
Vol. 46 No. 10 IPSJ Journal Oct. 2005

Invited Paper

Quantum Computation with Supplementary Information

Harumichi Nishimura†

The notion of advised computation was introduced by Karp and Lipton to represent non-
uniform complexity in terms of Turing machines. Since then, advised computation has been
one of the basic concepts of computational complexity. Recently, the research of advised
computation has been originated also in the field of quantum computing. This paper reviews
the study of advised quantum computation.

1. Introduction

Turing machines and Boolean circuits are
used mostly as computing models to study
the uniform and non-uniform complexity, re-
spectively. We can take two approaches to
compare between these two computing models.
One approach is to restrict how to construct
Boolean circuits, which means that the fam-
ilies of Boolean circuits should satisfy a uni-
form condition. The other is to supplement
Turing machines with non-uniform information,
called advice. As the latter approach, Karp
and Lipton 17) initiated the notion of complex-
ity classes with advice in 1980. Since then, the
study of advised computation has been elabo-
rated to understand the power and the limit
of non-uniform computation, and the notion of
advice complexity classes has appeared in many
phrases of computational complexity.

After Shor’s excellent quantum algorithm for
the factoring problem, a number of complex-
ity notions were imported from classical com-
plexity theory to quantum computing; non-
deterministic computation, finite automata, in-
teractive proof systems, and so on. The no-
tion of advice is not an exception for this trend.
The research of advised quantum computation
was started just a few years ago. In quantum
computation, we have two choices as the sup-
plementary information that is given to quan-
tum Turing machines; classical advice (binary
strings) and quantum advice (quantum states).
While classical advice is suitable to character-
ize polynomial-size quantum circuits, quantum
advice is considered to be a natural quantum
analogue of the non-uniform measure of compu-
tation. The results obtained so far on advised
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quantum computation are not yet so many,
but the author believes that hereafter the the-
ory of advised quantum computation should be
furthermore developed from the importance of
non-uniform computation in complexity theory.
In this belief, this article surveys the research
of quantum computation with advice.

This article is organized as follows. In Sec-
tion 2, we give uniform complexity classes that
appear in this article. In Section 3 we introduce
quantum advice complexity classes and com-
pare them and their basic results with classical
advice classes. In Section 4, we discuss the am-
plitudes of quantum Turing machines from the
viewpoint of non-uniform quantum complexity
classes. Some relation of advised computation
to one-way communication complexity is seen in
Section 5. In Section 6 we consider a separation
between the two quantum complexity classes
with polynomial classical advice and with poly-
nomial quantum advice. In Section 7 we review
quantum complexity classes with short advice.
Comparisons among uniform complexity classes
and quantum advice classes are reviewed in Sec-
tion 8. Finally, we look at the future work with
several open problems.

2. Uniform Complexity Classes

To classify the power of uniform machines,
a multiplicity of complexity classes for recog-
nizing sets (that is, computing Boolean func-
tions) have been introduced in complexity the-
ory. They are often called uniform complexity
classes compared to complexity classes with ad-
vice, called non-uniform complexity classes. In
what follows, let Σ = {0, 1}. Also, we assume
the familiarity with basics of structural com-
plexity 13) and quantum computing 14),22).

First, let us recall several classical uniform
complexity classes. Let P (NP, resp.) denote
the class of sets recognized by polynomial-time
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deterministic (nondeterministic, resp.) Turing
machines. Let BPP be the class of sets recog-
nized with bounded error (say, with probability
≥ 2/3) by polynomial-time probabilistic Turing
machines. Let PP be the class of sets recognized
with unbounded error (that is, with probability
> 1/2) by polynomial-time probabilistic Tur-
ing machines. Let PSPACE (ESPACE, resp.)
be the class of sets recognized by deterministic
Turing machines in polynomial space (in space
2O(n), resp.).

The quantum Turing machine, an analogue
of the probabilistic Turing machine, is a math-
ematical model of the quantum computer. Each
transition of a quantum Turing machine M is
determined by a complex-valued finite transi-
tion function δ as follows: if the inner state
of M is p and the tape head of M scans σ,
then the inner state becomes q, and the tape
head changes σ to τ and moves to direction
d with (probability) amplitude δ(p, σ, q, τ, d).
Let BQP 7) denote the class of sets recognized
with bounded error by polynomial-time quan-
tum Turing machines. (In fact, the transition
amplitudes taken by quantum Turing machines
are restricted to a subset of complex numbers,
as discussed in Section 4). Since quantum Tur-
ing machines can simulate probabilistic Turing
machines, BPP is included in BQP 7). More-
over, the relationships among the above uni-
form complexity classes are given as follows.
Fact 2.1 The following relations hold 3),7),13).

