
Design and Implementation of Manycore Processor for a Large FPGA

Haruka MORI † Shimpei SATO ‡ Chu Van Thiem ‡ Kenji KISE ‡

Dept. of Computer Science, Tokyo Institute of Technology †

Graduate School of Information Science and Engineering, Tokyo Institute of Technology ‡

1 Introduction

Due to the limitations of the single-threaded perfor-
mance and the improvement of semiconductor technol-
ogy, the number of cores integrated on a single chip con-
tinues increasing. As can be seen in Intel Xeon Phi1) and
KARLAY MPPA MANYCORE2), manycore processors
are becoming mainstream.

In this paper, with the above background, we design
and implement a simple manycore processor that op-
erates as an accelerator targeting a large FPGA (Field
Programmable Gate Array). Additionally, we describe
an overview of the designed manycore processor ’s ar-
chitecture and the amount of used hardware resources
in the FPGA implementation.

2 Design of Manycore Processor for a Large
FPGA

2.1 Design Guide

In this work, we assume that our manycore proces-
sor is implemented on a Virtex-7 FPGA board. How-
ever, since various models of FPGAs and FPGA boards
with different specifications are being manufactured, the
portability of the implementation is important. There-
fore, we keep to a minimum the use of non-FPGA hard-
ware in our manycore processor design.

The Virtex-7 FPGA board has two types of RAM
resources: On-Chip RAM and Off-Chip DRAM. The
On-Chip RAM called BRAM (Block RAM) is the inter-
nal memory of the FPGA. And the Off-Chip DRAM is
integrated on the FPGA board. By utilizing the Off-
Chip DRAM together with BRAM, the available mem-
ory amount is increased. However, the use of Off-Chip
DRAM make the implementation heavily depend on the
specification of the board. To prevent the degradation
of the board-to-board portability, we only use BRAMs
in our implementation.

We assume that our manycore processor is imple-
mented on the Virtex-7 FPGA, and is used by connect-
ing to a host computer. At the start of the operation,
the user transfers a binary code which can be executed
by the processor to the FPGA via USB serial commu-
nication using a terminal emulator such as Tera Term.
The execution result of the processor is transferred back
to the host computer via the same USB serial commu-
nication, and is displayed on the terminal emulator.

A manycore processor generally has multiple PEs
(Processor Elements). It is possible to improve through-
put of a process in manycore processors by running a
parallel application. Although running parallel applica-
tions on the processor is one of our design goals, we only
focus on designing the processor to operate reliably on
the FPGA at this stage. Therefore, we do not assume
that parallel applications run on the processor.

������������

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

Figure 1: Architecture of a manycore processor with 36
nodes configurationn

������

������	
��������
����������

��
�����
����������

����
�����

���������
����

������

������	
��������
����������

��
�����
����������

���

���� �����

���

����
�����

(a) Processor Node (b) Cache Node

������

������	
��������
����������

������
����������

������
���

���������
����

������

������	
��������
����������

���� ����

!���

���� ���

!���

"���
���

(c) Memory Node (d) Scheduler Node

Figure 2: Internal structures of four types of nodes

2.2 Architecture

Figure 1 shows architecture of a manycore proces-
sor with 36 nodes configuration. There are four types
of nodes: Processor Node (P), Cache Node (C), Sched-
uler Node (S), and Memory Node (M). These 36 nodes
are connected with two-dimensional mesh network. The
node-to-node communication is performed by the packet
exchange. In Figure 1, the solid lines indicate the phys-
ical links between the nodes. Each gray colored area
shows a pair of Processor Node and Cache Node. By
pairing the Processor Node with the Cache Node, the
Cache Node becomes the private cache of the Processor
Node.
Figure 2 shows the internal structures of four types of

nodes. As illustrated in Figure Figure 2a, a Processor
Node is composed of one processor core, 2KB instruc-
tion cache and 2KB data cache. The direct mapped
structure is employed as the data storage structure of
the instruction cache and the data cache. The processor
core is a pipelined MIPS processor3) with 32-bit data
path. The five pipeline stages include instruction fetch,
instruction decode, execute, memory access, and write
back. A Cache Node has a 32KB cache as shown in Fig-
ure 2b. As same as the caches at the Processor Nodes,
we use the direct mapped structure for the caches at
Cache Nodes. A Memory Node (Figure 2c) has a 1MB
RAM. This 1MB RAM is divided into 16 areas of 64KB.
Programs transferred from the host computer are se-
quentially stored in these memory areas. We will de-
scribe Scheduler Node (Figure 2d) in the next section.

2.3 Scheduler Node

The designed manycore processor stores all programs
in the memory at the beginning of its operation. The
Scheduler Node has a role of allocating memory areas in
which programs are stored to the Processor Nodes. If
the number of programs that have been transferred is
greater than the number of processor nodes, when exe-
cution of one program at a Processor Node finishes, the
Scheduler Node allocates a new program to that Proces-
sor Node.

