
Vol. 47 No. 2 IPSJ Journal Feb. 2006

Regular Paper

A Framework for Distributed Inter-smartcard Communication

Masayuki Terada,
†
Kensaku Mori,

†
Kazuhiko Ishii,

†

Sadayuki Hongo,
†
Tomonori Usaka,

††
Noboru Koshizuka

††

and Ken Sakamura
††

This paper proposes a framework based on a new architecture that allows distributed smart-
cards to interact with one another as well as with application programs on their hosts. Since
these interactions are handled distribution-transparently through message dispatching agents
deployed on each host, the smartcards can autonomously conduct distributed protocols with-
out turning to off-card application programs. The proposed framework thus reduces the
complexity of application programs and makes it easier to develop smartcard-based services
that offer a high level of functionality. The feasibility of the framework is evaluated and
confirmed by implementing a smartcard-based optimistic fair trading protocol for electronic
vouchers on this framework.

1. Introduction

Personal trusted devices, of which smartcards
are the most typical example, are becoming the
preferred tools for realizing secure and conve-
nient electronic commerce.

The early smartcards had limited computing
power and were therefore used as data carri-
ers with simple access controls. Recent smart-
cards, however, are far more powerful and can
be treated as external secure computing devices
rather than mere secure memory devices 12).
Smartcards are now being used as auxiliary de-
vices of regular computers (i.e., PCs), as well
as trusted conductors of distributed protocols in
several applications, such as systems for trading
electronic money and vouchers among smart-
cards 7),17),18). Smartcards are no longer auxil-
iary devices in these systems, but rather their
hosts can be considered as auxiliary devices
which supply I/O functionality to the smart-
cards.

One impediment is that the standard in-
terface and architecture for interacting with
smartcards, namely ISO7816-4, is rather out-
dated and does not support modern smartcard
functions such as conducting distributed pro-
tocols. In ISO7816-4, the data format named
APDU (Application Protocol Data Unit) de-
pends too much on the original internal smart-
card structure, interactions are asymmetric,
and smartcards must always be “passive”
transponders; there is no way of getting the

† NTT DoCoMo, Inc.
†† The University of Tokyo

smartcard to issue a command to its host.
These drawbacks make ISO7816-4 unacceptable
as a platform on which to develop application
programs for systems that are intended to fully
utilize the latest smartcards’ high functionality.

Several approaches have been proposed to
offer more sophisticated and abstracted inter-
actions with smartcards, which can be ac-
cessed in similar ways to familiar devices such
as file systems, web servers, and remote ob-
jects 4),9),11),13). These approaches reduce the
cost of developing application programs, since
they conceal the internal details of the smart-
cards’ data format. Unfortunately, the archi-
tectures proposed so far are still asymmetric,
and smartcards are considered as merely pas-
sive transponders. Such architectures cannot
facilitate the development of systems that de-
pend on smartcards to conduct distributed pro-
tocols.

In this paper, we propose a framework named
TENeT (Trusted Environment with Network-
ing eTRON), which provides symmetric and
distribution transparent interactions among
smartcards and application programs in a dis-
tributed environment.

Every smartcard and application program
(on hosts) in this architecture interacts with the
others by distributed message passing. Since
each message is delivered automatically ac-
cording to its destination, a smartcard can
(logically) interact with another smartcard au-
tonomously. Since the interaction is concealed
from the application program on the host, there
is no need for the program to parse or mediate
messages between smartcards. Instead, the ap-

534

Vol. 47 No. 2 A Framework for Distributed Inter-smartcard Communication 535

plication program simply sends a message that
asks the smartcard to start the protocol and
waits to receive the result of the protocol.

The feasibility of the framework is evaluated
and confirmed by implementing a smartcard-
based optimistic fair exchange protocol for
trading electronic vouchers. The implementa-
tion result shows that such a protocol could
be efficiently implemented on this framework
without any significant performance overheads,
and the execution of the protocol by the smart-
cards is well abstracted and encapsulated from
the application programs on the hosts: all those
programs have to do is to start an exchange (for
the initiator of the trade) and to confirm the of-
fer of the exchange (for the responder).

The rest of the paper is organized as follows:
Section 2 describes the characteristics of smart-
cards and the problems of ISO7816-4, which is
commonly used as the specification for inter-
acting with smartcards. Section 3 looks at the
previous approaches related to the problems of
smartcards. Section 4 illustrates our proposal,
TENeT, and details its structure and security
mechanisms. Section 5 reviews an implementa-
tion result of a distributed protocol, which ex-
changes electronic vouchers between two smart-
cards, using the proposed framework. Section 6
discusses the security aspect of the framework.

2. Smartcards

A smartcard is a tamper-resistant device
that prevents external entities from illegally ac-
cessing stored data and programs. Although
some low-end cards are not programmable
and merely offer simple authorization us-
ing shared secret and read/write (or incre-
ment/decrement) access to their memory, this
paper assumes a programmable smartcard that
has a micro-processor for executing programs.

Since a smartcard usually has no (long-life)
battery or user interface, it cannot be used in
a standalone manner; instead, it must be con-
nected to another device that supplies power
and I/O support. We refer to such a device as
the host of the card. A PC that has a smart-
card reader/writer and a mobile phone with a
SIM or UICC slot are typical hosts.

Both a smartcard and its host have appli-
cation programs that interact with each other.
These application programs are called off-card
(off-card APs) and on-card application pro-
grams (on-card APs), respectively.

Interactions between an on-card AP and an

off-card AP usually follow a part of an inter-
national standard specification for smartcards,
ISO7816 part 4 10) (ISO7816-4), which specifies
a protocol and data format named Application
Program Data Unit (APDU) for issuing com-
mands from an off-card AP to an on-card AP.

A smartcard based on ISO7816-4 functions as
a reactive transponder; the host sends a com-
mand (Command APDU) to the smartcard and
the smartcard responds with the result of the
command execution (Response APDU). The
smartcard never sends any command to the
host (or another smartcard) in this scheme.