1) P ⊆ BPP ⊆ BQP ⊆ PP ⊆ PSPACE ⊆
ESPACE.

2) P ⊆ NP ⊆ PP.

3. Quantum Advice Complexity
Classes

Now we introduce advice complexity classes.
First, we recall a general advice complexity
class by Karp and Lipton 17), which is defined
based on the uniform complexity class.
Definition 3.1 Let C be a class of sets, and
let f be a function from N to N. A set A is in
the Karp-Lipton advice class C/f if there exist
a set B ∈ C and a function h from N to Σ∗
such that A = {x | 〈x, h(|x|)〉 ∈ B} provided
that |h(n)| = f(n) for all n ∈ N. Let C/F =⋃

f∈F C/f for any set of functions F from N to
N.

For the class P and the set poly of poly-
nomially bounded functions, we obtain the
most representative advice class P/poly. (A
function f from N to N is called polynomi-

ally bounded if there exists a polynomial p
such that f(n) ≤ p(n) for any n ∈ N). It
is well-known that P/poly exactly character-
izes the class of sets recognized by polynomial-
size Boolean circuits 17). According to Defini-
tion 3.1, we can also consider a quantum ad-
vice class BQP/poly. However, it is not known
whether BQP/poly characterizes the class of
sets recognized by polynomial-size quantum cir-
cuits. In fact, it can be easily seen that all sets
in BQP/poly are recognized by polynomial-size
quantum circuits similar to the classical case
while the converse fails to show by the follow-
ing method of the classical case:

To simulate a polynomial-size circuit by a de-
terministic Turing machine, the code of the cir-
cuit is given as advice, and then the set rec-
ognized by the circuit can be also recognized by
the deterministic Turing machine in polynomial
time.

The reason why this method fails for
BQP/poly is that polynomial-size quantum cir-
cuits do not always satisfy the bounded-error
condition. In addition, Definition 3.1 is not
meant for extending advice strings h(n) to
quantum states without considering the com-
plexity class of quantum states. Thus, at
present, the definition of the quantum com-
plexity class with advice is given based on the
bounded-error quantum computer 1),24).
Definition 3.2 Let f be any function from N
to N and let F be any set of functions mapping
from N to N.

1. A set A is in BQP/∗f if there exist a
polynomial-time quantum Turing machine M
and a function h from N to Σ∗ such that M
on input (x, h(|x|)) produces A(x) with prob-
ability at least 2/3 for every x ∈ Σ∗, where
|h(n)| = f(n). Let BQP/∗F =

⋃
f∈F BQP/∗f .

2. A set A is in BQP/∗Qf if there exist a
polynomial-time quantum Turing machine M
and a function h from N to the set of (pure)
quantum states such that M on input (x, h(|x|))
produces A(x) with probability at least 2/3 for
every x ∈ Σ∗, where h(n) is an f(n)-qubit state.
Let BQP/∗QF =

⋃
f∈F BQP/∗Qf .

Under Definition 3.2, we can exactly char-
acterize polynomial-size quantum circuits in
terms of the quantum advice complexity class
BQP/∗poly☆.
Proposition 3.3 A set A is in BQP/∗poly if

☆ In Ref. 1), BQP/∗poly and BQP/∗Qpoly are respec-
tively denoted by BQP/poly and BQP/qpoly.
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and only if A can be recognized with probabil-
ity at least 2/3 by a polynomial-size quantum
circuit family.

