
Vol. 47 No. 1 IPSJ Journal Jan. 2006

Regular Paper

Array-based Cache Conscious Trees

Hidehisa Takamizawa,
†,☆

Kazuyuki Nakajima
†,☆☆

and Masayoshi Aritsugi
†

Making effective use of cache can give good performance. In this paper, Array-Based Cache
conscious trees (ABC trees for short) are proposed for realizing good performance of not only
search operation but also update operation. The logical structure and manipulation of an
ABC tree are similar to those of a B+-tree. The initial space of an array for an ABC tree
as it is supposed to be a complete tree is allocated. This allows the tree to have contiguous
memory space for its core and to reduce the number of pointers in it. As a result, the key
capacity of a node increases and we can make effective use of cache. We also present an
enhancement of ABC trees, which can increase the capacity of an ABC tree with overflow
nodes. We describe how we can decide whether to create an overflow node when a node
overflows for performance. Some experimental studies show that ABC trees can give good
performance of operations under certain conditions.

1. Introduction

It has become possible for us to have comput-
ers with large main memories recently. A large
amount of data tend to be memory resident
when processing the data on such a computer.
The processes on data can be performed very
quickly if the data have been already loaded
onto main memory from secondary storage. Re-
searches on main memory databases are ex-
pected to be applied in various fields.

In such an environment, memory accesses
would become a bottleneck like disk accesses
are conventionally a bottleneck in database ap-
plications. The gap between CPU speed and
main memory access speed is now large, and it
is said that the gap will grow larger with time.
If we can exploit cache effectively we will realize
better performance.

One of the effective ways of using cache is
to reduce cache misses. While the capacity of
cache is generally small compared with main
memory, cache access speeds are much faster
than memory access speeds. The cache is used
for reducing the gap in accessibility between
register in CPU and main memory by holding a
part of the contents of main memory. If data to
be processed by CPU has existed in cache, pro-
cesses can be performed efficiently. However, if
the data has not been in cache, the cache miss
occurs and CPU must access the data on main

† Gunma University
☆ Presently with Toshiba Solutions Corporation

☆☆ Presently with ACCESS CO., LTD.

memory, which takes much more time than ac-
cessing only the cache. We can thus improve
the efficiency if we can reduce the number of
cache misses.

There have been studies on effectively using
caches. Shatdal, Kant and Naughton enhanced
algorithms of query processing in relational
databases in order to improve the performance
by making use of the cache 12). Ailamaki, et
al. realized a cache-conscious data organization
for storing relations in relational databases 1).
They split a page into several pieces, and data
for an attribute are stored in each of the pieces.
There have also been proposals of new cache
conscious indexing techniques discussed as fol-
lows.

Conventional indexing techniques are mainly
for reducing disk I/O’s. Recently, new index-
ing techniques have been investigated for cache
conscious manipulation of data, e.g., cache-
sensitive search trees (CSS-trees) 10), cache
sensitive B+-trees (CSB+-trees) 11), cache-
conscious R-trees (CR-trees) 7), partial-key
trees 2), and prefetching B+-trees (pB+-
trees) 4). One of the key ideas to realize cache
conscious indexing techniques is to reduce cache
misses. To do this, CSS-trees 10) and CSB+-
trees 11) reduce the number of pointers that a
node holds, thereby increasing the data capac-
ity of a node and the amount of memory resi-
dent data. CR-trees 7) and partial-key trees 2)

realize this by compressing keys. pB+-trees 4)

make use of prefetching instruction provided by
modern microprocessors so that they can hide
the performance impact of cache misses.

217



218 IPSJ Journal Jan. 2006

In this paper, we propose another new in-
dexing structure called Array-Based Cache con-
scious trees, or ABC trees 9),13). The logical
structure and manipulation of an ABC tree are
similar to those of a B+-tree 5). The core struc-
ture of the tree is implemented with an array,
which is a contiguous space in memory, and it
allows us to reduce the number of pointers in
it. When navigating through the core of an
ABC tree, the position of a child node can be
obtained by calculating spatial relations among
nodes. Due to the reduction of the number of
pointers and the memory allocation, ABC trees
achieve not only efficient search operation but
also efficient delete and insert operations un-
der certain conditions. We also present an en-
hancement of ABC trees with overflow nodes.
This achieves a large increase of data capacity
but also efficient processing of operations. We
investigate the way of deciding whether to cre-
ate an overflow node when a node overflows for
performance. Moreover, we discuss conditions
where ABC trees can give good performance
and present experimental results for showing
the efficiency of the trees.

The remainder of this paper is organized as
follows. Section 2 mentions related work and
compares with our work. Section 3 introduces
core ABC trees and an enhancement of them,
and describes their structures and procedures
of operations. Section 4 shows experimental
results and discusses the performance of ABC
trees. Section 5 concludes this paper.

2. Related Work

There have been many studies on manage-
ment of data taking account of effective usage
of cache for improving efficiency (e.g., Refs. 1)∼
4), 6), 7), 10)∼12) and 14)). In those, most
similar studies to ours are CSS-trees 10) and
CSB+-trees 11) because they improved the per-
formance by proposing new cache conscious in-
dexing structures for reducing the number of
pointers in a node.

Cache sensitive search trees (CSS-trees) 10)

improve the performance of search processing
in OLAP environments. The tree structure is
implemented by using an array, and no pointer
exists in its tree structure. A node can there-
fore hold more data than a node of any other
tree structures. A node can be identified with
location information in the array. It proposed
the way of aligning the size of a node to cache
line size. This enables us to access a node with

at most one cache miss. CSS-trees need less
space and achieve much more efficient search
operations than B+-trees 5) and T-trees 8). In
addition, the whole of a CSS-tree corresponds
to an array that is allocated a contiguous space
in memory. As a result, CSS-trees achieve high
efficiency of search operation. Although CSS-
trees can work well in such environments as
OLAP, it is very hard to implement efficient
updates on them.