Copyright 2014 Information Processing Society of Japan.
All Rights Reserved.1-107

4J-2

情報処理学会第76回全国大会

���������	
��

��	
��

�������

�������

������

�������

��	
��

��	
��

Scheduler Memory

…
…

…
…

…
…

Figure 3: An example of the allocation by the scheduler

　

1 int main(void){
2 int pair , space =0;
3

4 for(pair =0; pair < N+1; pair ++){
5 activate(pair , space);
6 space += 1;
7 }
8

9 while(space < M+1){
10 if(get_stat ()){
11 pair = find_deactive ();
12 activate(pair , space);
13 space += 1;
14 }
15 }
16
17 return 0;
18 }

Figure 4: C program describing an allocation algorithm

Figure 3 shows an example of the allocation by the
scheduler. In this example, there are N pairs of Pro-
cessor Node - Cache Node, and M memory areas in
which programs are stored. The Scheduler Node allo-
cates space 1 to pair 0, space 3 to pair 1, space 2 to
pair 2, and space M to pair N. If pair 0 has completed
the execution of the program, the Scheduler Node can
allocate space 0 to pair 0.
The allocation algorithm is described by users. Like

the Processor Nodes, the Scheduler Node consists of one
processor core, 64KB instruction memory, and 64KB
data memory. The allocation program is transferred
from the host computer and stored in the RAM of the
Scheduler Node at the start of the processor’s operation.
Figure 4 shows a C program describing an allocation

algorithm. In this example, we assume that N < M
where N is the number of pairs and M is the number
of memory areas. Lines 4-7 describe the initialization
sequence. The Scheduler Node sequentially allocates a
memory area for each pair. Lines 9-15 describe the ad-
ditional sequence. In this sequence, the Scheduler Node
sequentially allocates memory areas for pairs that fin-
ished their operations.
The Scheduler Node can estimate performance based

on the distances between the pairs and the Memory
Node. Further, the number of fetches from the Processor
Nodes can be obtained. Even if a program is repeatedly
executed by different pairs, an allocation algorithm that
allocates the program on a priority basis to the pairs
that exhibit better performance can be applied.

3 Implementation and Evaluation

In the implementation, we use the VC707 Evaluation
Board which integrate the Virtex-7 XC7VX485T FPGA.
The Virtex-7 XC7VX485T FPGA has 75,900 slices. The
minimum processor configuration has four nodes: A Pro-
cessor Node, a Cache Node, a Memory Node, and a
Scheduler Node. These four nodes are connected in a
2×2 two-dimensional mesh network. We described the
logic circuit of the processor in Verilog HDL, and per-

Table 1: Amount of hardware and logic synthesis time

Slices Slice Regs Slice LUTs BRAM TIME
2x2 4,508 6,146 13,692 305 1,262
4x4 27,045 31,813 75,391 377 2,983
6x6 51,108 75,058 175,309 497 6,163

　

formed synthesis in Xilinx ISE 14.5. We have imple-
mented the processor on the VC707 Evaluation Board.
And the behavior of some simple programs and schedul-
ing programs has been confirmed.
Table 1 shows the amount of hardware and a logic

synthesis time of different nodes configurations. In ad-
dition to the Scheduler Node and the Memory Node,
2×2 consists of a pair of Processor Node Cache Node,
4×4 consists of 7 pairs, and 6×6 consists of a 17 pairs.
In the routers of the nodes at the edge of the mesh

network, there are several unused ports. Since these
redundant logics are optimized by ISE, the amount of
hardware is reduced. In the case of 2×2 mesh net-
work, the number of slices is reduced significantly be-
cause all nodes are positioned at the corners. In the
case of 4×4 and 6×6, the nodes that are close to the
center of the mesh network are not affected by the opti-
mization. When the impact of optimization is small, the
number of slices of a Processor Node and a Cache Node
is about 1800 and 2000, respectively. The increment of
the number of slices compared to the optimized case is
a reasonable.
On the other hand, BRAMs are used for implement-

ing caches, memories. And the number of used BRAMs
scales with the number of Processor Nodes and Cache
Nodes.

4 Summary and Future Work

In this paper, we designed a simple manycore proces-
sor targeting a large FPGA. We implemented the de-
signed manycore processor in the Virtex-7 FPGA and
measured the amount of hardware.
As future work, we plan to improve the architecture

and evaluate performance of the designed manycore pro-
cessor using different scheduling algorithms and parallel
applications.

References

1) Intel Xeon Phi Coprocessor: Datasheet. http://
www.intel.com/content/www/us/en/processors/
xeon/xeon-phi-coprocessor-datasheet.html.

2) KALRAY MPPA MANYCORE. http://www.
kalray.eu/products/mppa-manycore/.

3) David A. Patterson and John L. Hennessy. Com-
puter Organization and Design: The Hardware/Soft-
ware Interface. Morgan Kaufmann, 2011.

Copyright 2014 Information Processing Society of Japan.
All Rights Reserved.1-108

情報処理学会第76回全国大会

