
Vol. 46 No. 12 IPSJ Journal Dec. 2005

Regular Paper

New Booth Modulo m Multipliers with Signed-Digit Number Arithmetic

Shuangching Chen† and Shugang Wei†

New modulo m multipliers with a radix-two signed-digit (SD) number arithmetic is pre-
sented by using a modified Booth recoding method. To implement a modulo m multiplication,
we usually generate modulo m partial products, then perform modulo m sum of them. In this
paper, a new Booth recoding method is proposed to convert a radix-two SD number into a
recoded SD (RSD) number in parallel. In the RSD number representation, there are no (1, 1)
and (−1,−1) at any two-digit position. Thus, by using the RSD converted, the modulo m
partial products can be cut from n into n/2 for an n×n modulo m multiplication. Parallel and
serial modulo m multipliers have been designed by using the SD number arithmetic and the
proposed Booth recoding. Compared to the former work, the area for VLSI implementation
of the parallel modulo m multiplier is reduced to 80% from the original design, and the speed
performance of the serial multiplier is improved up to twice by using the Booth recoding. The
implementation method of the proposed Booth modulo m multipliers has been verified by a
gate level simulation.

1. Introduction

A Residue Number System (RNS) features
highly parallel carry-free addition and multi-
plication and borrow-free subtraction between
residue digits 1),2). Various methods of applica-
tions of RNS in digital signal processing have
been presented 3). To compute a remainder, it
is usually to use read-only memories for residue
arithmetic. Some modulo m multipliers based
on the use of lookup tables were proposed 4).
However, to store the residue arithmetic tables,
many read-only memories (ROMs) are required
and an exponential growth of ROM’s size is con-
cerned in the size of the modulus m. Several
adders moduli 2n −1 and 2n +1 have been pro-
posed by using the conventional binary number
system without memory 5), but the carry prop-
agation arises and the modulo m addition time
is proportional to log(n), even for the improved
adder architectures 6).

It is well known that a signed-digit (SD) num-
ber system 7),8) takes advantages in an arith-
metic circuit implementation without the carry
propagation. A novel residue arithmetic hard-
ware algorithm using a radix-two SD number
representation has been proposed to implement
the modulo m multiplication for the symmetric
RNS 9),10). For moduli 2n, 2n − 1 and 2n + 1,
the modulo m addition can be performed by
an SD adder. When a modulus m satisfies
2n + 1 < m ≤ 2n + 2n−1 − 1, the modulo m

† Department of Computer Science, Gunma Univer-
sity

addition is implemented with two SD adders:
the first one is for the addition and the second
one is for the residue operation. Thus, the delay
time of the modulo m adders are independent
of the word length of the operands. By using
the modulo m SD adders, a parallel modulo m
multiplier with a binary adder tree structure
and a serial multiplier using one modulo m SD
adder have been presented.

The performance of a modulo m multiplier
is concerned in how many modulo m partial
products to be added and the efficiency of
the modulo m addition. Usually, a Booth al-
gorithm is considered to generate fewer par-
tial products for a binary multiplication 11),
and several modified Booth recoding methods
have been proposed for high speed multipli-
cations 12)∼15). A modified Booth method for
the modulo 2n − 1 binary multiplication has
been proposed 17). However, these Booth re-
coding techniques can not be applied for the
modulo m SD multiplication presented. A re-
coding method based on a two-stage radix-four
SD arithmetic for radix-four modular multipli-
cation has been proposed 18). The first stage
is for generating an intermediate carry and an
intermediate recoded digit with the radix-four
representation. The second stage is for sum-
ming the intermediate recoded digit and the
intermediate carry. In this paper, we present
a new Booth recoding method which converts
the multiplier into another SD representation
by eliminating the strings of 1’s and −1’s. The
proposed Booth recoding is faster than that
proposed in Ref. 18), and results in a smaller

3030

Vol. 46 No. 12 New Booth Modulo m Multipliers with Signed-Digit Number Arithmetic 3031

recoding circuit. The proposed method can re-
duce the modulo m partial products from n to
n/2, such that the time needed for the modulo
m sum of the products can be improved.

In the following section, we give the definition
and several properties of a redundant modular
representation for RNS, by which an efficient
arithmetic algorithm with SD numbers can be
constructed 9). We also mention the modulo
m addition algorithm based on the SD num-
ber arithmetic. In Section 3 a Booth recoding
method is proposed, by which a radix-two SD
number used as the multiplier of the modulo
m multiplication is converted efficiently into a
recoded SD (RSD) number representation with-
out (1, 1) or (−1,−1) in any two-digit position.
Thus, the modulo m partial products can be cut
from n into n/2 for an n × n-digit modulo m
SD multiplication. By using the Booth recod-
ing, several architectures of the modulo m mul-
tipliers are presented, and the modulo m mul-
tipliers with the SD arithmetic are designed by
using a hardware description language,VHDL.
The design and simulation results show that it
is possible to implement a modulo m multiplier
which is high-speed, especially in comparison
with the original one and a binary one.