Cache sensitive B+-trees (CSB+-trees) 11) are
proposed as a cache conscious version of B+-
trees. The main goal of CSB+-trees is to real-
ize efficient update operations, since CSS-trees
cannot provide them. While an internal node
of B+-trees holds pointers to all its child nodes,
only a pointer to the first child node is held in
an internal node of CSB+-trees. Child nodes of
an internal node are managed as a node group.
A node group is allocated contiguously in mem-
ory space, and a node in a node group can
thus be addressed with the pointer to the group
and the offset from the head of the group to
the node. The size of a node in CSB+-trees
is aligned to cache line size like in CSS-trees.
Note that the number of data in a node in
CSB+-trees is less than that in CSS-trees be-
cause a node in CSB+-trees holds a pointer
and an integer expressing the number of data
that the node holds. Note also that a CSB+-
tree is not allocated in a contiguous space gen-
erally, because every node group in a CSB+-
tree is created completely dynamically. Rao
and Ross examined several variations of CSB+-
trees, and concluded that full CSB+-trees, in
which necessary space for storing a full node
group is allocated beforehand, can give the best
performance of operations including search, in-
sert, and delete, even though they have essen-
tial space overheads 11). In other words, they
concluded that it is practical for a good cache
conscious tree to have a margin for space when
space overhead is not a big concern.

In this paper, we propose ABC trees that
have good features of both CSS-trees and
CSB+-trees. Similar to CSS-trees, a core ABC
tree is constructed with an array, which is a con-
tiguous space in memory; a node in a core ABC
tree does not hold any pointer and is identified
with location information in the array. More-
over, ABC trees can give good performance of
update operations, like CSB+-trees, by means
of having a margin for space. We also propose
an enhancement of the structure of a core ABC



Vol. 47 No. 1 Array-based Cache Conscious Trees 219

tree for handling overflow nodes, thereby ABC
trees can grow dynamically. Note, however,
that some conditions have to hold for allowing
ABC trees to give good performance.

3. ABC Trees

In this section, we introduce the structure
and manipulations of ABC trees. First, we dis-
cuss core ABC trees, which are the core struc-
ture and manipulations of ABC trees. Then,
we show an enhancement of ABC trees, which
can have overflow nodes. Finally, we discuss
conditions where ABC trees can give good per-
formance.

3.1 Core ABC Trees
A core ABC tree is implemented with an

array and no pointer is included in its inter-
nal structure. Rao and Ross showed that pre-
allocation of space for a node group to have a
capacity of full-data nodes increased the per-
formance of update processes 11). According to
the results, the space for a core ABC tree is pre-
allocated as it is complete, and moreover the
whole tree is allocated contiguously in memory.

In this paper we suppose that when bulkload-
ing a core ABC tree keys are sorted and the to-
tal number of keys is known. Also, there is no
multiple occurrences of a key.

3.1.1 The Structure
A core ABC tree is constructed of an array,

which has the capacity of nodes in a complete
tree. A node, which corresponds to a part of
the array, stores keys and an integer expressing
the number of keys located in the node. Every
node is assigned its node ID, which starts from
0 for the root node in order of breadth first,
and is located in the array in this order. Fig-
ure 1 shows node ID’s of a core ABC tree, an
internal node of which has two keys and three
child nodes☆, and the height is three. The upper
side of the figure shows the logical structure of
the tree and the lower side depicts the physical
structure. Note that, similar to CSS-trees 10),
core ABC trees do not have any pointers in their
structures. An internal node of the core ABC
tree does not have any pointers, while an in-
ternal node of the CSB+-tree 11) has a pointer
pointing to the head of its child nodes.

Figure 2 shows a core ABC tree, an internal
node of which has two keys, with 18 keys in

☆ For simplicity, we omit in figures in this paper that
every node has an integer expressing the number of
keys stored in the node.

Fig. 1 Node ID’s of a core ABC tree.

Fig. 2 A core ABC tree with 18 keys.

Fig. 3 A core ABC tree with 9 keys.

total. Since the number is the same as the key
capacity of the tree, all nodes are filled in with
keys. Every internal node has three (= 2 + 1)
child nodes.

Figure 3 shows another core ABC tree, an
internal node of which has two keys as well,
with 9 keys in total. In general the number of
keys that we have to manage is not equal to
the key capacity of an ABC tree. Thus, trees
like the figure exist in the real world. Note that
the last leaf node shown in the figure is neces-
sary for the tree, even though it does not have
any keys, because the tree must be complete.
We shall discuss locations of null keys and null
nodes later.



220 IPSJ Journal Jan. 2006

3.1.2 Node ID’s
When bulkloading an ABC tree, we allocate

space for it as if it is a complete tree even
though some key fields are not filled in with
keys. All nodes are thus stored contiguously in
an array. Maintaining the whole spatial rela-
tions among nodes enables us to get the loca-
tion of a node without following pointers. This
leads us to eliminate pointer completely from
an internal node of a core ABC tree. Let m be
the number of keys that an internal node can
hold. The capacity of children that an internal
node can have in this case is m + 1. The ID
range of a child node, of which ID is childID,
of node, of which ID is nodeID, is the following.

nodeID × (m + 1) + 1
≤ childID
≤ (nodeID + 1) × (m + 1) (1)

Thus, ID of the i-th child node (0 ≤ i ≤ m)
is expressed as follows.

nodeID × (m + 1) + i + 1 (2)
Given a node ID nodeID, ID of the parent

node is expressed as follows.
�nodeID/(m + 1)� − 1 (3)

It should be noted that, since a core ABC tree
is complete, we can navigate the tree by using
the node ID’s, even though there is no pointer
in its structure.

3.1.3 Operations on a Core ABC Tree
Here we consider bulkload, search, insert, and

delete operations on a core ABC tree. In the
following, let n and m be the total number of
keys to be stored in a core ABC tree and the
number of keys that an internal node can hold,
respectively.