The class P/poly has another characteriza-
tion to clarify the relationship between obtain-
ing non-uniform information from polynomi-
ally long advices and obtaining it from ora-
cles. Let TALLY be the collection of subsets
of {0n | n ∈ N}. Then, P/poly = PTALLY.
Similarly, we can see that BQP/∗poly coincides
with BQPTALLY.
Remark 3.4 One might consider that the
possibility of a gap between two definitions such
as Definitions 3.1 and 3.2 will occur also for the
bounded-error class BPP. However, we can see
that BPP/∗poly coincides with BPP/poly us-
ing the proof technique to show BPP ⊆ P/poly
(say, see the textbook by Du and Ko 13)). By
contrast, it is open whether BQP is included in
P/poly (and that inclusion seems not to hold).
Remark 3.5 In Definition 3.1, we take pure
quantum states as quantum advice, not mixed
quantum states, the fully general notion of
quantum states since we follow the style of the
classical advice; fixed strings, not randomly se-
lected strings, are taken as classical advice. By
the broadening of the spirit of advice, we could
take randomly selected advice or mixed states
as advice, which will be shortly mentioned in
the last section.

4. Non-uniformity of Amplitudes

What is the complexity class BQP, which
is considered to be the most appropriate class
for representing the computational power of
quantum computers? Roughly speaking, this
class is the collection of sets that can be recog-
nized by polynomial-time bounded-error quan-
tum Turing machines. However, Adleman, et
al. 3) showed that, if the transition amplitudes
of quantum Turing machines are any complex
numbers, quantum Turing machines can rec-
ognize undecidable sets with bounded-error in
polynomial time. Thus, rigorously, the defi-
nition of BQP 7) is given using quantum Tur-
ing machines with amplitudes from the set of
polynomial-time computable complex numbers
(that is, complex numbers whose real and imag-
inary parts are approximated within 2−n in
time polynomial in n). By contrast, the class
of sets recognized by polynomial-time bounded-
error quantum Turing machines whose ampli-
tudes are any complex numbers is often called

BQPC. According to this line, the uniform con-
dition of quantum circuit families is defined as
follows 23): (i) all circuits are constructed using
elementary gates whose matrix representations
have polynomial-time computable components;
and (ii) the construction of each circuit is com-
puted in time polynomial in the length of the in-
put. Using Yao’s simulation of quantum Turing
machines by quantum circuits 33), it is shown
that BQP equals the class of sets recognized
with bounded error by uniform quantum circuit
families 23). On the contrary, to represent the
class BQPC in terms of quantum circuits, we
must consider quantum circuit families that do
not satisfy uniform condition (i). Thus, BQPC

can be regarded as a kind of non-uniform quan-
tum complexity classes. We now bound the
amount of non-uniform information obtained
by the sets in BQPC. Here, log denotes the
set of functions f satisfying |f(n)| = O(log n).
Proposition 4.1 BQPC � BQP/∗ log.
Remark 4.2 In Ref. 24) a bit worse upper
bound was shown. However, almost the same
proof leads to Proposition 4.1 by using the
approximation scheme of Harrow et al. 15) for
a quantum state given as advice, instead of
Solovay-Kitaev theorem 18),22) used in Ref. 24).

Proposition 4.1 implies that BQPC/∗poly =
BQP/∗poly and BQPC/∗Qpoly=BQP/∗Qpoly.
That is, the complexity classes BQP/∗poly and
BQP/∗Qpoly are stable for the change of transi-
tion amplitudes taken by underlying quantum
Turing machines, like a quantum analogue of
NP, the class NQP 30).

By contrast, we can give a lower bound of
non-uniformity of BQPC. Ko 19) introduced an-
other notion of logarithmic advice class Full-
P/ log ☆ where an advice string h(n) can be
used to recognize a subset L ∩

(⋃
m≤n Σm

)

of a set L while it is only available to recog-
nize L ∩ Σn in case of P/ log. The class Full-
P/ log has a nice structure that is closed un-
der polynomial-time Turing reduction, differ-
ent from P/ log. Also, Full-P/ log is charac-
terized as Full-P/ log = PTALLY2 by a rela-
tivized class 5) like P/poly = PTALLY. Here,
TALLY2 denotes the collection of all subsets
of {02n | n ∈ N}. Similarly, we can define
another logarithmic quantum advice class Full-
BQP/∗ log and see that it equals BQPTALLY2.
Then, the proof that BQPC includes undecid-

☆ Ko 19) originally called it Strong-P/poly.
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able sets is available for embedding the infor-
mation on any set in TALLY2 into the ampli-
tudes of quantum Turing machines. Combining
Proposition 4.1 with this fact, we obtain the fol-
lowing conclusion that figures out the power of
BQPC.
Theorem 4.3 The following relations hold.