2. Symmetric RNS and Residue Arith-
metic with SD Number Representa-
tion

2.1 Symmetric Residue Number Sys-
tem

A symmetric residue number system (RNS)
has normally a set of relatively prime odd-
numbered moduli, {m1, m2, · · · , mk}, and the
residue digit with respect to a modulus mi is
represented by the symmetric number set:

lmi
={−(mi−1)/2, · · · , 0, · · · , (mi−1)/2}.

(1)
An integer A in a value range [−(M−1)/2, (M−
1)/2] (M =

∏k
i=0 mi) is uniquely represented

by a k-tuple (A1, A2, · · · , Ak), where

Ai = |A|mi
= A − [A/mi] × mi, (2)

for i = 1, 2, · · · , k. In the above equation,
[A/mi] is a closet integer to A/mi in the
symmetric RNS, and each residue digit is de-
fined to be the remainder of least magnitude
when A is divided by mi. When mi = 3
and lmi

= {−1, 0, 1}, for example, | − 7|3 =
−7 − [−7/3] × 3 = −7 − (−2) × 3 = −1 and

| − 8|3 = −8− [−8/3]× 3 = −8− (−3)× 3 = 1.
A residue number x can be represented by an

n-digit radix-two SD number representation as
follows:

x = xn−12n−1 + xn−22n−2 + · · · + x0,

(3)

xi ∈ {−1, 0, 1}, which can be denoted as x =
(xn−1, xn−2, · · · , x0)SD. In the SD number
representation, x has a value in the range of
[−(2n − 1), 2n − 1]. However, it is difficult to
know if x is in lm, because of the redundancy of
the SD number representation (The subscript i
is omitted.)

To simplify the manipulation of the modular
operation in an SD number representation, we
define that each residue digit has the following
redundant residue number set:

Lm = {−(2n − 1), · · · ,−(m − 1)/2, · · · ,
0, · · · , (m − 1)/2, · · · , 2n − 1}, (4)

Thus, x must be in Lm when it is expressed
in an n-digit SD number representation. Obvi-
ously,

−x = −(xn−1, xn−2, · · · , x0)SD

= (−xn−1,−xn−2, · · · ,−x0)SD

is also in Lm.
[Definition 1] Let X be an integer and m be
a modulus. Then x = 〈X〉m is defined as an
integer in Lm. When |X|m �= 0, x has one of
two possible values given by equations

x = 〈X〉m = |X|m, (5)
and

x = 〈X〉m = |X|m − sign(|X|m) × m, (6)
respectively, where

sign(x) =
{ −1 x < 0

1 x ≥ 0 .

When |X|m = 0, in the case of m = 2n − 1,
there are three possible values for x, that is,
−m, 0 and m. �

The integer set lm in Eq. (1) is a partial set
of Lm. The numbers as the intermediate re-
sults calculated in Lm are used for fast residue
arithmetic. If necessary for a final result, they
can be converted into lm. Thus, the addi-
tion, subtraction and multiplication of k-tuples
A = (A1, A2, · · · , Ak) and B = (B1, B2, · · · , Bk)
in an RNS can be represented as follows:

A ± B = (〈A1 ± B1〉m1 , · · · , 〈Ak ± Bk〉mk
),

(7)
A × B = (〈A1 × B1〉m1 , · · · , 〈Ak × Bk〉mk

).
(8)

3032 IPSJ Journal Dec. 2005

Table 1 The rules for adding binary SD numbers.

abs(xi) = abs(yi) abs(xi) �= abs(yi)

(xi + yi) × (xi−1 + yi−1) ≤ 0 (xi + yi) × (xi−1 + yi−1) > 0

wi 0 xi + yi −(xi + yi)

ci (xi + yi)/2 0 xi + yi

Obviously, the following properties exist in
the redundant modular representation.
[Property 1]

Let a and b be integers. Then
(a) abs(〈a〉m) ≤ 2n − 1,
(b) 〈a + b〉m ≡ 〈〈a〉m + 〈b〉m〉m,
(c) 〈a × b〉m ≡ 〈〈a〉m × 〈b〉m〉m,

and
(d) 〈−a〉m ≡ −〈a〉m,

where ≡ indicates a binary congruent relation
with modulo m. �

[Example 1] When n = 4 and mi = 17,
lmi

= {−8,−7,−6, · · · , 0, · · · , 6, 7, 8}
and

Lmi
= {−15,−14, · · · , 0, · · · , 14, 15}.