3.1.3.1 Bulkload
When bulkloading an ABC tree, which is ac-

tually a core ABC tree, we put keys in leaf
nodes and also put keys in internal nodes si-
multaneously, if necessary, that is, we do not
divide bulkloading into filling in leaf nodes and
internal nodes with keys. Since a core ABC
tree is constructed as if it is complete, given a
key, the internal node that should hold the key
can be found uniquely by the location of it at
the leaf level. In other words, we can find the
internal node for storing the key without navi-
gating any internal nodes, resulting in at most
one cache miss for doing that.

Let height be the height of the ABC tree to
be bulkloaded. The following condition, where
LN stands for the minimum number of leaf

(Let w be an integer of greater than or equal to 0, and

x, y, and z be natural numbers.)

if the location of the key is the m × (m + 1)w × x leaf

and y = x div (m + 1) and z = x mod (m + 1)

then

the key is copied to

the y-th internal node

at the w + 1 higher level from the leaf node

as the z-th key

endif

Fig. 4 Algorithm for putting a key into the index
part.

nodes necessary for storing n keys, should hold.

(m + 1)height−1 <LN ≤(m + 1)height (4)

Since a node has the capacity of m keys,
LN = �n/m�. Thus, we can obtain height as
follows.

height = �logm+1 LN�
=
⌈
logm+1

⌈ n

m

⌉⌉
(5)

We can distinguish each node by its node ID,
which begins with 0 at root node in breadth first
order, as shown in Fig. 1. The total number of
nodes of the ABC tree, TN , is expressed as
follows.

TN =
height∑

i=0

(m + 1)i

= 1 + (m + 1) + (m + 1)2 +
· · · + (m + 1)height

=
(m + 1)height+1 − 1

m
(6)

For bulkloading we put keys in ascending
order to leaf nodes. The ID’s of leaf nodes
are between {(m + 1)height − 1}/m and {(m +
1)height+1 − 1}/m − 1.

We also put keys to internal nodes appropri-
ately while putting keys to leaves. In Fig. 2,
for example, keys 5 and 11 are put in both leaf
nodes and their parent node, while key 2 does
not appear in the bottom level of internal nodes.
In fact, given a key, at the time when we put
it at the leaf level we can decide whether or
not it should also be put in an internal node
in a core ABC tree, by using the algorithm
shown in Fig. 4. For example in Fig. 2, key 11
is the fourth key location at the leaf level. Since
4 = 2 × (2 + 1)0 × 2 and 2 div (2 + 1) = 0 and
2 mod (2 + 1) = 2, key 11 is copied to the 0-th
internal node at the next higher level from the



Vol. 47 No. 1 Array-based Cache Conscious Trees 221

Fig. 5 Locations that can be null in ABC tree (m=2).

Fig. 6 ABC tree (m=2) with 9 keys after
bulkloading.

leaf node as the 2nd key.
In order to make a core ABC tree complete,

we may put null keys and/or null nodes, which
have no keys, in the tree. We should take care
of where to put null nodes in the tree, because
it will affect the efficiency of manipulating the
tree. In the index part of a core ABC tree we
do not want to create any null nodes or to put
null keys at any level except the bottom level.
We also do not want to put null keys at the
first position of nodes at the bottom level of
the index part, for allowing to access leaf nodes
easily. We therefore do not put keys at the leaf
level in such locations where w = 0 and z = 0
in Fig. 4. Figure 5 shows locations that can be
null in a core ABC tree where m = 2 and the
height is 2.

Figure 6 shows the result core ABC tree by
bulkloading 9 keys. As shown in the figure, we
scatter locations of null when bulkloading as
much as possible in this paper. This is the rea-
son why Fig. 3 and Fig. 6 are different. There
are several alternatives about how we locate
null keys, and locations of null keys can affect
the performance of manipulations of ABC trees.
We, however, do not discuss this problem in this
paper and it is included in our future work.

3.1.3.2 Search
Logical procedure of search operations on

core ABC trees is similar to that on B+-trees. It
begins with accessing root node, of which node
ID is 0. We determine which child node be ac-
cessed next by binary searching the node. Let

nodeID be the ID of the node currently ac-
cessed. If the i-th child node is the next node
to be accessed, then the child node is navigated
by using its ID, i.e., nodeID × (m + 1) + 1 + i.
This navigation is performed repeatedly until
reaching a leaf node. If a leaf node is visited,
the search key is searched in the node. This is
carried out by binary search, too. If the key
is found then the search finishes as successful,
otherwise does as unsuccessful. Not to mention,
the integer expressing the number of keys of a
node is used in binary search on the node.

3.1.3.3 Insertion
If the number of keys is less than (m +

1)height × m in a core ABC tree, there are one
or more empty slots for a key to insert in the
tree, even if the key cannot be stored a leaf node
because it is full. On the other hand, if a tree
stores (m+1)height×m keys, no more key can be
inserted unless the tree can obtain more space.
That is, we can insert a key without increasing
the height of the tree in the former case, while
we need to increase it for inserting a key in the
latter case.

When a core ABC tree has less than (m +
1)height × m keys, we first search the leaf node
in which the key to insert should be. If the
leaf node has room, put the key into the node
appropriately. If the target node has no room,
then we find room in another leaf node close to
the target node, shift keys from the target node
in the direction to the neighbor node in order
to make room in the target node, and insert the
key. Note that when shifting keys to make room
in the target node we may also have to update
keys in the index part of the tree accordingly
to the shift. This is done in the same way as in
bulkloading shown in Fig. 4.

When the number of keys we have to ma-
nipulate becomes more than or equal to (m +
1)height ×m, we cannot insert any key into the
tree by the way described above. This is be-
cause the structure of a core ABC cannot grow
incrementally. In addition, we need to consider
not only the number but also the other factors
for making ABC trees more efficient. We will
discuss this issue in the following subsections.

3.1.3.4 Deletion
Since a core ABC tree makes use of null keys,

the manipulation of underflows is different from
that in a B+-tree. In a general B+-tree at least
�(m+1)/2� of pointers in an internal node must
be used and at least �(m + 1)/2� keys must
be filled in a leaf node. On the other hand,



222 IPSJ Journal Jan. 2006

there may be more null keys and null nodes in
a core ABC tree in order to keep it complete.
Note that if too many null keys appear in a core
ABC tree, it is hard to maintain it properly
and is likely to make the performance worse.
We therefore decided that the number of keys
appearing in a core ABC tree must not be less
than nor equal to (m + 1)height + 1, and if the
condition does not hold we reduce the height of
the tree by one.