This scheme works well for smartcards that
provide only low-level functionalities such as
read/write or simple sign/verify; however, it
does not support the high-end functionalities
of recent smartcards, such as conducting dis-
tributed protocols. A description of the prob-
lems with ISO7816-4 is given below:
Asymmetry of the architecture. Since

ISO7816-4 assumes that smartcards will
not behave proactively, it is difficult for a
smartcard to send a request or notification
to an external entity; for example, it is diffi-
cult to apply the Observer pattern 8), which
is commonly used for sending notifications
of events in object-oriented designed sys-
tems. A series of APDUs may be able to
provide a roughly equivalent function; how-
ever, it makes both the on-card APs and
off-card APs much more complicated.

No support for distribution. Since there
is no support for a distributed environment
in ISO7816-4, a smartcard cannot interact
with remote entities such as smartcards on
remote hosts and server programs on re-
mote servers unless an off-card AP on its
host mediates the interactions. Because
of the asymmetry of the architecture, such
a mediation procedure makes off-card APs
cumbersome and complicated.

Figure 1 illustrates the drawbacks of
ISO7816-4 style architectures when they are
used to implement a distributed protocol con-
ducted between smartcards. In this figure,
smartcards merely conduct a 2-round protocol
that consists of 4 messages, which looks more
complicated than it is because of a number of
mediations of the messages by off-card APs.

This is one of the demerits of such an archi-
tecture. Because of the asymmetry and lack
of distribution support, smartcards are unable

536 IPSJ Journal Feb. 2006

Fig. 1 Implementing an inter-smartcard
communication protocol using ISO7816-4.

to conduct the protocol by themselves, and off-
card APs need to mediate the interactions; for
each message to be exchanged between smart-
cards, an off-card AP has to feed it into a smart-
card as a command, extract the next message
from the response, and forward it to an appro-
priate off-card AP on a remote host according
to the extracted message. Off-card APs thus
have to be responsible for conducting the pro-
tocol, even though they are intrinsically inter-
ested only in the result of the protocol and
should not have to consider details of the be-
havior of the smartcards; for example, when
smartcards conduct mutual authentication, off-
card APs need to know whether the authenti-
cation was successful or not, but they may not
need to know how the smartcards authenticate
each other.

The implementation of such mediation pro-
cesses in off-card APs is not only tedious but
also complicates the structure of an off-card AP,
since it compromises the principle of encapsula-
tion. It will accordingly be fertile soil for bugs
that must be avoided for security or commerce
applications.

3. Previous Work

Several approaches have been proposed to
make it easier to develop smartcard-based ap-
plication systems.

One approach is to develop an application-
oriented framework, which encapsulates inter-
actions with smartcards from off-card APs and
provides off-card APs with an abstracted view
of the functions close to the application logic.
For example, VTS-API (Voucher Trading Sys-
tem API) 16) is designed to provide “electronic
wallet” off-card APs with simple and abstracted
functions to manage and transfer electronic
vouchers including money and tickets. Al-
though VTS-API is well generalized to permit
the transfer of diverse kinds of vouchers, it is
useless for other applications, since these re-
quire another framework.

This approach might be promising in a cer-
tain application area, but it is difficult to apply

it to applications that differ from the intended
target of the framework. We therefore focus on
generic approaches that can be applied to dif-
ferent kinds of applications and should be help-
ful when developing application-oriented frame-
works.

Webcard 13) and WebSIM 9) enable a smart-
card to mimic an HTTP server, with which
users and off-card APs can interact using the
HTTP protocol; that is to say, a user can ac-
cess a smartcard by using his/her favorite web
browser. This approach is quite useful in cer-
tain applications in which users directly inter-
act with their smartcards, and the generality
of HTTP does not strictly limit the application
area.

JASON 4) and JavaCard 2.2 15) provide fa-
cilities similar to Remote Method Invocation
(RMI), the facility for invoking methods on re-
mote objects in Java. These facilities, which
are called Secure Method Invocation in JASON
and JavaCard RMI in JavaCard 2.2, enable off-
card APs to interact with smartcards as if they
were interacting with remote objects by means
of RMI. Since the detailed format of the inter-
actions is concealed from off-card APs, the de-
velopers do not need to be aware of the detailed
format or indeed the protocol used in RMI.

These approaches enable an off-card AP to
access a smartcard in an abstracted and uni-
fied way, which is likely easier than APDUs,
particularly when remotely accessed. However,
their architecture remains asymmetric: smart-
cards are still passive and are not allowed to
access external entities. Such approaches there-
fore do not allow smartcards to communicate
with other devices, including other smartcards.

To address the disadvantages caused by
asymmetric interactions between a smartcard
and its host, several interaction schemes have
been proposed on the basis of the Intelligent
Adjuncts paradigm 2),3), which enables a smart-
card to access off-card resources of the host.

Proactive UICC 1),6) provides a mechanism
whereby a smartcard can issue commands to its
host to display some messages, for example, or
to fetch input from a user. In the initial state,
an off-card AP issues a command to a smart-
card and the smartcard responds to the com-
mand, as is the case with the usual ISO7816-4
smartcards. When the smartcard wants to issue
a command to the off-card AP, it sends back a
response that includes a special state code (“91
XX”, where XX is the size of the command to

Vol. 47 No. 2 A Framework for Distributed Inter-smartcard Communication 537

be issued by the card) instead of the normal
state code (“90 00”). The off-card AP then is-
sues a FETCH command that requests the card
to send back the command to be issued. The
proactive UICC mechanism thus enables smart-
cards to reverse the command/response direc-
tion.

Card-Centric Framework (CCF) 5) takes a
similar but more aggressive approach, wherein
the roles of smartcard and host are completely
swapped; a smartcard becomes proactive as
soon as it is attached to the host.

The disadvantage of the proactive UICC
approach is that the switching of the com-
mand/response direction requires an extra
handshake cycle, which causes considerable per-
formance overheads and complicates off-card
AP design. CCF eliminates these overheads
by considering only the case where a smartcard
makes use of resources on the host; however,
this approach consumes much more processing
power of the smartcard, and the implementa-
tion result 5) shows that it is not yet feasible
for current smartcards.

Apart from the performance problem, neither
Proactive UICC nor CCF offers distribution
transparency; help of an off-card AP is needed
for a smartcard to access remote resources.

4. Our Proposal

In this section, we propose a distributed
smartcard communication framework named
TENeT (Trusted Environment with Network-
ing eTRON). This framework efficiently and se-
curely provides a symmetric and distribution
transparent interaction means based on mes-
sage passing, which enables smartcards to au-
tonomously conduct distributed protocols with
one another, without any mediation by off-card
APs.