Thus, |29|17 = −5 in lmi
. By the definition,

〈29〉17 = −5 or 〈29〉17 = −5 − (−1) × 17 = 12.
�

2.2 Signed-Digit Addition
An addition Z = X + Y , where X, Y are SD

numbers in the n-digit SD representation shown
in Eq. (3), can be performed as follows: Let ci

and wi be the carry and the intermediate sum
of ith digit position, respectively. The values
of them are decided by Table 1 with respect
to the values of xi, yi, xi−1, yi−1. In Table 1,
abs(xi) is the absolute value of xi. Thus the
addition at each digit can be implemented by
the following two steps:
ADD1:

2 × ci + wi = xi + yi (9)
ADD2:

zi = wi + ci−1, (10)
where c−1 = 0. Then

Z = X + Y
= (cn−1, zn−1, zn−2, · · · , z0)
= (zn, zn−1, zn−2, · · · , z0). (11)

In the above equations, xi, yi, wi, ci, zi ∈
{−1, 0, 1}. Figure 1 illustrates a circuit di-
agram of the n-digit SD adder (SDA) with n
SD full adders (SDFAs), by which the addition
can be performed in parallel without the carry
propagation.

2.3 Modulo m Addition
Let µ be a residue parameter defined as

µ = m − 2n. (12)
In the case of µ ∈ {−1, 0, 1}, an end-around-

Fig. 1 Signed-Digit Adder (SDA).

carry SD adder is implemented for the modulo
m SD addition (MSDA) by

c−1 = 〈cn−12n〉m = −cn−1 × µ (13)
and

x−1 = −µ × xn−1, (14)
y−1 = −µ × yn−1. (15)

In the case of 1 < µ < 2n−1 − 1, the MSDA
can be implemented with two SDAs 9).

3. Booth Modulo m Multipliers

3.1 Modulo m Multiplication with SD
Number Representation

A modulo m multiplication, X × Y , with
the n-digit radix-two SD number representation
can be expressed as

〈X × Y 〉m =

〈
n−1∑
i=0

〈yi2i × X〉m
〉

m

(16)

=

〈
n−1∑
i=0

ppi

〉
m

, (17)

where ppi = 〈yi2i × (X)〉m is a modulo m par-
tial product. The modulo m partial product is
generated with yi, ith digit position of the mul-
tiplier Y , and 〈2iX〉m. When m = 2n ±1, an i-
digit end-around-shift is performed for the par-
tial product generation. In this case, n modulo
m partial products are generated for the mod-
ulo m sum. The performance of the modulo
m SD multiplication is concerned in how many
modulo m partial products to be added and the
efficiency of the modulo m SD addition. A fast
modulo m SD adder has been proposed and the
addition time is independent of the word length
of operands 9). Then, in this paper, a suitable
Booth recoding method is presented for gener-
ating fewer modulo m partial products.

Vol. 46 No. 12 New Booth Modulo m Multipliers with Signed-Digit Number Arithmetic 3033

Table 2 Recoding to eliminate strings of 1’s.

yi yi−1 pi

−1 −1 −1
−1 0 −1
−1 1 0

0 −1 0
0 0 0
0 1 1

1 −1 −1
1 0 −1
1 1 0

3.2 Booth Recoding
To generate fewer modulo m partial prod-

ucts for a modulo m multiplication with the
radix-two SD numbers, an idea is to convert
the multiplier, Y , in the SD number represen-
tation into a recoded SD (RSD) number repre-
sentation, in which there are no two consecutive
negative one’s (−1s) and one’s (1s). Therefore,
all two digits in the RSD number representation
have a value in {−2,−1, 0, 1, 2} and the modulo
m products can be obtained by operations such
as modulo m shift and inverse of the value of
X. To obtain such an SD number representa-
tion, we first recode Y to eliminate strings ‘11’
in any two-digit position as shown in Table 2.
In the following representation, cfi and wfi are
the carry and intermediate sum of ith digit po-
sition, respectively. The rule is based on the
fact that if yi = 1, then cfi = 1, wfi = −1;
if yi−1 = 1, then cfi−1 = 1, wfi−1 = −1;
otherwise, cfi = 0, wfi = yi and cfi−1 = 0,
wfi−1 = yi−1. These yield the following equa-
tions:

2cfi + wfi = yi, (18)
2cfi−1 + wfi−1 = yi−1, (19)
pi = wfi + cfi−1. (20)

Note that we do not have the string ‘11’ in P .
Then, we recode pi into wsi and csi, where csi

and wsi are the carry and the intermediate sum
of ith digit position of P respectively, for the
elimination of the string −1’s, and it does not
recreate new adjacent 1’s by the equations be-
low.

2csi−1 + wsi−1 = pi−1, (21)
2csi + wsi = pi, (22)

where csi, wsi, pi ∈ {−1, 0, 1}. wsi and csi are
based on Table 3.