1) Full-BQP/∗ log ⊆ BQPC � BQP/∗ log.
2) BQPTALLY2 ⊆ BQPC � BQPTALLY.

5. Relation to One-way Communica-
tion Complexity

Since Yao introduced the notion of commu-
nication complexity in classical 32) as well as
quantum setting 33), it has been intensively
studied and applied to various topics in com-
puter science 21). As one of such applications,
we look at the connection between one-way
communication complexity and advised compu-
tation.

Consider the following cooperative work be-
tween the two parties, Alice and Bob. Alice
has a string x and Bob has another string y.
The aim for Alice is to let Bob compute the
value f(x, y) for a function f by sending a mes-
sage that depends on x only once. We assume
that Bob as well as Alice knows the function
f and the time in which Bob computes f(x, y)
is unlimited. Hence, if Bob knows x then he
can compute f(x, y) correctly. Alice wants to
shorten her message as much as she can (since,
for instance, it is expensive for her to send a
long message). In this setting, the minimal
length of Alice’s message to complete the co-
operative work is called the one-way communi-
cation complexity of f . We can also consider
the quantum one-way communication complex-
ity if Alice sends a quantum message to Bob.

Now assume that Bob is a polynomial-time
Turing machine M , and wants to recognize a
set L. If L is a difficult set, then it is tough
that Bob computes L(x) for any given string
x of length n. In the worst case, Bob can-
not compute L(x) for almost all x. Suppose
that Alice completely knows L and n, but she
does not know which string in Σn is Bob’s in-
put. We can regard this situation as the follow-
ing cooperative work: Alice’s aim is to let Bob
compute the value INDEX(Ln, x), where Ln

is the 2n-bit characteristic string of L∩Σn and
INDEX is the Boolean function from Σ2n×Σn

that maps (Ln, x) to the Bin(x)-th bit of Ln.
(Here, Bin(x) is the lexicographic order of x in

Σn). Considering Alice’s message as advice, we
can regard advised computation as a variant of
the one-way communication complexity model.
This view is often available to show the limit
of the advised computation that will appear in
the later sections.

6. BQP/∗Qpoly �= BQP/∗poly?

Is quantum advice more powerful than clas-
sical advice? For many ones that have inter-
est in advised quantum computation, the most
natural separation corresponding to this ques-
tion would be the separation of BQP/∗poly
from BQP/∗Qpoly. To try to solve this prob-
lem, Aaronson succeeded to bound from above
BQP/∗Qpoly by the class PP with polynomial
classical advice using a clever algorithm.
Theorem 6.1 BQP/∗Qpoly ⊆ PP/poly 1).

In fact, he gave the following result using
a simulation of quantum messages by classical
messages in the setting of one-way communica-
tion complexity:

Assume that to let Bob compute a Boolean
function f from Σn×Σm Alice is enough to send
Bob a quantum message of length ln. Then,
Alice can let Bob compute f sending a classical
message of length O(mln log ln).

In this simulation method, Bob is required
to judge whether the original protocol on a
quantum message produces 1 with probabil-
ity > 1/2, which can be implemented by an
unbounded-error probabilistic Turing machine.
Therefore, the simulation method is also used
to the proof of Theorem 6.1 by the connec-
tion between advice complexity and one-way
communication complexity as follows. Assume
L ∈ BQP/∗Qpoly, and let Ln = L ∩ Σn. Then,
Ln is computed by a bounded-error quantum
Turing machine with quantum advice of length
p(n) where p is a polynomial. By incorporating
the proof technique of BQP ⊆ PP 3) into the
above simulation method, Ln is computed by
a polynomial-time probabilistic Turing machine
with classical advice of length O(np(n) log p(n))
with probability > 1/2.

Unfortunately, Theorem 6.1 means that
the separation between BQP/∗Qpoly and
BQP/∗poly is more difficult than a famous
open problem that separates P from the
class PSPACE. In fact, by Theorem 6.1,
BQP/∗poly �= BQP/∗Qpoly implies P/poly �=
PP/poly. It leads to P �= PSPACE since other-
wise P = PP by Fact 2.1 and hence P/poly =
PP/poly. Thus, it cannot be expected to sep-
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arate between BQP/∗Qpoly and BQP/∗poly
(and even P/poly). It is pointed out 1) that
the group membership problem by Watrous 28)

is considered to be a good candidate that sepa-
rates between BQP/∗Qpoly and BQP/∗poly in
a relativized world. Nevertheless, a relativized
separation between these classes still remains
open.