If a key is deleted from a core ABC tree and
this deletion does not make the number of keys
in the tree less than (m + 1)height + 1, then
we do not reduce the height of the tree. We
first search the key to be deleted in a leaf node.
Then, we delete the key from the leaf node. If
the key also appears at the parent node, then it
should be deleted and the node should be main-
tained properly. If the deletion does not make
the leaf node null, the delete operation finishes.
If the leaf node does not have any keys, it should
be checked whether the deletion affects the in-
dex part of the tree or not. That is, if the key
to be deleted appears in a lowest internal node
and is the last key of the node, then the dele-
tion does not affect the index part of the tree
and thus the delete operation finishes. If the
deletion affects the index part, we find a neigh-
bor leaf node which has more than one key or
which has one key and can become a null leaf
node without affecting the index part (Fig. 5),
and shift keys from the neighbor leaf node to
the leaf node which had the key to be deleted.
We may need to update the index part accord-
ing to the shift.

If a key is deleted from a core ABC tree and
this deletion reduces the number of the keys in
the tree to less than (m + 1)height + 1, then the
deletion makes it hard to maintain the index
part properly. In this case we reduce the height
of the tree by one by means of shifting keys
in leaf nodes, except for the key to be deleted,
to the lowest internal nodes. This shift is per-
formed by scanning leaf nodes and bulkloading
keys. Internal nodes of the lowest level of the
original tree become leaf nodes of the new tree.
The height of the result tree is therefore one
lower than that of the original tree. The space,
which was for leaf nodes, is not deleted but al-
located for the case where we need to increase
the height of the tree. We, however, did not im-
plement this in the system used for evaluation,
because it is obvious that the performance of
this is bad. It is included in our future work.

Fig. 7 An ABC tree with an overflow node.

3.2 An Enhancement of ABC Trees
As described in the previous subsection, a

core ABC tree is implemented with an array.
Since the space for a core ABC tree is allocated
in a contiguous space and the tree does not have
any pointer for maintaining its structure, we ex-
pect that the tree can give good performance.

However, there are several problems on core
ABC trees. Since a core ABC tree is imple-
mented with an array, which is fixed size, we
need to rebuild it to an array with one level
higher for keeping the structure when more
data than those expected at the time of initial-
izing the tree have to be manipulated. It must
take naturally long time to do this. Another
problem is that when there is skew of locations
of empty cells in a core ABC tree and a large
number of insertions to areas where almost all
cells are filled occur the performance of the core
ABC tree must degrade.

Here we propose an enhancement of core
ABC trees for overcoming such problems. The
key idea is to allow trees to have overflow nodes.
Figure 7 shows an ABC tree with an overflow
node, which is the result of inserting key 25 to
the tree shown in Fig. 2.

As shown in Fig. 7, a key field in a leaf node
having an overflow node is used for holding a
pointer to the overflow node. If an overflow
node needs another overflow node, then the
field for the number of keys is used for hold-
ing a pointer to the next overflow node. In a
chain with a leaf node and overflow node(s),
keys are filled in from the leaf node. For check-
ing whether the value in the field stands for the
number of keys or the address, the most signif-
icant bit is used.

3.2.1 Operations on the ABC Trees
All operations except insert operation on the

ABC trees are almost the same as those on the



Vol. 47 No. 1 Array-based Cache Conscious Trees 223

core ABC trees described before. Bulkload op-
erations on the two trees are identical, that is,
the initial form of the enhanced ABC tree is a
core ABC tree. Searching a key on the ABC
tree begins with the same procedure described
before for finding the leaf node in which the
key should be. If the search key is equal or
less than the maximum key in the leaf node,
then the node is searched. Otherwise, its over-
flow node(s) is accessed and searched. Delete
operation on the ABC tree has an additional
procedure concerning overflow nodes; we delete
an overflow node and the pointer to it when the
overflow node is going to have no key after the
deletion.

Since the ABC trees are allowed to have
overflow nodes, we have to decide whether we
should create an overflow node at the time when
inserting a key to a filled leaf node. This is pro-
cessed by comparing the costs of insert oper-
ations by shifting and by creating an overflow
node.

When considering the cost for insert opera-
tions to ABC trees with overflow nodes, we have
to take account of not only one insert operation
that is going to be processed but also search and
insert operations following the insert operation.
For example, if one insert operation creates an
overflow node for a leaf node, then a following
search operation on the leaf node might need an
additional node fetch, a following insert opera-
tion on the leaf node could be processed only
by shifting a small number of keys, or a follow-
ing insert operation on a leaf node near to the
leaf node could be processed with less key shifts
than the case before creating the overflow node.

We therefore analyze the costs for one insert
operation and following (m − 2) insert opera-
tions in this study, where m is the number of
keys that a leaf node can hold. We suppose
that the ratio of the numbers of search oper-
ations to insert operations to be performed is
s to 1. We thus study the costs for one insert
operation and the following (m − 2) insert and
s×(m−1) search operations. Delete operations
are not taken into account because the cost for
delete operations can nearly be the same as the
cost for search operations.

In the following, we describe the results of
the cost analysis; the detailed analysis can be
found in Appendix.

Let height be the height of the tree. We call
the leaf node that is to be processed by the first
insertion pivot in this paper. Let d be the num-

ber of nodes that we access from pivot for find-
ing room in one direction. Note that overflow
nodes, which are described later, are counted in
d, if any. Let fetchcost, shiftcost, and newcost
be the times for fetching a node, shifting a key,
and allocating memory for a node, respectively.
Note that it is easy to measure these values of
a given environment by running a simple pro-
gram. Let usage = # keys stored

key capacity × 100 and

w =
⌈

m−1
m× 100−usage

100
× 1

2

⌉
. Then, the cost with

no overflow node is expressed as
fetchs × fetchcost + keys × shiftcost

+ (m − 1) × (d + w − 1) × m

m + 1
× shiftcost
+ s × (m − 1) × height × fetchcost (7)

where fetchs and keys are the expected number
of nodes to be fetched and the expected number
of keys to be shifted for the (m− 1) insertions,
respectively.