To dispense with such extrinsic mediation by
off-card APs and enable them to dedicate them-
selves to their primary tasks, smartcards should
autonomously conduct a protocol by directly in-
teracting with one another after receiving the
order from an off-card AP (Fig. 2). Since a
smartcard usually has no means of physical ac-
cess to a network itself, however, interactions
among smartcards are inevitably mediated by
hosts in physical sense. TENeT logically real-
izes such direct inter-smartcard communication
by deploying distribution-transparent messag-
ing facilities on each host.

In this architecture, off-card APs do not have

Fig. 2 Direct inter-smartcard communication.

to deal with the details of interactions among
smartcards; TENeT offers much better encap-
sulation of smartcard behaviors and therefore
simplifies the implementation of off-card APs
in comparison with previous architectures.

4.1 Design Goals
In order to realize the inter-smartcard com-

munication described above, we set the main
design goals of the TENeT framework as fol-
lows:
Provide efficient symmetric interactions.

While the importance of smartcard proac-
tivity is emphasized in the above descrip-
tions, the reactive use of smartcards such
as sign/verify still remains and is impor-
tant. To consistently support both uses,
a symmetric architecture in which smart-
cards and off-card APs can interact with
one another in the same manner is desir-
able, and should be implemented efficiently.

Provide distribution transparency. As
mentioned above, distribution transparency
of interaction should be provided to enable
a smartcard to autonomously conduct dis-
tributed protocols with another smartcard
on a remote host, without off-card APs be-
ing responsible for routing or dispatching
the messages of the protocol.

Provide security. Distribution transparency
suggests that it is possible for malicious re-
mote entities to conduct illegal acts on a
smartcard without alerting the off-card AP
or its user. The framework must prevent
such illegal acts to avoid this situation. In
addition, when considering the implemen-
tation of off-card APs through the use of
an on-line downloaded program execution
environment such as a Java applet, which
is the most popular way to implement add-
on application programs on mobile phones,
illegal accesses from malicious off-card APs
should be prevented as well; for example,
an applet should be prevented from ini-
tiating harmful operations, such as delet-

538 IPSJ Journal Feb. 2006

ing or sending vouchers while pretending
to merely draw an animation on a display.

To achieve these goals, we took the following
approaches in designing TENeT.

The most straightforward approach to pro-
viding symmetric interactions is to realize a
call/return mechanism that allows smartcards
to invoke external entities and vice versa, with-
out handshakes to switch the direction. How-
ever, this approach requires a smartcard to pre-
serve its execution context (i.e., the execution
stack) until the invocation is returned from the
external entity. This is not easy for smartcards,
which tend to suffer from a shortage of volatile
memory (i.e., RAM), to efficiently preserve ex-
ecution contexts, especially in view of the need
to support nested (reentrant) invocations.

We therefore dropped the call/return ap-
proach and instead adopted the message-
passing approach, in which all interactions
among smartcards and external entities, includ-
ing off-card APs and remote servers, are per-
formed by exchanging messages. This requires
that off-card APs be executed in an event-
driven manner instead of a command/response
or call/return manner, but we consider that
this is not a problem, since the event-driven ar-
chitecture is commonly used in object-oriented
programming, especially when developing GUI
applications.

To provide distribution transparency, each
entity exchanging messages has its own identi-
fier, and each message includes two identifiers:
the source and the destination of the message.
Messages are routed automatically according to
the identifier of its destination. The details of
the identifier are described in Section 4.2, and
the architecture of the framework for distribut-
ing the messages is depicted in Section 4.3.

Providing security against malicious entities,
including remote entities and malicious off-
card APs, requires a different authentication
scheme from that of the current smartcards.
Most smartcards provide an “external authen-
tication” mechanism to prevent external en-
tities from performing possibly harmful oper-
ations. A typical external authentication of-
fers “per smartcard” authentication; that is to
say, it manages whether a particular smartcard
has been authenticated. When this mechanism
is applied to TENeT unaltered, any messages
from any entities will be accepted by a smart-
card once an off-card AP has made a successful
authentication.

An approach that avoids this situation is to
apply the logical channel extension in ISO7816-
4. This extension enables a smartcard to vir-
tually establish up to four channels with dif-
ferent off-card APs, and requires that activities
on each channel be independent; an authenti-
cation made by an off-card AP using a dedi-
cated channel does not affect the authentication
status of another off-card AP using a different
channel. The logical channel extension, how-
ever, cannot be easily adapted to TENeT, since
its channel-based mechanism does not suit the
message-passing architecture and does not of-
fer any means to prevent an off-card AP from
using a channel dedicated to another AP.

To avoid the above problems and provide
enough security, TENeT provides a “per en-
tity” authentication scheme based on capability
objects and message-filtering facilities named
Guard. Details are given in Section 4.4.

4.2 Message Structure
The messages exchanged among entities in

TENeT, including smartcards and off-card
APs, are named eTP messages.

Like IP packets on the Internet, an eTP mes-
sage consists of a header, which includes its
source and destination, and a payload. For eas-
ier implementation of message parsers in smart-
cards, the header includes a code designating
“message type,” which determines the format
of the payload; that is to say, an eTP message is
represented by the 4-tuple (src, dst, mtype,
param): src and dst represent the sender and
destination, respectively, mtype represents the
code designating the format of the param, and
param is a set of parameters described in the
format designated by mtype.

To realize distribution-transparent message
passing, it is required that (1) identifiers of
entities including smartcards and off-card APs
should be unique, and (2) it should be easy to
route messages according to the identifier.

In TENeT, each smartcard has a 128-bit iden-
tifier named uCode, which is a globally unique
identifier assigned to smartcards and RF-ID
tags by an organization named the uID Cen-
ter 14).