Finally, ti is the sum of wsi and csi−1 repre-
senting as follows:

ti = wsi + csi−1. (23)
The step of recoding pi into ti can be combined

Table 3 The intermediate carry and the
intermediate sum.

pi ≥ 0 pi < 0

pi−1 > 0 pi−1 ≤ 0

wsi pi pi −pi

csi 0 0 pi

Table 4 Recoding to eliminate strings of 1̄’s.

pi pi−1 pi−2 ti

−1 1 * −1
−1 0 * 1
−1 −1 1 1
−1 −1 0 0
−1 −1 −1 0

0 1 * 0
0 0 * 0
0 −1 1 0
0 −1 0 −1
0 −1 −1 −1

1 0 * 1
1 −1 1 1
1 −1 0 0
1 −1 −1 0

into the single-step recoding of Table 4. In
Table 4, * means don’t care. Therefore, we have

T =
n∑

i=0

ti2i =
n−1∑
i=0

yi2i, (24)

where yi, ti ∈ {−1, 0, 1}. Then T is in the re-
coded SD(RSD) number representation and has
the same numerical value as Y does. In every
two digits of the RSD number representation,
there are no the strings of ‘11’ or ‘−1 − 1’.
[Theorem 1] If Y = (yn−1 · · · y1y0) is re-
coded to T = (tn · · · t1t0) using Tables 2 and
4, where yi, ti ∈ {−1, 0, 1}, then ti+1ti �= 1 for
i = 0, 1, · · · , n − 1, and

∑n
i=0 ti2i =

∑n−1
i=0 yi2i.

(proof) It is convenient to write 1̄ =
−1. If ti = 1̄, (pipi−1pi−2) must be in
{(1̄1∗), (01̄0), (01̄1̄)} from Table 4. To recode
pi+1 to ti+1, pi and pi−1 are used as the ref-
erence digits. If ti+1 = 1̄, (pi+1pipi−1) also
have to belong to one of {(1̄1∗), (01̄0), (01̄1̄)},
that is, (pipi−1) ∈ {(1∗), (1̄0), (1̄1̄)} is not in
{(1̄1), (01̄)}. Therefore, we don’t have the
string of 1̄1̄. Analogously, if ti = 1, (pipi−1pi−2)
must be in {(1̄0∗), (1̄1̄1), (10∗), (11̄1)} from
Table 4. If ti+1 = 1, we can also
see that (pipi−1) ∈ {(0∗), (1̄1)} is not in
{(1̄0), (1̄1̄), (10), (11̄)} from Table 4. Therefore,
we don’t have the string of 11 and 1̄1̄. In other
words ti+1ti �= 1.

3034 IPSJ Journal Dec. 2005

In the next, we proof
∑n

i=0 ti2i =
∑n−1

i=0 yi2i.
From Eqs. (18)–(20),

Y =
n−1∑
i=0

yi2i

= yn−12n−1 + · · · + y121 + y020

= (2cfn−1 + wfn−1)2n−1 + · · ·
+(2cf0 + wf0)20

= (cfn−1)2n + (wfn−1 + cfn−2)2n−1 +
· · · + (wf0 + 0)20

= pn2n + pn−12n−1 + · · · + p121 + p020,

where pn = cfn−1, cf−1 = 0 and pi = wfi +
cfi−1 for 0 ≤ i ≤ n − 1. According to Eq. (23),
T =

∑n
i=0 ti2i can be expressed as follows:

T = csn2n+1 + (wsn + csn−1)2n

+(wsn−1 + csn−2)2n−1

+ · · · + (ws0 + 0)20

= (2csn + wsn)2n

+(2csn−1 + wsn−1)2n−1

+ · · · + (2cs0 + ws0)20

where csn = 0. From Table 3, when pi ≥ 0,
then 2csi + wsi = 0 + pi = pi. When pi < 0
and pi−1 > 0, then 2csi + wsi = 0 + pi = pi.
When pi < 0 and pi−1 ≤ 0, then 2csi + wsi =
2pi − pi = pi. Therefor, 2csi + wsi = pi for i =
1, · · · , n. Thus T can be rewritten as follows:

T = pn2n + pn−12n−1 + · · · + p121 + p020

= Y
�

Let Bi be a Booth-code, where Bi = 2b2i+1 +
b2i = 2t2i+1 + t2i and b2i+1 · b2i = 0. Then the
multiplier Y can be expressed as

Y =
n∑

i=0

ti2i =
n∑

i=0

bi2i =
�n/2�∑
i=0

Bi22i.

(25)
Substituting above equation to Eq. (16) and
this will imply

〈X × Y 〉m =

〈�n/2�∑
i=0

〈Bi22i × (X)〉m
〉

m

.

(26)

[Example 2] Y = (1101̄1̄110), and y8 =
y−1 = y−2 = y−3 = 0. Then P = (101̄01̄001̄0)
by Table 2, and T = (11̄11̄101̄10) by Table 4.
Then B = (101̄01̄01̄10). �

According to Tables 4 and Table 2, ti is de-
pendent on pi, pi−1, pi−2, and pi, pi−1, pi−2 are

Fig. 2 Two-digit Booth Recoding (TBR).