On the other hand, the cost with an overflow
node is expressed as

fetcho × fetchcost
+ keyo × shiftcost + newcost
+ s × (m − 1) × height × fetchcost

+ s × (m − 1) × 1
2 × d + 1

× 1
m

m∑
k=1

k

m + k − 1
× fetchcost (8)

where fetcho and keyo are the expected number
of nodes to be fetched and the expected num-
ber of keys to be shifted for (m− 1) insertions,
respectively.

We can obtain the best value of d with
Eqs. (7) and (8). When we insert a key to a
full leaf node of the ABC tree, we try to find
room in leaf nodes that are in the area of d
from the leaf node. If there is room in the area,
we shift keys and make room in the target leaf
node and insert the key to the node. If we can-
not find any room in the area, then we choose a
leaf node, which is in the area and has the least
number of overflow nodes among the leaf nodes
in the area, create an overflow node and attach
it to the leaf node, shift keys to the overflow
node with inserting the key appropriately.

3.3 Discussion
As presented before, the idea of ABC trees is

simple but works well due to its good charac-
teristics with regard to cache usage. However,



224 IPSJ Journal Jan. 2006

there are conditions under which ABC trees can
really work well. Here we mention them in or-
der to make it easy to exploit ABC trees.

The number of keys that the current imple-
mentation of an ABC tree can manage would
be roughly restricted by constant times capac-
ity of a corresponding core ABC tree. Although
an ABC tree can basically manipulate a large
number of keys by means of the enhancement
discussed in Section 3.2, there are cases where
ABC trees cannot give good performance, e.g.,
a case where a long chain of overflow nodes is
created. To avoid such cases, we would need to
find time for maintaining ABC trees to reduce
the number of overflow nodes of them and for
reconstructing them to make them core ABC
trees. Applying ABC trees to some real ap-
plications and implementing how to maintain
them according to the characteristics of each
application will be included in our future work.

As discussed in Section 3.2, we need values of
fetchcost, shiftcost, newcost, and s for decid-
ing whether we should create an overflow node
when processing split of a node. It is easy to
measure the values of fetchcost, shiftcost, and
newcost by running a simple program on a ma-
chine on which ABC trees will use in advance.
On the other hand, we need to estimate the
value of s appropriately. We think it would be
possible by holding statistics concerning opera-
tions.

If there is skew of key values to be inserted,
the performance of ABC trees would be worse
than other trees including CSB+-trees, because
the skew will cause a large number of key shift
processes and/or a large number of overflow
node creations in an ABC tree resulting in a
long chain of overflow nodes. We think it would
be solved by using an appropriate hash function
that can avoid such skew.

4. Experimental Evaluation

4.1 An Experimental Environment
To show the efficiency of ABC trees, we con-

structed four trees, namely, B+-trees, CSB+-
trees, core ABC trees, and ABC trees described
in Section 3.2, and evaluated them on a work-
station, the configuration of which is shown in
Table 1.

We implemented ABC tree, CSB+-tree, and
B+-tree in C++. In the implementation, op-
erator “new” was used for allocating space of a
core structure of ABC tree, of a node of CSB+-
tree and B+-tree, and of an overflow node of

Table 1 Testbed configuration.

machine type Sun Blade 1000
cpu UltraSPARC-III (750MHz)
memory
size 2048MB
block size 64B
interleaving 4-way

OS Solaris 8
cache
L1 size 64KB
L1 line size 32B
L1 associativity 4-way set
L2 size 8192KB
L2 line size 256B
L2 associativity direct mapped

compiler Forte Developer 7
C++ 5.4 2002/03/09

compiler option -xtarget=ultra3
-xcache=64/32/4:8192/256/1
-xarch=v9 -xO5

ABC tree.
According to the conclusion of Ref. 11) that

full CSB+-trees is the best choice when space
overhead is not a big concern, we implemented
full CSB+-trees in the experiments. Codes for
the experiments were all written in the C++
programming language. The experiments run
with a 64-bit kernel on the machine. The sizes
of a key and a pointer were both eight bytes.
Table 2 shows key capacities of internal nodes
and leaf nodes in the core ABC tree, B+-tree,
and CSB+-tree, where the size of a node was
aligned to L2 cache line size (Table 1). In the
core ABC tree, a node consists of keys and an
integer expressing the number of keys that the
node holds. Dissimilar to the other trees, the
structures of an internal node and leaf node of
the core ABC tree are the same. In the CSB+-
tree, an internal node consists of keys, a pointer
to the first child node, and an integer express-
ing the number of keys that the node holds,
and a leaf node consists of keys, two pointers
to neighbor nodes, and an integer expressing
the number of keys that the node holds ☆. In
the B+-tree, an internal node consists of keys,
pointers to child nodes, and an integer express-
ing the number of keys that the node holds,
and a leaf node consists of keys, two pointers
to neighbor nodes, and an integer expressing
the number of keys that the node holds. Note

☆ Implementation details may be slightly different
from those written in Ref. 11), especially concern-
ing structures of nodes. However, we believe that
the basic idea is identical and that the performance
results of CSB+-trees show the performance char-
acteristics of the original work in Ref. 11).



Vol. 47 No. 1 Array-based Cache Conscious Trees 225

Table 2 Key capacities of a node.

core ABC CSB+ B+

internal node leaf node internal node leaf node internal node leaf node
31 31 30 29 15 29

Table 3 Characteristics of initial trees.

ABC CSB+ jammed-CSB+ B+

height usage (%) height usage (%) height usage (%) height usage (%)
4 61.5 5 56.4 4 100.0 6 69.8

usage = # keys stored
key capacity

× 100

that a node of the ABC tree had the most key
capacity (Table 2), since there was no physical
pointer in the core ABC tree, although the ca-
pacity of a node decreased when the node had
to hold a pointer to an overflow node.