7. Unrelativized Separation between
Classical Advice and Quantum Ad-
vice

In the previous section, we have seen that
BQP/∗poly and BQP/∗Qpoly are extremely
difficult to separate. However, we can show
some unrelativized separation between quan-
tum complexity classes with short classical ad-
vice and quantum advice. For instance, we
may ask whether BQP/∗ log is different from
BQP/∗Q log. This answer is much easily ob-
tained compared to the separation between
polynomial quantum advice and polynomial
classical advice.
Theorem 7.1 Let f be a polynomially bounded
function. Then, BQP/∗Q(O(f(n) log n)) �
BQP/∗f(n)n 24).

The above theorem is obtained using a quan-
tum fingerprint 9) (in fact, a quantum finger-
print by de Wolf 29)). Consider a “sparse” set
Ln that cannot be recognized by polynomial-
time quantum Turing machines with any clas-
sical advice of length f(n)n, which is guar-
anteed to exist by a simple counting argu-
ment. By contrast, a quantum fingerprint
|φ(Ln)〉 of length O(f(n) log n) enables us to
“encode” all the elements of Ln in the fol-
lowing sense: given |φ(Ln)〉 as supplemen-
tary information, we can decide if any given
input belongs to Ln in quantum polynomial
time. Theorem 7.1 clearly separates be-
tween BQP/∗ log and BQP/∗Q log as well as
between BQP/∗polylog and BQP/∗Qpolylog,
where polylog is the class of functions f such
that f(n) ≤ p(log n) for some polynomial p.

On the contrary, we can also show that any
quantum complexity class with quantum advice
of length l cannot include a quantum complex-
ity class with classical advice whose length is
within a constant factor of l.
Theorem 7.2 For any function f satisfying
f(n) ≤ 2n, P/f(n) � BQP/∗Q(0.08f(n)) 24).

Theorem 7.2 implies that BQP/∗Q log
is a proper subset of BQP/∗poly since

BQP/∗Q log ⊆ BQP/∗poly can be easily seen
by keeping the code of a quantum circuit that
generates a quantum state of logarithmic length
as polynomial classical advice.

The proof of Theorem 7.2 is obtained again
from the connection between advised compu-
tation and one-way communication complexity.
That is, suppose that a polynomial-time quan-
tum Turing machine M recognizes any sub-
set Ln of Σn with the help of quantum advice
|φ(Ln)〉 of length m, where Ln(x) = 0 if the
lexicographical order of x in Σn is larger than
f(n). This is interpreted as follows in the one-
way communication setting:

Alice sends the m-qubit state |φ(Ln)〉 to Bob,
who can compute any given bit of Ln (in fact, of
the first f(n) bits in Ln) with probability ≥ 2/3.

The minimal length of such an m to complete
this cooperative work is known as quantum ran-
dom access coding 4).
Theorem 7.3 (quantum random access cod-
ing 4)) An (n, m, p)-quantum random access
coding is a function F mapping n-bit strings
to m-qubit states satisfying that: for every i ∈
{1, . . . , n} there is a measurement Oi with out-
come 0 or 1 such that the outcome of Oi on
input F (x) is the ith bit of x with at least p for
all n-bit strings x. Then, m ≥ (1 − H(p))n,
where H(p) = −p log p − (1 − p) log(1 − p).

In our case, Alice’s coding is an (f(n),m,2/3)-
quantum random access coding. Hence, there
is a set Ln such that M cannot recognize with
the help of quantum advice of length at most
0.08f(n) (which is ≤ (1−H(2/3))f(n)). On the
contrary, advice of length f(n) clearly allows a
deterministic Turing machine to recognize Ln.
This argument almost completes the proof of
Theorem 7.2.

Now we summarize relationships among loga-
rithmic and polynomial advice classes of quan-
tum Turing machines.
Corollary 7.4 BQP/∗ log � BQP/∗Q log �
BQP/∗poly ⊆ BQP/∗Qpoly.