Table 5 The rule for generating modulo m partial
products.

b2i+1 b2i PPi

1 0 〈2 × 22iX〉m
0 1 〈22iX〉m
0 0 〈0〉m
0 −1 −〈22iX〉m
−1 0 −〈2 × 22iX〉m

dependent on yi, yi−1, yi−2, yi−3. It means that
yi, yi−1, yi−2, yi−3 are used for getting ti. In
Fig. 2 the functional block BR implements Ta-
bles 2 and 4 and block NR is for transform-
ing (1,−1) and (−1, 1) into (0, 1) and (0,−1)
respectively. If the word length n is odd, the
number of Booth-codes is n+1

2 . If n is even, we
need to add an extra digit 0 to the left of B and
the number of Booth-codes is n

2 + 1.
3.3 Modulo m Partial Product Gener-

ation
The advantage of the Booth-code lies in the

reduced number of iterations required, the re-
duction being from n steps to n+1

2 steps when n
is odd and n

2 +1 steps when n is even. A Booth-
code consists of a pair of (b2i+1, b2i) which is
used to reduce the number of modulo m par-
tial products. When (t2i+1, t2i) = (1,−1) or
(t2i+1, t2i) = (−1, 1), we transform them into
(b2i+1, b2i) = (0, 1) and (0,−1) respectively.
Thus, only five kinds of products can be gen-
erated by using the Booth-code (b2i+1, b2i) as
shown in Table 5. In the partial product gener-
ation with the SD number representation, −X
means that the signs of all digits of X are in-
versed.

Let SX = 〈22iX〉m. Then 〈2×22iX〉m = 〈2×
SX〉m. In the case of µ ∈ {−1, 0, 1}, 〈2SX〉m

Vol. 46 No. 12 New Booth Modulo m Multipliers with Signed-Digit Number Arithmetic 3035

can be calculated by shifting and/or inversing
some digits of SX. In the case of 1 < µ ≤
2n−1 − 1, 〈2 × SX〉m is implemented with one
SD addition. Since b2i × b2i+1 = 0, PPi can be
generated with an OR operation of pp2i+1 and
pp2i:

PPi = pp2i+1 + pp2i

= pp2i+1 OR pp2i

where pp2i and pp2i+1 are two modulo m partial
products as shown in Eq. (17).

In the case of µ ∈ {−1, 0, 1}, since 〈2n−1 ×
yn−1〉2n+µ = 〈2−1 × (−µyn−1)〉2n+µ, we have
one less modulo m partial product by using

y−1 = −µyn−1 (27)
y−2 = −µyn−2 (28)
y−3 = −µyn−3. (29)

[Example 3] Let Y = (1̄1̄0011), modulus
m = 65 and µ = 1. From Eqs. (27), (28) and
(29), y−1 = 1, y−2 = 1 and y−3 = 0. Then
P = (1̄1̄0100) and p−1 = 0, p−2 = 1̄. From
Table 4, T = (010100) = 20. By Definition 1,
〈Y 〉m = 〈−45〉65 = −45 = 20 = T . �

By using the above modulo m product gener-
ation method, a modulo m multiplication can
be performed by the following algorithm.
Algorithm A (〈X × Y 〉m):
If µ ∈ {−1, 0, 1}, let y−1 = −µyn−1, y−2 =
−µyn−2, and y−3 = −µyn−3; if 1 < µ ≤ 2n−1 −
1, let yn = y−1 = y−2 = y−3 = 0. Let SX = X,
sum = 0 and i = 0.

(1) Generate Booth-code
1a) Use Tables 2 and 4 to recode (y2i+1,

y2i, y2i−1, y2i−2, y2i−3) to (t2i+1, t2i);
2b) If abs(t2i+1) = abs(t2i), then

(b2i+1, b2i) = (0,−t2i), else (b2i+1, b2i)
= (t2i+1, t2i).

(2) Generate modulo m partial products
2a) pp2i = b2i × SX;
2b) SX = 〈2SX〉m;
2c) pp2i+1 = b2i+1 × SX;
2d) SX = 〈2SX〉m;
2e) PPi = pp2i OR pp2i+1;

(3) Sum the modulo m partial products
3a) sum = 〈sum + PPi〉m;
3b) i = i + 1, and return to (1) until

i = (n/2) − 1
Note that the number of modulo m partial

products is n
2 in the case of µ ∈ {−1, 0, 1} and

n
2 + 1 in the case of 1 < µ ≤ 2n−1 − 1 when n
is even. n

2 times of the modulo m additions are
performed serially. �

A serial Booth modulo m SD multiplier can

X=6 00 00 10 1̄0
Y =170 10 11 01̄ 1̄0
B 01̄ 01̄ 1̄0 01 Bi

i = 0
sum 00 00 00 00
PP0 + 00 00 10 1̄0 01
wi 00 00 10 1̄0
ci + 00 00 00 00
sum 00 00 10 1̄0
i = 1
sum 00 00 10 1̄0
PP1 + 01̄ 01 00 00 1̄0
wi 01̄ 01̄ 10 1̄0
ci + 00 10 00 00
sum 01̄ 11̄ 10 1̄0
i = 2
sum 01̄ 11̄ 10 1̄0
PP2 + 1̄0 10 00 00 01̄
wi 11̄ 01̄ 10 1̄0
ci + 01 00 00 01
sum 10 01̄ 10 1̄1
i = 3
sum 10 01̄ 10 1̄1
PP3 + 10 00 00 10 01̄
wi 00 01̄ 10 01
ci + 00 00 00 01̄
〈X × Y 〉257 00 01̄ 10 00