Since it is not practical to similarly identify
each off-card AP, which would require the as-
signment of an identifier for each AP instal-
lation, an off-card AP in TENeT acquires its
identifier from a smartcard on the same host;
the 16-byte (128-bit) identifier is divided into
12 + 4 bytes. The 12-byte set is called a “do-

Vol. 47 No. 2 A Framework for Distributed Inter-smartcard Communication 539

Fig. 3 Architecture of TENeT.

main” and the 4-byte set is called a “port.”
Each smartcard is assigned its own domain D

from the center. An off-card AP requests the
smartcard on the same host to assign a port
P , which is a unique number in the domain
and is never reused. In the case of a successful
assignment, the identifier of the application is
D|P , where x|y is the concatenation of x and
y. P = 0 is reserved for the identifier of the
smartcard itself, and is never assigned to APs;
that is, the identifier of a smartcard is D|0 (the
12-byte domain D followed by 4 bytes of 0’s).

This dynamic identifier assignment scheme
efficiently ensures the uniqueness of identifiers
and makes message routing easier. Since a
smartcard and all off-card APs on the same host
have the same domain, messages can be routed
by managing domain and host network address
pairs instead of managing each identifier; this
reduces the cost of address resolution for mes-
sage routing.

4.3 Architecture of TENeT
Figure 3 depicts the architecture and mod-

ules of the framework for symmetric and distri-
bution transparent delivery of eTP messages.
The role of each module is described below:

4.3.1 Dispatch Table
The dispatch table stores messages sent from

smartcards and off-card APs until they are re-
ceived by another entity. Every sent message is
temporarily stored in this table. A message is
sent by storing the message in the table via the
messaging library, and received by reading the
message.

4.3.2 Messaging Library
The messaging library provides a means of

sending or receiving messages to or from off-
card APs and proxies, namely, the messaging
API, by providing access to the dispatch table;
i.e., store a message in the table (sending a mes-
sage), read a message from the table (receiving
a message), and register a handler that notifies

of the storage of the specified message in the
table (notifying of message reception).

This library also offers an off-card AP a
means of acquiring its own identifier from a
smartcard. When acquiring the identifier, the
library creates an object named a “capability
object” that retains the acquired identifier, and
passes it to the off-card AP.

From off-card APs, most of the functions
provided by this library can be accessed only
through a capability object in order to prevent
another off-card AP from pretending. The de-
tails of the security offered by the capability
object are described in Section 4.4.

4.3.3 High-level Library
To make it easier to implement off-card APs

for a particular application, high-level libraries
provide application-oriented APIs that consist
of the functions needed to convert the data for-
mat used in off-card APs from and to that used
in eTP messages. These functions are used as
wrappers that construct and parse messages so
as to conceal from the off-card APs the detailed
data format of messages.

High-level libraries are not mandatory in
TENeT, but they may be helpful to offer better
encapsulation of data structure to off-card APs
when implemented.

4.3.4 Smartcard Proxy
The smartcard proxy provides a means of

sending and receiving messages in place of a
smartcard. This proxy is an independent pro-
cess that accesses the messages using the mes-
saging library; that is, when notified of the ar-
rival of a message for the smartcard by the han-
dler registered to the messaging library, this
proxy receives the message and forwards it to
the card, and upon receiving a message from
the smartcard, it stores the message in the dis-
patch table via the messaging library.

To detect the arrival of messages for the
smartcard, the smartcard proxy registers a han-
dler with the messaging library for any message
whose destination is the smartcard.

4.3.5 Remote Proxy
The remote proxy provides a means of rout-

ing messages from/to remote entities. This
proxy is also an independent process; it for-
wards a message to another remote proxy lo-
cated on the corresponding remote host when
the destination of the message is a remote en-
tity. Upon receiving a message from a remote
proxy of another host, it stores the message in
the dispatch table.

540 IPSJ Journal Feb. 2006

This proxy manages a routing table, which
includes pairs of domain and network address
of the host (cf. Section 4.2) and registers a han-
dler with the messaging library for any mes-
sage whose destination matches the managed
domains.

4.3.6 Guard
Guard consists of filter conditions and han-

dlers to be invoked when a message match-
ing the conditions arrives at the dispatch ta-
ble. When the handler is invoked, it typically
inspects the matched message and discards it if
it is considered harmful. The behavior of the
handler can be customized by the user.

Guard is mainly used to filter messages to
prevent malicious remote messages from being
forwarded to a smartcard. Details of this role
of Guard are described in Section 4.4.

4.4 Security Mechanisms
The authentication scheme used in TENeT

is similar to the “per channel” authentica-
tion mechanism of the logical channel extension
mentioned in Section 4.1, but differs in that it
offers secure “per entity” authentication.

In this scheme, authentications are made for
each entity; even if an off-card AP is success-
fully authenticated on a smartcard, another en-
tity cannot send messages that require authen-
tication to the smartcard unless it makes its
own authentication. A smartcard manages an
“authenticated ID” set, which consists of identi-
fiers of successfully authenticated off-card APs.
The authenticated off-card APs whose identi-
fiers are included in the set are assumed to be
“privileged” and are granted the privilege of
sending the smartcard potentially harmful mes-
sages such as deleting vouchers.

To gain privilege from a smartcard by authen-
tication, the off-card AP has to belong to the
domain of the smartcard; that is to say, only
off-card APs that acquired their identifiers from
the smartcard can gain privilege by successful
authentication. When the authentication suc-
ceeds for an off-card AP, the smartcard adds
the identifier of the AP to the set of the au-
thenticated IDs, and messages whose sender ID
(src field) is included in the set are considered
as messages sent by the privileged entity.

To secure this scheme, it is necessary to pre-
vent malicious entities, including malicious off-
card APs and remote entities, from pretending
to be privileged (correctly authenticated) off-
card APs by forging the sender ID; when the
sender ID can be forged, such an authentica-

tion becomes useless. TENeT utilizes message-
filtering facilities, i.e., Guard, against forg-
eries by remote entities, while using capability
objects against forgeries by malicious off-card
APs.

By default, the handler of Guard adapted
to the remote proxy discards any remote mes-
sages whose sender ID belongs to the domain
of a smartcard (cf. Section 4.2) on the local
host. Since domains are uniquely assigned for
each smartcard, any entity belonging to such
a domain is unlikely to exist on another host;
therefore, a remote message that has the same
domain as that of a local smartcard must al-
ways be considered malformed. Consequently,
no remote entity can successfully send a mes-
sage that pretends to have been sent by an au-
thenticated off-card AP, whose identifier has to
belong to the domain of the smartcard.