4.2 Experiments and Results
We created trees with 20,000,000 keys for ini-

tialization. For the initial construction, we pre-
pared sorted keys of the number. The keys were
natural numbers made at random. A core ABC
tree was bulkloaded with the sorted keys in the
algorithm shown in Section 3.1.3.1, and was
used as the initial tree of both a core ABC tree
and an ABC tree in the experiments. A B+-tree
was initially prepared by constructing a B+-tree
with two keys randomly selected out of the keys
and then inserting the rest keys to the B+-tree.
We prepared two types of full CSB+-trees, ex-
pressed as CSB+-trees and jammed-CSB+-trees
in this paper. A CSB+-tree was prepared by
bulkloading with the sorted 2,000,000 keys ran-
domly selected from the 20,000,000 and then
inserting the rest 18,000,000 keys randomly.
This was done in the same way in Ref. 11),
and created a balanced CSB+-tree. A jammed-
CSB+-tree, the other type of CSB+-trees in
this paper, was prepared by bulkloading the
20,000,000 sorted keys. This method created
a CSB+-tree in which all keys were arranged
densely and there were few vacancies in leaf
nodes. Table 3 shows characteristics of these
initial trees, where height stands for the height
of each tree. We can see that leaf nodes of
the jammed-CSB+-tree were almost all filled in;
in fact, all except for the right most node of
jammed-CSB+-tree were filled in. As shown in
Table 3, the ABC tree and the jammed-CSB+-
tree had the lowest heights.

Figure 8 shows the times required for search
operations. The results show that the core ABC
tree could give the best performance and the
ABC tree was the next. The reason why the
performance of ABC tree was slightly worse

Fig. 8 Performance comparison of search operations.

than that of the core ABC tree is that the pro-
cedure for handling overflow nodes is necessary
for ABC tree even though there was no over-
flow node at this moment. Since the height of
the jammed-CSB+-tree was lower than that of
the CSB+-tree, it is natural that the jammed-
CSB+-tree outperformed the CSB+-tree. The
reason why the ABC tree outperformed the
jammed-CSB+-tree might be that the cost of
binary search in a node of ABC tree was smaller
than that of the jammed-CSB+-tree while the
heights of both trees were the same in the ex-
periments.

Figure 9 shows the times required for delete
operations. For delete operations, we did not
consider underflow of data in a node of CSB+-
tree and B+-tree as in Refs. 4) and 11) in the
experiments. When deleting a key from a node
having more than one key we just deleted the
key. When deleting the last key from a node
we also deleted the node. The results show that
the ABC trees outperformed the other trees ex-
cept for the case of 19,000,000 deletions. The
reason why the cost for 19,000,000 delete oper-
ations on the ABC tree become so large is that
it needed a large number of key shifts for the
operations. The times for 19,000,000 deletions
from the ABC and core ABC trees were about



226 IPSJ Journal Jan. 2006

Fig. 9 Performance comparison of delete operations.

Fig. 10 Performance comparison of insert operations.

1395 and 1351 seconds, respectively. This prob-
lem will be included in our future work.

Figure 10 shows the times required for in-
sert operations. We assumed that the value of
s appearing in Eqs. (7) and (8) was 1 in the
experiments. Due to the capacity of the core
ABC tree in the experiments, we could not do
insertions over 13,000,000 to the tree. In the
experiments of insertions, the core ABC tree
could give the best performance from 1,000,000
to 10,000,000 insertions and the ABC tree could
give the best performance for the other cases.
The time for 12,000,000 insertions to the core
ABC tree was about 11445 seconds. On the
other hand, since the ABC tree was allowed
to have overflow nodes, the performance of the
tree was good for all cases of insertions. The
jammed-CSB+-tree gave the worst performance
of insert operations. This is because a lot
of split occurred when inserting keys into the
jammed-CSB+-tree.

Figure 11 shows the times required for
search operations after the insertions. This ex-
periment was done for showing that our strat-

Fig. 11 Performance comparison of search operations
after the insertions.

egy described in Section 3.2 can work for com-
binations of insert and search operations. The
keys to be searched were those used for the in-
sertions, thereby highlighting the cost for ma-
nipulating overflow nodes in the ABC tree.
In this experiment, the core ABC tree could
give the best performance from 1,000,000 to
12,000,000 searches and the ABC tree could
give the best performance in the rest cases. Dis-
similar to the results shown in Fig. 8, the perfor-
mance of the CSB+-tree was almost the same
as that of the jammed-CSB+-tree. This is be-
cause the usage of a node of the jammed-CSB+-
tree became small by the insertions. Note that
the ABC tree, which held some overflow nodes
created by the insertions, outperformed the
jammed-CSB+-tree and the CSB+-tree in this
experiment. Moreover, we can notice that the
calculation of d described in Section 3.2 worked
well by combining the results shown in Fig. 10
and Fig. 11.

In order to demonstrate further the effective-
ness of the calculation of d described in Sec-
tion 3.2, we did another experiment where in-
sert operations and search operations after the
insertions were examined with varying the value
d from d − 5 to d + 5.

Figure 12 shows the times required for insert
operations with varying the value of d. The
results show that the costs for the cases of +2,
+3, +4, and +5 were larger than those for the
rest cases. The performance of the rest cases
was almost the same. This would be because
the obtained value of d was 0 or nearly 0 in the
experiments.

Figure 13 shows the times required for
search operations after the insertions with vary-
ing the value of d. In this experiment, the



Vol. 47 No. 1 Array-based Cache Conscious Trees 227

Fig. 12 Performance comparison of insert operations
with varying d.

Fig. 13 Performance comparison of search operations
after the insertions with varying d.

Fig. 14 The sums of the results shown in Fig. 12 and
Fig. 13.

costs for the cases of +2, +3, +4, and +5 were
smaller than those for the rest cases, that is, the
results were opposite to those shown in Fig. 12.
This is because when the value of d was large
it tended not to create overflow nodes and thus
the cost for search operations on such trees be-
came lower.