Fig. 3 Example of serial Booth modulo m SD
multiplication.

be designed to implement the above algorithm.
By Theorem 1, the Booth-code generation in
step (1) can be performed in parallel. Thus, if
step (2) is performed in parallel, the modulo m
sum in step (3) can be implemented by a binary
modulo m adder tree 9),10).
[Example 4] Let m = 257, X = 6 =
(0000101̄0), and Y = 170 = (101101̄1̄0). From
(27), (28) and (29), y−1 = 1̄, y−2 = 0, y−3 = 1̄.
Then P = (1̄101̄01̄1̄0) and p−1 = 1̄, p−2 = 0.
From Table 4, T = (1̄11̄11̄011̄). Then B =
(01̄01̄1̄001). Figure 3 illustrates the calcula-
tion process by Algorithm A. The result of
〈6 × 170〉257 is equal to −8. �

4. On VLSI Implementation and Per-
formance Evaluation

For the circuit design, an SD digit a ∈
{−1, 0, 1} is encoded as a two-bit binary code
as follows

a = [as, a0],
where as is the sign and a0 is the absolute value.
We use VHDL to design the residue arithmetic
circuits for the implementation of the proposed
Booth modulo m SD multiplication. Then a
simulation is performed under the condition of
1 µm CMOS gate array technology.

3036 IPSJ Journal Dec. 2005

Table 6 Performance of parallel modulo m multipliers.

SD representation Binary representation

Modulus normal 9) Fig. 4 normal Ref. 17)

(2n − 1) delay area delay area delay area delay area
n (ns) (gates) (ns) (gates) (ns) (gates) (ns) (gates)

4 16.94 474 14.75 364 20.89 139 19.72 136
8 22.92 2106 21.28 1422 35.62 582 37.03 456

16 29.94 8826 29.4 7138 71.79 2585 73.75 2103

Fig. 4 Parallel Booth modulo m multiplier.

Fig. 5 Modulo m Booth recoding.

4.1 Comparison of Parallel Modulo m
Multipliers

In the case of µ ∈ {−1, 0, 1}, a parallel Booth
modulo m multiplier with a binary MSDA tree
is constructed as shown in Fig. 4. The modulo
m Booth recoding block consists of n identical
sub-blocks BRs as shown in Fig. 5. In Fig. 5,
five consecutive digits of Y are sent to a TBR
block to generate a Booth-code Bi. In Partial
Product Generation block, n

2 modulo m par-
tial products are generated by using the Booth-
codes and summed up in the MSDAs. Since the
MSDAs are organized in a binary tree structure,
the stages of the modulo m additions is usually
log2(n). The number of MSDAs required in the
binary tree is equal to n − 1. Since MSDAs
of the first stage can be replaced by OR gates
by the proposed Booth recoding, the number of

Fig. 6 MSDAs binary tree for n = 8.

MSDAs required in the binary tree is reduced to
n
2 −1 as shown in Fig. 6. As mentioned before,
when n is even, in the case of 1 < µ ≤ 2n−1−1,
an extra one digit 0 will be added to the left of
B and it leads that one more MSDA is neces-
sary.

The area of a parallel modulo m multiplier is
mainly concerned with how many MSDAs are
used. Compared the proposed Booth modulo m
multiplier with Ref. 9), (n

2) MSDAs are saved.
The performances of four kinds of modulo m
multipliers are summarized in Table 6, where
m = 2n − 1. The multiplier with the Booth
recoding has the higher performance than that
the original SD one 9) has. The area of the mod-
ulo m SD multiplier using the Booth recoding
is reduced to 80% from the normal one. Two
modulo 2n − 1 multipliers with a binary num-
ber representation have been also implemented
by the same design tool. Both designs used the
carry save addition (CSA) and a wallace tree
structure, but one of them used a Booth recod-
ing method 17). The delay time of the proposed
SD multiplier is about 40% of the delay time of
the binary ones.

In the case of µ = 0, the modulo m multi-
pliers can be designed with the same perfor-
mances as that the multipliers have. In the
case of µ = 1, our proposed multipliers can also
have the same performance, because of the end-
around-carry SD addition. However, a modulo

Vol. 46 No. 12 New Booth Modulo m Multipliers with Signed-Digit Number Arithmetic 3037

2n + 1 multiplier with the binary number rep-
resentation can not be designed by using the
similar method proposed in Ref. 17).

