiguity on
which definition of φ we use.

Moore, Rockmore, Russell, and Schulman 15)

considered the q-hedral groups in Class 2 with
r = 1 and presented a polynomial-time quan-
tum algorithm that solves the HSPs for them
when q is sufficiently large with respect to
p. Their algorithm uses the so-called strong
Fourier sampling, which requires Fourier trans-
formations over non-Abelian groups. By using
a good basis for the representations of Zp � Zq,
it is possible to reconstruct the hidden subgroup
in polynomial time. More precisely, they ob-
tained the following result.

Theorem 15 For any primes p and q such
that q|(p− 1) and q = Ω

(
p

logc p

)
for some con-

stant c, there exists a quantum algorithm that
solves the HSP over the group Zp � Zq in poly-
nomial time.

Inui and Le Gall 11) studied the HSP for the
groups Pp,r of Class 5. The main property of
these groups is that the number of subgroups is
relatively small: they are of the form 〈xpj 〉 for
0 ≤ j ≤ r, 〈xpj

, y〉 for 0 ≤ j ≤ r, or 〈xtpj

y〉 for
0 ≤ j < r and 1 ≤ t < p. However, checking all
the possibilities requires Ω(p+ r) time, which
is exponentially large compared to the input
size when, for example, r is constant. Inui and
Le Gall succeeded in designing a polynomial-
time quantum algorithm that solves the HSPs
for such groups by using the algebraic structure
of the subgroups. More precisely, they obtained
the following result.

Theorem 16 There exists a quantum algo-
rithm that solves the HSP over the group Pp,r

in time O(log r + log2 p).

7. Concluding Remarks

This paper reviewed almost all the results
known about the dihedral hidden subgroup
problem. In spite of many studies for nearly
a decade, the central question of whether the
DHSP has efficient quantum algorithms still re-
mains open. It would not be a kind of “unex-
pected”, however, even if the DHSP were effi-
ciently solvable. Compared to the HSP for the

symmetric group for which a number of nega-
tive observations 12),17),18) are known, it seems
that most of the results known about the DHSP
so far are positive ones. Thus we may hope the
DHSP leads to another triumph of quantum
computing. On the other hand, the hardness
of the DHSP may be useful to give stronger se-
curity proofs for some lattice-based cryptosys-
tems. Hence, even negative results may not
be so disappointing in the case of the DHSP.
The studies on the HSPs appear to be en-
tering another ripening period in these years.
The authors hope significant progresses will be
achieved on the DHSP and its related problems
in the not too distant future.
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