Figure 14 shows the sums of the results
shown in Figs. 12 and 13. With the results
shown in Figs. 12, 13 and 14, we can conclude

Fig. 15 Performance comparison of skew insert
operations.

that the calculation of d described in Section 3.2
worked well.

The results we have shown so far were ob-
tained in an environment where key values to
be treated were distributed uniformly. Next, we
show other results of experiments running in an
environment where there was skew of key values
to be inserted. We set that 50% of insert op-
erations were to the area of central 1/3 range
of the initial tree. Figure 15 shows the re-
sults of the experiment. In this case, the ABC
tree could outperformed the CSB+-tree when
the number of insertions was small. On the
other hand, when the number was larger than
14,000,000 keys, the CSB+-tree outperformed
the ABC tree; the larger the number of insert
keys was, the larger the gap between them be-
came. This would be because the number of
overflow nodes of the ABC tree became larger
as the number of insert keys became larger. If
the skew area was narrower, then the gap ap-
peared with smaller number of insert keys and
grew rapidly. We can also see that the degrada-
tion of performance of the core ABC tree in the
case of Fig. 15 occurred when inserting smaller
number of keys than the case of Fig. 10.

Figure 16 shows the times required for
search operations after the skew insertions. The
performances of the CSB+-tree shown in Fig. 11
and Fig. 16 were almost the same, while the per-
formance of the ABC tree shown in Fig. 16 was
worse than that in Fig. 11. Thus we have to say
that ABC trees would be influenced by skew of
key values more easily than CSB+-trees.

5. Conclusion

We proposed Array-Based Cache conscious
trees (ABC trees) in this paper. Because a
core ABC tree is implemented with an array,



228 IPSJ Journal Jan. 2006

Fig. 16 Performance comparison of search operations
after the skew insertions.

the space of the tree is allocated in contiguous
memory space. By means of aligning the size
of a node in an ABC tree to the cache line size,
we can make effective use of caches with the
ABC tree. We also studied an enhancement of
core ABC trees for allowing them to have over-
flow nodes. Experimental results showed that
ABC trees can give good performance under
certain conditions by comparing with conven-
tional trees.

In future, we will examine handling overflow
nodes for more efficiency. Particularly, we need
some mechanism for preventing an ABC tree
from having a long chain of overflow nodes.
Also, concurrency control mechanisms for ABC
trees are included in our future work. In addi-
tion, applying ABC trees to some real applica-
tions, examining their availability, and investi-
gating how to maintain and reconstruct ABC
trees efficiently will be included in our future
work.

Acknowledgments We would like to thank
Yujiro Ichikawa for his help with the experi-
ments. We would also like to thank the edi-
tor and anonymous reviewers for their valuable
comments and suggestions on this paper.

References

1) Ailamaki, A., DeWitt, D.J., Hill, M.D. and
Skounakis, M.: Weaving Relations for Cache
Performance, Proc. 27th International Confer-
ence on Very Large Data Bases, pp.169–180
(2001).

2) Bohannon, P., McIlroy, P. and Rastogi, R.:
Main-Memory Index Structures with Fixed-
Size Partial Keys, Proc. ACM SIGMOD Inter-
national Conference on Management of Data,
pp.163–174 (2001).

3) Cha, S.K., Hwang, S., Kim, K. and Kwon,

K.: Cache-Conscious Concurrency Control
of Main-Memory Indexes on Shared-Memory
Multiprocessor Systems, Proc. 27th Interna-
tional Conference on Very Large Data Bases,
pp.181–190 (2001).

4) Chen, S., Gibbons, P.B. and Mowry, T.C.: Im-
proving Index Performance through Prefetch-
ing, Proc. ACM SIGMOD International Con-
ference on Management of Data, pp.235–246
(2001).

5) Comer, D.: The Ubiquitous B-Tree, ACM
Computing Surveys, Vol.11, No.2, pp.121–137
(1979).

6) Hankins, R.A. and Patel, J.M.: Data Mor-
phing: An Adaptive, Cache-Conscious Storage
Technique, Proc.29th International Conference
on Very Large Data Bases, pp.417–428 (2003).

7) Kim, K., Cha, S.K. and Kwon, K.: Optimizing
Multidimensional Index Trees for Main Mem-
ory Access, Proc.ACM SIGMOD International
Conference on Management of Data, pp.139–
150 (2001).

8) Lehman, T.J. and Carey, M.J.: A Study of
Index Structures for Main Memory Database
Management Systems, Proc. 12th International
Conference on Very Large Data Bases, pp.294–
303 (1986).

9) Nakajima, K. and Aritsugi, M.: An Implemen-
tation of Array-Based Cache Conscious Trees
with Overflow Nodes (in Japanese), Proc. DB-
Web 2003, pp.125–132 (2003).

10) Rao, J. and Ross, K.A.: Cache Conscious In-
dexing for Decision-Support in Main Memory,
Proc. 25th International Conference on Very
Large Data Bases, pp.78–89 (1999).

11) Rao, J. and Ross, K.A.: Making B+-Trees
Cache Conscious in Main Memory, Proc. ACM
SIGMOD International Conference on Man-
agement of Data, pp.475–486 (2000).

12) Shatdal, A., Kant, C. and Naughton, J.F.:
Cache Conscious Algorithms for Relational
Query Processing, Proc. 20th International
Conference on Very Large Data Bases, pp.510–
521 (1994).

13) Takamizawa, H. and Aritsugi, M.: Cache Con-
scious Trees using Arrays: A Proposal (in
Japanese), DBSJ Letters, Vol.1, No.1, pp.11–
14 (2002).

14) Zhou, J. and Ross, K.A.: Buffering Accesses to
Memory-Resident Index Structures, Proc. 29th
International Conference on Very Large Data
Bases, pp.405–416 (2003).

Appendix

In this appendix, we describe the detailed
analysis for obtaining Eqs. (7) and (8).