4.2 Comparison of Serial Modulo m
Multipliers

Figure 7 illustrates the block diagram of
a serial Booth modulo m multiplier using one
MSDA for the repeated modulo m sum. X, Y
and S = 〈X × Y 〉m represent the multiplicand,
multiplier and multiplication result with the n-
digit SD number representation, respectively.
The multiplier consists of modulo m signed-
digit adder (MSDA), some registers, a two-
digit Booth Recoding (TBR) shown in Fig. 2,
a modulo m partial product generation (PPG),
a modulo m shifter (〈2SX〉m). In the cases of
m = 2n + 1, 2n, 2n − 1, we set y−1 = −µyn−1,
y−2 = −µyn−2 and y−3 = −µyn−3. In the
case of 2n + 1 < m ≤ 2n + 2n−1 − 1, we set
yn = y−1 = y−2 = y−3 = 0. Every five digits of
Y are used to generate one Booth-code Bi used
for PPG. Reg-SX and 〈2SX〉m are inputed to
PPG. When b2i+1 = 1 or −1, 〈2SX〉m will be
selected; when b2i = 1 or −1, Reg-SX will be
selected for generating the modulo m partial

Fig. 7 Serial Booth modulo m multiplier.

product. In the case of (b2i+1b2i) = (00), PPG
is equal to n-digit 0. An MSDA is used to add
modulo m partial products by PPG and Reg-S.

To evaluate the proposed recoding method,
we also implement the recoding algorithm of
Ref. 18) as two components. The first compo-
nent is for generating an intermediate carry and
an intermediate recoded digit. The second com-
ponent is for generating Booth-code by sum-
ming the intermediate recoded digit and a low
intermediate carry. The performances of the
Booth recoding circuits are illustrated in Ta-
ble 7, and our Booth recoding is more efficient.

In Table 8, the performance comparison of
two serial modulo m SD multipliers with the
architectures as shown in Fig. 7 and presented
in Ref. 9) is illustrated. Since the longest delay
path is in the modulo m SD adder, the working
clock is dependent on it. Thus, both the multi-
pliers using the Booth recoding or not can work
at the same clock, and they are much faster
than that using a binary adder. Because the
modulo m partial products using the proposed
Booth recoding are half, the speed of the pre-
sented modulo m multiplier is twice as fast as
that of the original one 9). In Table 8, the hard-
ware overhead for Booth recoding is needed.
However the high speed multipliers are imple-
mented and the small drawback in terms of the
area is not a problem.

5. Conclusion

A Booth recoding method has been newly in-
troduced to reduce the modulo m partial prod-
ucts for high speed modulo m multiplication
with the SD number representation. In a par-
allel Booth modulo m multiplier, a smaller bi-
nary MSDA tree can be designed and the hard-
ware cost can be reduced to 80% from the orig-

Table 7 Performance of Booth recoding.

n area(gates) delay(ns)

Ref. 18) this paper Ref. 18) this paper

8 192 168 8.44 4.06

16 384 336 8.44 4.06

Table 8 Performance of Serial Modulo m Multipliers with SD number.

normal 9) Fig. 7

Modulus clock total delay area clock total delay area
(MHz) (ns) (gates) (MHz) (ns) (gates)

257 130.4 60.8 620 130.4 30.4 804
259 61.65 129.76 1387 61.65 81.1 1927

65537 130.4 121.6 1294 130.4 60.8 1657
65539 61.65 259.52 2975 61.65 145.98 4128

3038 IPSJ Journal Dec. 2005

inal one. A serial Booth modulo m multiplier
has the same clock rate compared to the origi-
nal one 9), so that the speed performance of the
modulo m multiplication can be up to twice as
fast.

For VLSI implementation of the modular SD
arithmetic in RNS, the logic circuit descriptions
by VHDL are also designed.. The design and
simulation results under the condition of 1µm
CMOS gate array technology show that high-
speed modulo m multipliers based on SD arith-
metic can be obtained. The proposed modulo
m SD multipliers have high performances com-
paring to that with the binary number arith-
metic.

High-speed computations can be performed
based on the assumption that input and out-
put data of the residue arithmetic circuits are
in the residue SD number form, because some
computing system applications, such as digital
filtering, require repeated calculations of sums
of products before the final results are obtained.
For integration with conventional binary sys-
tems, efficient circuits are required to convert
into and out of the residue SD systems. Our
studies also focus on the conversion between the
arithmetic number systems, and the application
to the computation systems, such as digital sig-
nal processing and digital control systems.

References

1) Szabo, N.S. and Tanaka, R.I.: Residue Arith-
metic and Its Applications to Computer Tech-
nology, New York: McGraw-Hill (1967).

2) Paliouras, V. and Stouraitis, T.: Novel High-
Radix Residue Number System Architectures,
IEEE Trans.on circuits and systems II., Vol.47,
No.10 (2000).

3) Sonderstrand, M.A., Jendins, W.K., Junllien,
G.A. and Taylor, F.J.: Residue Number Sys-
tem Arithmetic: Modern Applications in Dig-
ital Signal Processing, IEEE Press, New York
(1986).

