
The construction technique of a unific abstract syntax tree for two or

more programming languages

Junichi Kobayashi1, Kazunori Sakamoto2, Hironori Washizaki1, and Yoshiaki Fukazawa1

1Waseda University
2National Institute of Informatics

1 Introduction

In recent years, software is developed by various pro-
gramming languages, such as C, Java, and Scala.

Some software is composed of multiple languages.
For example, server side software is developed by
javascript, and client side software is developed by
Java in Web application.

There are many software engineering tools support-
ing each kind of languages, however these tools behave
similarly. Such similarity is caused by the abstract
syntax trees generated for each languages are differ-
ent.

In addition, it takes large cost to develop new tool.
Moreover, there are many similar tools today, how-

ever the results of using these tools are different. This
difference is caused that there is not existed an guide-
line of developing these tools.

In this paper, we propose the tool to solve these
problems.

2 Background

Software engineering tools perform various operations
to the Abstract Syntax Tree(AST). ASTs are ob-
tained by conducting lexical analysis and syntax
analysis in order to a program.

In this section, we explain these words and phrases
about the technology used as our backgrounds.

2.1 Lexical Analysis

Lexical analysis is an operation which divides pro-
gram for tokens. Token is an atomic term which has
meanings such as word, numeral value, and symbol.

For example, we use expression 123∗45+(67−8)/9.
Analysing with lexical analysis for this expression, we
obtain the 11 tokens(123,∗, 45, +, (, 67, −, 8,), /, 9).

2.2 Syntax Analysis

Syntax analysis is an operation which makes tree
structure using tokens. This tree made by syntax
analysis is called a syntax tree or concrete syntax tree.

For example, we use tokens obtained by lexical anal-
ysis in 2.1, the result of syntax analysis is shown in
fig.1.

Figure 1: Example of syntax tree. In this figure, in or-
der to deepen an understanding here, the token which
serves as a sign containing a square and a operator in
the token used as a numerical value is enclosed and
expressed with a circle.

2.3 Abstract Syntax Tree (AST)

Abstract Syntax Tree (AST) is an tree structure. This
is obtained by removing elements which is unneces-
sary for interpreting a program.

For example, the two elements ”(” and ”)” in Fig.
2.1 is used only determination of computation se-
quence. Therefore, these are removed in AST.

2.4 Backus-Naur Form(BNF)

Backus-Naur form(BNF) is a notation of the rule
which usually uses lexical analysis and syntax anal-
ysis. BNF is one of the notations which define the
grammar of a program, and it can be judged by per-
forming description as shown in Fig.2 whether a cer-
tain program is grammatically right.

Copyright 2014 Information Processing Society of Japan.
All Rights Reserved.1-321

1L-4

情報処理学会第76回全国大会

Figure 2: BNF example of if statement

3 Problems

There are two problems to develop a multiple lan-
guage tool.

1. When we develop a software engineering tool, it
takes large cost to create solving algorithms.

2. Although we have some algorithm, it takes large
cost to correspond multiple language the tool.

3. Today, there are many tools behave similarly.
However, result of applying these tools are dif-
ferent each other[1].

4 Proposal Technique

In this paper, we use following three techniques to
solve the problems described in Section 3.

1. Create the extended language of BNF. This lan-
guage allows to write some information for mak-
ing a tool.

2. We propose the tool which automatically picks
out only some elements required for the target
tool from the AST of the program using the in-
formation described the language of 1.

3. We decrease the cost of developing multiple lan-
guages tools to half-automate description of pro-
cess extracted by tool of 2.

4.1 Extraction BNF (ExBNF)

We define a new language named Extraction BNF
(ExBNF). ExBNF is an extended language of BNF
which can describe for element extraction.

In this language, the sign for element extraction can
be attached during description of BNF. For example,
if you want to count at the top of “if-statement” in
Fig.2, you can write an asterisk(∗) in that description.
This function enables a tool developer to take out only
the necessary element from a program.

4.2 Auto-Extraction of Elements

We develop a tool which generates automatically files
for ANTLR and element extraction data from ExBNF
file.

Generated ANTLR file is used lexical analysis and
syntax analysis by ANTLR 4. On the other hand,
element extraction data file is used in next step.
This tool is composed of Xtext and Xtend, so this

tool can operate on Eclipse. Xtext is a framework of
description of DSL(Domain-Specific Language), and
Xtend is a programming language extended for java
and combined with Xtext.

4.3 Auto-Description of Processing

Below tool also generates some simple program for
extracted elements. simple program contains a part
of using element extraction data file. Therefore, it is
no description for measuring some simple metrics.
In addition, Tool developers can use these programs

and develop new tools combining these programs, so
it is decreased to use this tool the cost of developing
tools some complex metrics.

5 Conclusion and Future Work

In this paper, we proposed a new tool which analyse
multiple language program and measure some met-
rics. Now, the program which counts each element to
a expression was able to be created.
In the future, we consider that the following items.

1. apply this tool to each programming language
and measurement some simple metrics.

2. use this tool measurement to complicated metrics
for a language.

3. develop some software engineering tool such as
mutation test.

4. apply some programming language which is not
able to explain for BNF.

References

[1] Rdiger Lincke, Jonas Lundberg and Welf Lowe,
“Comparing Software Metrics Tools,” ISSTA ’08
Proceedings of the 2008 international symposium
on Software testing and analysis pp. 131-142

Copyright 2014 Information Processing Society of Japan.
All Rights Reserved.1-322

情報処理学会第76回全国大会