We suppose that the ratio of the numbers



Vol. 47 No. 1 Array-based Cache Conscious Trees 229

of search operations to insert operations to be
performed is s to 1. Let m be the number of
keys that a leaf node can hold. We call the leaf
node that is to be processed by the first inser-
tion pivot in this paper. Let d be the num-
ber of nodes that we access from pivot for find-
ing room in one direction. Note that overflow
nodes, which are described later, are counted in
d, if any. Let fetchcost, shiftcost, and newcost
be the times for fetching a node, shifting a key,
and allocating memory for a node, respectively.

Let us first consider the cost without creating
an overflow node for the operations. In this
case, there is no empty slot in the leaf nodes
within the distance d from pivot. Thus we need
to shift keys to the leaf node(s) that is further
than d from pivot. Let usage = # keys stored

key capacity ×
100 and the expected number of nodes in which
keys have to be shifted for the (m−1) insertions
be d + w, then w can be expressed as follows.

w =

⌈
m − 1

m × 100−usage
100

× 1
2

⌉
(9)

When calculating d we suppose usage as a fixed
value during the operations, since the number
of data stored in a tree is much larger than m.

Let height be the height of the tree. The
expected number of nodes to be fetched, fetchs,
and the expected number of keys to be shifted,
keys, for the (m−1) insertions can be expressed
as follows.

fetchs = (m − 1) × height + 2 × d + 1

+ (m − 2)
(

1
2 × d + 1

(2 × (d + w − 1) + 1)

+
2

2 × d + 1

×
d+w−1∑

k=w

(
2 × (k − 1) +

3
2

))

(10)

keys =
m

2
+ m × 100 − usage

100
× 1

2

+ m × d + (m − 2)
(

m × 100 − usage

100
× 1

2
+

m

2

+
1

2 × d + 1
(m × (d + w − 1))

+
2

2 × d + 1

d+w−1∑
k=w

m × (k − 1)
)

(11)
We need updates on internal nodes caused by

shift operations except for the shift between the
first child leaf node of an internal node to the
last child leaf node of its left neighbor internal
node. The probability of the occurrence of this
update at a leaf node is m

m+1 . The number of
leaf nodes that we are considering is d + w − 1.
Thus, the number of updates on internal nodes
is

(m − 1) × (d + w − 1) × m

m + 1
. (12)

Since an update in the index part copies a
data stored in a leaf node, the cost for it can be
estimated as shiftcost. Note that no other cost
is necessary because it is expected that an inter-
nal node to be updated has already been cached
by traversing the path from the root node to the
leaf node.

The number of nodes to be accessed for a
search operation is equal to the height of the
tree. Then, the cost with no overflow node is
expressed as follows.

fetchs × fetchcost + keys × shiftcost

+ (m − 1) × (d + w − 1) × m

m + 1
× shiftcost
+ s×(m − 1)×height×fetchcost (13)

This is Eq. (7).
Next, we consider the cost with an overflow

node. As described before, let d be the number
of nodes that we access from pivot for finding
room in one direction. If we add an overflow
node to pivot for one insertion, the overflow
node has (m − 2) empty slots at this moment.
Thus, (m−2) insertion operations following the
insertion operation are performed by shifting
data to pivot or a leaf node which is d far from
pivot. Let d + y be the expected number of
nodes that are between pivot and the node to
which data are shifted by an insert operation.
Let us define x (x < d) as follows.

x =
⌈

d + y

2

⌉
(14)

Then, we can calculate y as follows.

y =

⌈
(m − 2) × d−x+1

2×d+1

m × 100−usage
100

× 1
2

⌉
(15)

We can obtain x and y with Eqs. (14) and



230 IPSJ Journal Jan. 2006

(15).
Then, the expected number of nodes to be

fetches, fetcho, and the expected number of
keys to be shifted, keyo, for (m − 1) insertions
can be expressed as follows.

fetcho = (m − 1) × height + 2 × d

+ (m − 2)

(

2
2 × d + 1

x−1∑
k=1

(
2 × (k − 1) +

3
2

)

+
2

2 × d + 1

×
d+y−x−1∑

k=y

(
2 × (k − 1) +

3
2

))

(16)

keyo = m

+ (m − 2)
(

2 × x + 1
2 × d + 1

× m + 1 + 2×m−1
2

2

+
2 × d − 2 × x

2 × d + 1

×m × 100 − usage

100
× 1

2

+
2 × d

2 × d + 1
× m

2

+
2

2 × d + 1

x−2∑
k=1

m × k

+
2

2 × d + 1

d+y−x−2∑
k=y−1

m × k

)
(17)

Because we can express the possibility of ac-
cess pivot in the search operations as s × (m −
1) × 1

2×d+1 , the cost with overflow nodes is ex-
pressed as follows.

fetcho × fetchcost
+ keyo × shiftcost + newcost
+ s × (m − 1) × height × fetchcost

+ s × (m − 1) × 1
2 × d + 1

× 1
m

m∑
k=1

k

m + k − 1
× fetchcost (18)

This is Eq. (8).
(Received April 4, 2005)

(Accepted October 11, 2005)
(Online version of this article can be found in
the IPSJ Digital Courier, Vol.2, pp.25–38.)

Hidehisa Takamizawa re-
ceived his B.E. and M.E. de-
grees in Computer Science from
Gunma University, Japan, in
2001 and 2003, respectively. He
is presently with Toshiba Solu-
tions Corporation, Japan. His

research interests include database systems and
security. He is a member of IPSJ.

Kazuyuki Nakajima re-
ceived his B.E. and M.E. de-
grees in Computer Science from
Gunma University, Japan, in
2002 and 2004, respectively. He
is presently with ACCESS Co.,
Ltd., Japan.

Masayoshi Aritsugi received
his B.E. and D.E. degrees in
computer science and communi-
cation engineering from Kyushu
University, Japan, in 1991 and
1996, respectively. Since 1996,
he has been working at the Fac-

ulty of Engineering, Gunma University, Japan,
where he is now an Associate Professor. His re-
search interests include database systems and
parallel and distributed data processing. He is
a member of IPSJ, IEICE, IEEE-CS, ACM, and
DBSJ.