8. Separating Uniform Complexity
Classes from Non-uniform Com-
plexity Classes

In classical complexity theory, which uniform
complexity classes are included in P/poly has
been investigated at length to unearth the com-
putational limit of polynomial-size circuits. In
this investigation, it is shown that as a rela-
tivized result there exists an oracle such that
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the class NP is not included in P/poly, and
as an unrelativized result the class ESPACE ☆

is not included in P/poly. Similarly, we can
ask which uniform complexity classes are in-
cluded in BQP/∗poly or BQP/∗Qpoly. As a
relativized result, the following separation is
shown.
Theorem 8.1 There is a set A relative to
which NPA � BQPA/∗Qpoly 1).

By contrast, for the unrelativized case, only a
uniform complexity class much higher than NP
has been shown to separate from advice com-
plexity class similar to the classical case. Ear-
lier, combining quantum random access coding
with a diagonalization argument, a huge uni-
form complexity class EESPACE (the class of
sets recognized by a deterministic Turing ma-
chine in space 22O(n)

) was shown to be outside of
BQP/∗Qpoly 24). However, Theorem 6.1, which
was proven after the earlier result, implies that
a better uniform complexity class ESPACE is
not included in BQP/∗Qpoly.
Corollary 8.2 ESPACE � BQP/∗Qpoly.
Proof. By Theorem 6.1, BQP/∗Qpoly ⊆
PP/poly while ESPACE � PP/poly can be
shown similar to the proof of ESPACE �
P/poly 16). This completes the proof. �

Finally, we report that the adaptive query
to an oracle is more powerful than the non-
adaptive query to the oracle with polynomial
advice. The nonadaptive query to an oracle
A roughly means that a query to A does not
depend on any query made at previous steps.
In quantum case, the precise definition of the
nonadaptive query is not so simple rather than
the classical case because of quantum inter-
ference among computation paths. (For in-
stance, see Yamakami 31) for the definition of
the parallel query, a pattern of the nonadap-
tive query). Thus, we herewith take a simple
definition for the nonadaptive query, called a
truth-table query, as follows.
Definition 8.3 We say that a quantum Tur-
ing machine M queries to an oracle A in the
truth-table manner if (i) M produces a super-
position

∑
�x α�x|�x〉 of lists of query words in

the first register without querying A, (ii) quan-
tumly receives the answers A(x1), . . . , A(xm)
for each list �x = (x1, . . . , xm) from the oracle in
the second register, and (iii) completes the com-
putation without querying A. Let BQPA

tt/
∗poly

☆ It is also shown that the exponential-time Merlin-
Arthur class MAEXP is outside of P/poly 10).

be the class of sets recognized by polynomial-
time quantum Turing machines with polyno-
mial advice that make queries to the oracle A
in the truth-table manner.

Although the nonadaptive query is restric-
tive, a number of quantum algorithms such as
Simon’s algorithm 27) indicate that the quan-
tum nonadaptive query is still useful compared
to the classical adaptive query. By contrast,
Yamakami 31) showed that there exists a rel-
ativized world that there is a problem that
can be solved in deterministic polynomial time,
but cannot be solved by any polynomial-time
quantum Turing machine that makes nonadap-
tive queries. This result was extended to the
case that polynomial-time quantum Turing ma-
chines have polynomial advice.
Theorem 8.4 There exists a set A relative to
which PA � BQPA

tt/
∗poly 25).

9. Future Work

In this article, we have reviewed the study of
advised quantum computation that is just get-
ting started recently. The quantum complex-
ity class with classical advice exactly character-
izes polynomial-size quantum circuits, and en-
ables us to remove non-uniform information in
transition amplitudes into classical advice. The
quantum complexity class with quantum ad-
vice is another candidate representing a broader
quantum extension of non-uniform computa-
tion, but has the computational limit based
on comparisons with the quantum complexity
class with classical advice and the uniform com-
plexity class. Moreover, the study of quan-
tum Turing machines with quantum advice is
deeply related to quantum one-way commu-
nication complexity. Recently, Bar-Yossef, et
al. 6) showed some problem (but that is not a
function) that quantum one-way communica-
tion complexity is exponentially smaller than
classical one. As long as the author knows,
any connection between this problem and the
BQP/∗Qpoly �= BQP/∗poly problem has not
been shown. It would be interesting to exam-
ine which problem of one-way communication
complexity has a connection to an oracle that
separates BQP/∗poly from BQP/∗Qpoly. We
left a number of open problems other than the
BQP/∗poly �= BQP/∗Qpoly problem.