A capability object is instantiated when an
off-card AP requests a smartcard to assign its
identifier via the messaging library and then is
passed to the off-card AP. The capability ob-
ject offers the off-card AP a means of sending
a message, whose destination (dst), message
type (mtype), and message parameter (param)
can be freely set by the off-card AP, while its
sender ID (src) is bound to the identifier as-
signed when the object is instantiated.

Provided that this is the sole means for off-
card APs to send messages to smartcards and
the capability object is accessible only by the
off-card AP that instantiated it, no other off-
card APs can pretend to have the sender ID.
The feasibility of this assumption is discussed
in Section 6.

5. Implementation Results

This section describes the results of imple-
menting a distributed protocol, which opti-
mistically exchanges electronic vouchers be-
tween two smartcards, using the proposed
framework.

5.1 Optimistic Fair Exchange Protocol
for Trading Electronic Vouchers

We used this approach to implement a proto-
type voucher trading system that enables users
to securely trade electronic vouchers stored in
their smartcards, by using the optimistic fair
exchange protocol proposed in Terada, et al.17).
This protocol fairly exchanges vouchers v1 and
v2, each of which is stored in smartcards SA and

Vol. 47 No. 2 A Framework for Distributed Inter-smartcard Communication 541

Table 1 Definitions of the symbols used in the protocol description.

SA,SB smartcards located on hosts A and B, respectively
PA,PB (off-card) wallet application programs that manage SA and SB

v1, v2 vouchers initially stored in SA and SB

v1, v2 identifiers of v1 and v2

n1, n2 random numbers generated by SA and SB

h() a secure hash function (e.g., SHA1)
PkX a public key of asymmetric cryptography
(m)PkX a signed message that consists of m and a signature verifiable by PkX
CertX a public key certificate of PkX

SB, as follows ☆, where Table 1 gives the def-
initions of the symbols used in describing the
protocol:
(1) PA orders SA to start the exchange of v1

stored in SA and v2 stored in SB.
(2) SA sends SB an offer message m1:

{v1, v2, n1}, which consists of an offer to
exchange v1 and v2.

(3) SB deletes v2 and sends SA an agreement
message m2: {(h(v1|v2|n1) | h(n2))PkB,
CertB} iff offer m1 is acceptable.

(4) SA deletes v1 and sends SB a confirma-
tion message m3: {(h(n2))PkA, CertA} iff
agreement m2 is successfully verified.

(5) SB stores v1 and sends SA a commitment
message m4: n2 iff confirmation m3 is
successfully verified; otherwise, SB runs
the abort subprotocol.

(6) SA stores v2
☆☆ iff commitment m4 is suc-

cessfully verified; otherwise, SA runs the
resolve subprotocol.

When the above protocol is interrupted due
to network errors or other causes, a user may
fall into an unfair condition, wherein the smart-
card of the user has deleted its voucher with-
out storing the voucher to be received. In this
case, both PA and PB can recover fairness by
performing a resolve subprotocol and an abort
subprotocol, respectively, with a trusted third-
party T. Refer to the appendix for details of
these subprotocols.

5.2 Implementation
The protocol can be quite easily implemented

by using the proposed framework; each message
mi can be 1-to-1 mapped into an eTP mes-
sage. Most of these messages can be exchanged
between smartcards SA and SB autonomously,
and therefore the off-card wallet APs have al-
most nothing to do with running the protocol,

☆ To simplify the explanation, the details of the ver-
ification procedure and management of n1 and n2

are omitted.
☆☆ v2 is assumed to be generatable (i.e., able to be

stored) from v2 by SA.

Fig. 4 Modified message flow.

except that (1) wallet PA sends a message to
start the exchange, and (2) PB should confirm
whether offer m1 is acceptable or not to its user.

The former action also can obviously be
mapped to an eTP message, and the latter can
be implemented in the following ways: (2a) use
Guard, which prompts the user if the offer is ac-
cepted and discards the offer if the user rejects
it; or (2b) change the destination of offer m1 to
PB instead of SB, and insert an additional mes-
sage m′

1, which indicates acceptance of the offer
sent from PB to SB. Both approaches should
work well, but we took approach (2b) for our
prototype implementation.

The protocol thus can be implemented using
the proposed framework as follows, where pa,
pb, sa, and sb are the identifiers of PA, PB,
SA, and SB, respectively (Fig. 4):
(1) PA sends SA (pa, sa, start-exchange,

{v1, v2, pb}).
(2) SA sends PB (sa, pb, offer, m1).
(3) PB examines m1 in the received message,

and sends SB (pb, sb, accept, m1) iff
m1 is considered acceptable.

(4) SB deletes v2 and sends SA (sb, sa,
agreement, m2).

(5) SA deletes v1 and sends SB (sa, sb,
confirmation, m3) iff m2 is success-
fully verified.

(6) SB stores v1 and sends SA (sb, sa,
commitment, m4) iff m3 is successfully
verified; otherwise, SB runs the abort
subprotocol.

(7) SA stores v2 iff m4 is successfully verified;
otherwise, SA runs the resolve subproto-
col.

542 IPSJ Journal Feb. 2006

Table 2 Time taken to process messages.

Message type CPU (ms) I/O (ms) Total (ms)

start-excg. 50 129 179
accept (m1) 191 153 344
agreement (m2) 553 153 706
confirmation (m3) 402 91 493
commitment (m4) 24 42 66

Whole exchange 1,220 568 1,788

Table 3 Specifications of the system.

Smartcard Infineon SLE66CLX320P
CPU clock 15 MHz
Card R/W Gemplus GemPC Twin
Interface speed 38.4 kbps (Card–R/W), 12 Mbps (R/W–Host)
EEPROM 32 KB
RAM 5 KB
To generate a signature 125 ms (ECDSA, 163 bit)
To verify a signature 185 ms (ECDSA, 163 bit)

The resolve and abort subprotocols can be
implemented in a similar way.

5.3 Performance Results
Table 2 shows a performance result of the

implementation described above, and Table 3
gives the specification of the system used.