4) Skavantzos, A. and Rao, P.B.: New Multipliers
Modulo 2n − 1, IEEE Trans. Comput., Vol.41,
No.8, pp.957–961 (1992).

5) Hiasat, A.: New memoryless, mod (2n ± 1)
residue multiplier, Electron. Lett., Vol.28, No.3,
pp.314–315 (Jan. 1992).

6) Kalampoukas, L., Nikolos, D., Efstathiou, C.,
Vergos, H.T. and Kalamatianos, J.: High-Speed
Parallel-Prefix Modulo 2n − 1 Adders, IEEE
Trans. Compute., Vol.49, No.7, pp.673–680
(2000).

7) Avizienis, A.: Signed-digit number represen-

tations for fast parallel arithmetic, IRE Trans.
Elect.Comput., EC-10, pp.389–400 (Sep.1961).

8) Parhami, B.: Carry-Free Addition of Recod-
ing Binary Signed-Digit Numbers, IEEE Trans.
comput., Vol.37, No.11 (1988).

9) Wei, S. and Shimizu, K.: A Novel Residue
Arithmetic Hardware Algorithm Using a
Signed-Digit Number Representation, IEICE
Trans. Inf.& Syst., Vol.E83-D, No.12, pp.2056–
2064 (2000).

10) Wei, S. and Shimizu, K.: Compact Residue
Arithmetic Multiplier Based on the Radix-4
Signed-Digit Multiple-Valued Arithmetic Cir-
cuits, IEICE Trans.Electron., Vol.E82-C, No.9,
pp.1647–1645 (1999).

11) Booth, A.D.: A signed binary multiplication
technique, Quart. J. Mech. Appl. Math., Vol.4,
pp.236–240 (1951).

12) MacSorley, O.L.: High speed arithmetic in bi-
nary computers, Proc. IRE, Vol.49, pp.67–91
(1961).

13) Lyu, C.N. and Matula, D.W.: Redundant bi-
nary booth recoding, Proc. IEEE 12th Symp.
Cumput. Arith., pp.50–57 (1995).

14) Yeh, W.-C. and Jen, C.-W.: High-Speed
Booth Encoded Parallel Multiplier Design,
IEEE Trans. Comput., Vol.49, No.7, pp.692–
701 (2000).

15) Inoue, T., Tamura, A., Ochi, H. and Tsuda,
T.: On the Circuit for Booth Recoder in Multi-
plier, Technical report of IEICE, CAS2002-23,
VLD2002-37, DSP2002-63, pp.131–136 (June
2002).

16) Chen, S., Wei, S. and Shimizu, K.: A Booth
Recoding Method for Serial Modular Multipli-
ers with Signed-Digit Number Representation,
ICF 2002, pp.2-10–2-15 (Mar. 2002).

17) Efstathiou, C., Vergos, H.T. and Nikolos, D.:
Modified Booth Modulo 2n − 1 Multipliers,
IEEE Trans. Compute., Vol.53, No.3, pp.370–
374 (2004).

18) Takagi, N.: A radix-4 Modular Multiplication
Hardware Algorithm for Modular Exponenti-
ation, IEEE Trans. Compute., Vol.41, No.8
(1992).

(Received March 1, 2005)
(Accepted September 2, 2005)

(Online version of this article can be found in
the IPSJ Digital Courier, Vol.1, pp.616–625.)

Vol. 46 No. 12 New Booth Modulo m Multipliers with Signed-Digit Number Arithmetic 3039

Shuangching Chen was born
in Kaohsiung, Taiwan on July
18, 1972. He received the B.E.
degree in Applied Mathematic
from Feng Chia University, Tai-
wan, Republic of China in 1994,
and the M.E. degree in Com-

puter Science from Gunma University, Kiryu,
Japan in 2002. He is currently a doctoral stu-
dent at the Department of Computer Science,
Gunma University. His research interests in-
clude parallel computer architecture, residue
architecture, VLSI design and digital signal
processing.

Shugang Wei was born in
Harbin, China on September 19,
1957. He received the B.E. de-
gree in Radio Engineering from
Harbin Institute of Technology,
Harbin, China, the M.E. de-
gree in Computer Science from

Gunma University, Kiryu, Japan and the Dr.
Eng. degree in Electronic Engineering from To-
hoku University, Sendai, Japan, in 1982, 1987,
and 1990, respectively. He was an Assistant
Professor with the Department of Radio Engi-
neering, Harbin Institute of Technology from
1982 to 1984. In 1990 he joined Matsushita
Communication Industrial Co., Ltd., Yoko-
hama, Japan. At present he is an Associate
Professor in the Department of Computer Sci-
ence, Faculty of Engineering, Gunma Univer-
sity. His research interests include logic design,
high-speed arithmetic circuits, VLSI systems
and digital audio signal processing. Dr. Wei
is a member of the Acoustical Society of Japan
and IEEE.