( 1 ) Do we give a uniform complexity class
lower than the class NP that is out-
side of BQP/∗Qpoly in a relativized
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world? (In classical case, Buhrman and
Torenvliet 11) constructed an oracle that
NP∩co-NP is outside of P/poly).

( 2 ) As the related work to the NP � P/poly
problem, the unlikely collapse of com-
plexity classes under the assumption
NP ⊆ P/poly has been improved 8),12),20)

since the Karp-Lipton’s result 17) (the
polynomial hierarchy collapses the sec-
ond level if NP is included in P/poly).
How is some collapse of complexity
classes under the assumption that NP
is included in BQP/∗Qpoly? Recently,
Aaronson 2) showed that the counting hi-
erarchy collapses the first level if PP is
included in BQP/∗Qpoly.

( 3 ) If classical advice is randomly selected,
logarithmic random advice enables us to
recognize the set used in the proof that
separates BQP/∗ log from BQP/∗Q log.
Is a quantum Turing machine with log-
arithmic quantum advice really power-
ful than a quantum Turing machine with
logarithmic randomly selected advice?
On the contrary, we know what hap-
pens if quantum advice is randomly se-
lected, that is, a mixed quantum state
is allowed as quantum advice. The class
BQP/∗Q log does not change since a
mixed state of m qubits can be easily cre-
ated from a pure state of only 2m qubits
by the purification of mixed states 22).

( 4 ) For quantum complexity classes other
than BQP, we can define their advice
complexity classes similar to BQP/∗poly
or BQP/∗Qpoly. It would be interest-
ing to investigate the power of such ad-
vice complexity classes. Recently, Raz 26)

showed that the advice complexity class
QIP(2)/∗Qpoly of the class QIP(2), the
class of sets having two-message quan-
tum interactive proof systems, includes
all languages. Also, it is easily seen that
the advice complexity class NQP/∗Qpoly
of the class NQP includes all languages.
How is the power of QMA/∗Qpoly, the
advice class of quantum Merlin-Arthur
class QMA (that is, the class of sets
having one-message quantum interactive
proof systems)?
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Kannan, S. and Tamon, C.: Oracles and queries
that are sufficient for exact learning, J.Comput.
Syst. Sci., Vol.52, pp.421–433 (1996).

9) Buhrman, H., Cleve, R., Watrous, J. and de
Wolf, R.: Quantum fingerprinting, Phys. Rev.
Lett., Vol.87, 167902 (Sep. 2001).

10) Buhrman, H., Fortnow, L. and Thierauf,
T.: Nonrelativizing separations. Proc. 13th
IEEE Conference on Computational Complex-
ity, IEEE, New York, pp.8–12 (1998).

11) Buhrman, H. and Torenvliet, L.: Compli-
cated complementations, Proc.14th IEEE Con-
ference on Computational Complexity, IEEE,
New York, pp.227–236 (1999).

12) Cai, J-Y.: Sp
2 ⊆ ZPPNP, Proc. 42nd Annual

IEEE Symposium on Foundations of Computer
Science, IEEE, New York, pp.620–629 (2001).

13) Du, D. and Ko, K.: Theory of Computational
Complexity, John Wiley & Sons, Inc., New
York (2000).

14) Gruska, J.: Quantum Computing, McGraw-
Hill, London (1999).

15) Harrow, A.W., Recht, B. and Chuang, I.L.:
Efficient discrete approximations of quantum
gates, J. Math. Phys., Vol.43, pp.4445–4451
(2002).

16) Kannan, R.: Circuit-size lower bounds and
non-reducibility to sparse sets, Inform.Control,
Vol.55, pp.40–56 (1982).

17) Karp, R.M. and Lipton, R.: Some connections
between nonuniform and uniform complexity
classes, Proc. 12th ACM Symposium on Theory



Vol. 46 No. 10 Quantum Computation with Supplementary Information 2399

of Computing, ACM, New York, pp.302–309
(1980). An extended version appeared as: Tur-
ing machines that take advice, L’Enseignement
Mathematique, Vol.28, pp.191–209 (1982).

18) Kitaev, A.: Quantum computations: algo-
rithms and error correction, Russian Math.Sur-
veys, Vol.52, pp.1191–1249 (1997).

19) Ko, K.: On helping by robust oracle machines,
Theoret.Comput. Sci., Vol.52, pp.15–36 (1987).
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