In Table 2, the columns show (from left
to right) the message type, the CPU time
consumed by the smartcard (and crypt co-
processor), the time for I/O interaction (includ-
ing the time needed to send the next message),
and the sum of the two. The last row lists the
time taken to process all messages. We can see
that it took only about 1.8 seconds to complete
an exchange. These figures do not include the
time needed for networking or message handling
in the host; however, the message handling cost
is negligible in comparison with the time con-
sumed by smartcards, and the networking cost
is not large because only a 2-round communi-
cation is needed for each exchange.

5.4 Discussion of the Results
5.4.1 Encapsulation of Smartcard

Behaviors
As shown in Section 5.2, the implementation

of off-card APs is quite simple; what they have
to do is to trigger the start of the exchange (for
PA) and to confirm the offer of the exchange
(for PB). The framework encapsulates from
off-card APs all other detailed behaviors of the
smartcards needed to conduct the protocol.

This encapsulation not only provides simplic-
ity of off-card APs but also offers implementa-
tion flexibility, as follows.

Since off-card APs are not concerned with

how smartcards perform exchanges, modifica-
tion of the smartcard implementation has no
impact on the implementation of off-card APs;
even if the protocol is totally replaced by an-
other protocol, there is no need to modify the
off-card APs as long as the messages used to
start or confirm an exchange are not modified.

Furthermore, although neither wallet PA nor
PB is responsible or required to execute an ex-
change, they can check the progress of the ex-
change if necessary by hooking messages ex-
changed between smartcards, using handlers
registered with the messaging library; this can
be implemented without modifying the smart-
card implementation.

The previous studies introduced in Section 3
do not offer such encapsulation and flexibility.
An application-oriented framework will be able
to provide the same or better abstraction when
appropriately designed for exchanging vouch-
ers, but modifications of the protocol are likely
to affect the implementation of the framework;
when the protocol is replaced, the framework
has to be re-implemented. Webcard, WebSIM,
JASON, and JavaCard2.2 require at least one
off-card AP to be involved in a protocol and me-
diate messages because of asymmetry. Proac-
tive UICC is potentially extensible to provide
similar flexibility by implementing middleware
to provide distribution transparency, wherein
FETCH commands are automatically issued
and the fetched remote messages are forwarded
to the appropriate destinations, but developing
such an extension would not be an easy task.
The situation with CCF is the worst; since

Vol. 47 No. 2 A Framework for Distributed Inter-smartcard Communication 543

smartcards in CCF are always proactive and
cannot be reactive, implementation of off-card
APs would need some synchronization tricks
like “rendezvous” in Ada. This might be pos-
sible, but would make off-card APs much more
complicated than even those on ISO7816-4.

5.4.2 Efficiency and Performance
The number of messages handled by the

smartcards is exactly the same as in the origi-
nal protocol ☆. The proposed framework does
not demand any extra interactions to imple-
ment the protocol; this is the optimum solution.

Most previous architectures, except Proac-
tive UICC, can also offer the same efficiency
regarding the number of the messages, pro-
vided that the protocol is adequately imple-
mented. Proactive UICC requires additional
FETCH commands to allow smartcards to send
messages; although it is even possible to imple-
ment the protocol without issuing any FETCH
commands, this is exactly the same as ISO7816-
4 and does not provide any advantages.

The overhead of processing each message is
slightly larger than that of ISO7816-4, which
is the most efficient, because of the longer
headers needed for distribution transparency.
The length of the header (or the trailer) of
Command APDU and Response APDU is, re-
spectively, 4 bytes and 2 bytes, while that of
an eTP message is 34 bytes (where mtype is
2 bytes). TENeT therefore requires 62 bytes
(= 34 × 2 − (4 + 2)) more than ISO7816-4
for a round trip interaction, which takes about
15 ms, given that the effective throughput of a
card R/W is 32 kbps. Since the optimum imple-
mentation of the protocol requires 2 + 2 round
interactions between smartcards and hosts, the
implementation shown in Section 5.2 is approx-
imately 60 ms slower than ISO7816-4.

Since this penalty is 3% of the total execu-
tion time, it does not affect the feasibility of
the proposed framework.

6. Security Discussion

6.1 Prevention of Malicious Remote
Messages

In this framework, Guard prevents malicious
messages that pretend to be messages from an
authenticated off-card AP from arriving at a
smartcard, as described in Section 4.4.
☆ The accept message is an addition, but the num-

ber of the messages the smartcards handle does not
change, since SB does not need to handle the offer
message.

Guard does not prevent remote message pre-
tending by another remote entity; however, this
limitation is not critical since acquiring the
privilege from a smartcard by authentication is
restricted to off-card APs that belong to the do-
main of the smartcard, and therefore no remote
entity can gain privilege from a smartcard.

Although restricting privileged access within
a domain prevents a remote entity from order-
ing a smartcard to perform potentially harm-
ful operations, it is unlikely to obstruct perfor-
mance of a distributed protocol that exchanges
messages remotely. Such messages are unlikely
to need privilege by authentication; the proto-
col itself would provide adequate security.

For example, in the exchange protocol intro-
duced in Section 5, just two messages require
privileges to be granted by a prior authentica-
tion: start-exchange, which orders a smart-
card to start the protocol, and acceptance,
which informs the other smartcard of the user’s
acceptance of the exchange ☆☆. No other mes-
sages require privilege, because all are harmless
even if they have been forged or falsified; the
protocol itself offers smartcards the means to
detect such malformed messages.

6.2 Prevention of Pretended Privilege
by an Off-card AP

As mentioned in Section 4.4, the security
for preventing an unauthenticated off-card AP
from pretending to be a privileged off-card AP,
which has been successfully authenticated, de-
pends upon access controls of the capability ob-
ject; if an off-card AP X had some means to
access the capability object of a privileged off-
card AP Y, X could pretend to be Y and fraud-
ulently gain privilege unless authenticated. In
addition, off-card APs must be prevented from
directly accessing the dispatch table.

Most modern operation systems and program
execution environments for downloaded pro-
grams such as Java applets provide means of
protecting resources, and these can be adopted
to realize the access controls needed.

For example, Java offers a resource protec-
tion mechanism called sandbox, which restricts
downloaded Java programs, namely applets, to
accessing the given limited resources. An applet
in the sandbox basically cannot access objects
in another applet even if they are executed in
☆☆ The messages that order each smartcard to re-

cover fairness (to start the resolve/abort subproto-
col) should be included when considering the recov-
ery subprotocols.

544 IPSJ Journal Feb. 2006

the same virtual machine, except by way of the
AppletContext class discussed later; moreover,
it cannot access the other objects in the heap
memory unless they are explicitly provided by
APIs and access has been granted. The sand-
box accordingly provides enough access control
when off-card APs are implemented as Java ap-
plets; the dispatch table can merely be imple-
mented as a collection of heap objects.

When off-card APs are implemented as Java
applets, however, it should be noted that Java
provides the AppletContext class, whereby an
applet can acquire the object reference of an-
other applet if both are downloaded from the
same document (e.g., the same web page). This
facility is helpful for inter-applet communica-
tion, but potentially allows access violations
of the capability object. To avoid this prob-
lem, implementations of off-card APs should
not make the capability object traversable by
using public methods of the applet instance.

6.3 Providing Confidentiality and In-
tegrity

While most previous systems that offer re-
mote access to smartcards make an effort
to provide access confidentiality and integrity,
messages in (our current implementation of)
TENeT are not encrypted, nor do they follow
MAC. This is one of our design decisions.

These schemes require a key exchange in ad-
vance of message exchanges unless it is assumed
that pre-shared secret keys are shared by all
entities exchanging messages. Performing key
exchange protocols, however, is too “heavy”
for smartcards, whose I/O performance is quite
limited, to apply at the beginning of every in-
teraction.

As mentioned in Section 6.1, most crypto-
graphic application protocols utilizing smart-
cards are designed without the assumption of
secure channels among entities; each message
which needs confidentiality or integrity has
already been protected by adequate crypto-
graphic techniques such as encryption or dig-
ital signatures. Applying them in the message
transport layer would be redundant, and should
be avoided to ease performance concerns.

If it is required to secure messages from third
parties for privacy reasons, providing a secure
connection between remote proxies using SSL
or IPSec would be sufficient and much faster
than providing secure channels between smart-
cards. Considering the performance disadvan-
tage, encrypting/decrypting messages in smart-

cards should be avoided even in this case.

7. Conclusion

In this paper, we have proposed a new frame-
work for a distributed smartcard environment,
named TENeT, which provides message-based
symmetrical interaction among smartcards and
application programs. Since this framework
enables smartcards to directly interact with
one another, application programs that utilize
smartcards can be much simpler and more mod-
ular than those in previous systems.

Although the proposed framework offers flexi-
ble interactions among smartcards and applica-
tion programs, its feasibility and efficiency are
not compromised; it can be efficiently imple-
mented using current smartcards, since nested
smartcard invocations are avoided by adopting
the message-passing approach, and the security
overhead is minimized by avoiding the redun-
dant application of cryptography.

The feasibility and efficiency of this approach
have been confirmed by implementing a proto-
type fair voucher trading system that enables
users to trade electronic vouchers fairly among
the distributed smartcards, using an optimistic
fair exchange protocol. The implementation re-
sults show that a system utilizing distributed
smartcards can be quite easily implemented us-
ing the proposed framework, without incurring
any expensive performance overheads.

Acknowledgments The helpful comments
of Hiroshi Aono and the anonymous reviewers
are gratefully acknowledged.

References

1) 3rd Generation Partnership Project (3GPP):
3GPP TS 31.111: USIM Application Toolkit
(USAT) (Release 6) (2004).

2) Balacheff, B., Chan, D., Chen, L., Pearson,
S. and Proudler, G.: Securing Intelligent Ad-
juncts using Trusted Computing Platform
Technology, Proc. 4th Working Conference on
Smart Card Research and Advanced Appli-
cations (CARDIS 2000), IFIP, pp.177–195
(2000).

3) Balacheff, B., Wilder, B.V. and Chan, D.:
Smartcards — From Security Tokens to In-
telligent Adjuncts, Proc. 3rd Working Confer-
ence on Smart Card Research and Advanced
Applications (CARDIS 1998), IFIP, pp.71–84
(1998).

4) Brinkman, R. and Hoepman, J.-H.: Secure
Method Invocation in JASON, Proc. 5th
Working Conference on Smart Card Research

Vol. 47 No. 2 A Framework for Distributed Inter-smartcard Communication 545

and Advanced Applications (CARDIS 2002),
USENIX/IFIP (2002).

5) Chan, P.-K., Choy, C.-S., Chan, C.-F. and
Pun, K.-P.: Card-Centric Framework — Pro-
viding I/O Resources for Smart Cards, Proc.
6th Working Conference on Smart Card Re-
search and Advanced Applications (CARDIS
2004), IFIP, pp.225–240 (2004).

6) European Telecommunications Standards In-
stitute (ETSI): ETSI TS 102 223: Card Appli-
cation Toolkit (CAT) (Release 6) (2004).

7) Fujimura, K. and Eastlake, D.: RFC 3506:
Requirements and Design for Voucher Trading
System (VTS) (2003).

8) Gamma, E., Helm, R., Johnson, R. and
Vlissides, J.: Design Patterns, Addison Wesley
Longman (1995).

9) Guthery, S., Kehr, R. and Posegga, J.: How to
Turn a GSM SIM into a Web Server, Proc. 4th
Working Conference on Smart Card Research
and Advanced Applications (CARDIS 2000),
IFIP, pp.209–222 (2000).

10) ISO/IEC: Integrated circuit(s) cards with con-
tacts — Part 4: Interindustry commands for
interchange (1995). ISO/IEC 7816-4:1995(E).

11) Itoi, N., Honeyman, P. and Rees, J.: SCFS:
A UNIX Filesystem for Smartcards, Proc.
USENIX Workshop on Smartcard Technology,
USENIX (1999).

12) Rankl, W. and Effing, W.: Smart Card Hand-
book, John Wiley & Sons, 2nd ed. (2001).

13) Rees, J. and Honeyman, P.: Webcard: a Java
Card Web Server, Proc. 4th Working Confer-
ence on Smart Card Research and Advanced
Applications (CARDIS 2000), IFIP, pp.197–
208 (2000).

14) Sakamura, K. and Koshizuka, N.: Business
of the Ubiquitous ID Center, Barcode, Vol.16,
No.5, pp.15–20 (2003). (in Japanese).

15) Sun Microsystems: Java Card Specification
2.2.1 Final Release (2003).

16) Terada, M. and Fujimura, K.: RFC 4154:
Voucher Trading System Application Program
Interface (VTS-API), IETF (2005).

17) Terada, M., Iguchi, M., Hanadate, M. and
Fujimura, K.: An Optimistic Fair Exchange
Protocol for Trading Electronic Rights, Proc.
6th Working Conference on Smart Card Re-
search and Advanced Applications (CARDIS
2004), IFIP, pp.255–270 (2004).

18) Terada, M., Kuno, H., Hanadate, M. and
Fujimura, K.: Copy Prevention Scheme for
Rights Trading Infrastructure, Proc. 4th Work-
ing Conference on Smart Card Research and
Advanced Applications (CARDIS 2000), IFIP,
pp.51–70 (2000).

Appendix: Subprotocols for Recover-
ing Fairness

The following are two subprotocols for recov-
ering fairness if the main protocol introduced
in Section 5.1 is interrupted. Note that Terada,
et al.17) use n1 as the identifier of an exchange
in these subprotocols; however, n2 should be
used instead in order to prevent illegal abort
requests. When using n1 as the identifier, the
(malicious) user of SB can force SA to abort the
exchange that SB has already completed, by re-
playing m1 followed by an abort request.

The resolve subprotocol is performed as fol-
lows:
(1) PA orders SA to start the resolve subpro-

tocol.
(2) SA sends T a resolve request message

mr1: {(resolve|h(n2))PkA, CertA}, where
n2 is used as the identifier of the ex-
change to be resolved or aborted.

(3) T sends SA a resolve admission mr2:
{(resolve|h(n2))PkT, CertT} iff mr1 is
successfully verified and the exchange
identified by n2 has not yet been aborted;
otherwise, T sends an abort admission
ma2: {(abort|h(n2))PkT, CertT} iff mr1 is
successfully verified and the exchange has
already been aborted by SB.

(4) SA stores v2 iff it received and success-
fully verified resolve admission mr2, or
(re-)stores v1 iff it received and success-
fully verified abort admission ma2.

The abort subprotocol is performed in a sim-
ilar way:
(1) PB orders SB to start the abort subpro-

tocol.
(2) SB sends T an abort request message

ma1: {(abort|h(n2))PkB, CertB}.
(3) T sends SB an abort admission ma2 iff

ma1 is successfully verified and the ex-
change has not yet been resolved; other-
wise, T sends a resolve admission mr2 iff
ma1 is successfully verified and the ex-
change has already been resolved by SA.

(4) SB (re-)stores v2 iff it received and suc-
cessfully verified abort admission ma2, or
stores v1 iff it received and successfully
verified resolve admission mr2.

(Received May 19, 2005)
(Accepted November 1, 2005)

(Online version of this article can be found in
the IPSJ Digital Courier, Vol.2, pp.120–132.)

546 IPSJ Journal Feb. 2006

Masayuki Terada received
his M.E. degree from Kobe Uni-
versity in 1995. He joined NTT
in 1995 and engaged in research
on electronic rights management
systems. Since 2003 he has
worked for NTT DoCoMo and

engaged in research on fairness in electronic
commerce. His current research interests are
in the areas of security protocols and applica-
tion of smartcards. He is a member of IPSJ and
IEICE.

Kensaku Mori received his
M.E. degree from Kyushu Uni-
versity in 2000. He joined NTT
DoCoMo in 2000. He has en-
gaged in R&D on location infor-
mation services and e-commerce
security. He is a member of

IPSJ.

Kazuhiko Ishii received his
B.E. degree from the Univer-
sity of Electro-Communications
in 1990. He joined NTT Do-
CoMo in 1999. He has engaged
in R&D on software develop-
ment networks, network multi-

media technology and mobile e-commerce se-
curity. He is a member of IPSJ.

Sadayuki Hongo received
his M.E. degree from Iwate Uni-
versity in 1984. He joined NTT
in 1984. From 1987 to 1991 he
belonged to ATR. He transfered
to NTT DoCoMo in 1999. He
has engaged in research on intel-

ligent telephone terminals, telephone-terminal
operation behavior, icon recognition, compu-
tational theory of visual information process-
ing, multimedia education, and information se-
curity. He is a member of IPSJ and IEICE.

Tomonori Usaka is a re-
search associate at the Univer-
sity Museum, the University of
Tokyo. His research interests in-
clude human machine interface,
digital museum, and ubiquitous
computing. He has a B.S., M.S.,

and Ph.D., all in information science, from the
University of Tokyo. He is a member of the
IEEE Computer Society and the ACM.

Noboru Koshizuka is an
Associate Professor in Informa-
tion Technology Center at the
University of Tokyo, Japan. He
has graduated Graduate School
of Science at the University of
Tokyo in 1994, and received the

D.S. degree from the University of Tokyo. His
research interests are ubiquitous computing,
embedded system, secure system, human inter-
face, and computer networks. He is participat-
ing in Ubiquitous ID Project, T-Engine Project,
and TRON Project.

Ken Sakamura was born in
Tokyo in 1951, He obtained his
Ph.D. degree in Electrical Engi-
neering from Keio University in
1979. His main research area is
computer architecture. He has
been the leader of the TRON

project since 1984. In this capacity, he has
designed and published the TRON computer
system architecture, which will be useful for
ubiquitous computing of the future. Today,
the real-time operating systems based on the
TRON specification are used for engine control
on automobiles, mobile phones, digital cameras,
and many other devices, and is believed to be
the most popular such operating systems of the
kind all over the world. Aside from the com-
puter systems, he has paid attention to the
artistic design of electronic appliances, furni-
ture, houses, buildings, urban landscape, and
museums, all of which contain the networked
embedded computers based on the TRON spec-
ification. In a nutshell, he has led the research
of the total system architecture of ubiquitous
computing in our daily lives. At present, he is
a professor of the Interfaculty Initiative in In-
formation Studies at the Graduate School of the
University of Tokyo, director of the YRP Ubiq-
uitous Networking Laboratory, and a fellow of
the IEEE Computer Society. He was the recip-
ient of The 33rd Ichimura Prizes in Technology
— Main Prize, the recipient of Takeda Award
2001, the recipient of the Medal with Purple
Ribbon in 2003, and the recipient of Okawa
Prize in 2004.

