
Vol. 47 No. 2 IPSJ Journal Feb. 2006

Regular Paper

A Mechanism for TCP Performance Improvement

in Asymmetrical Broadband Access Environment

Teruyuki Hasegawa† and Toru Hasegawa†

This paper describes a novel mechanism for achieving sufficient TCP performance in bulk
data transfer in some asymmetrical environment without introducing additional functions
in customer premises. On today’s Internet, several types of broadband access media have
an asymmetrical bandwidth characteristic, whereby the downstream link bandwidth is larger
than the upstream. However, such an asymmetrical environment may cause TCP performance
degradation due to upstream link congestion. To solve this problem, we propose a PEP-based
approach to improve TCP file downloading throughput by reducing upstream traffic, using our
“oversized MSS with compulsory IP fragmentation” technique. The results of our performance
evaluation show that our experimental proxy implementation is capable of accelerating TCP
throughput to about three times as fast as without the proxy.

1. Introduction

Recently, with the increasingly widespread
use of the Internet, various types of access tech-
nology have been developed one after another.
In order to meet the demand for broadband ac-
cess, several types of Internet access (e.g., wire-
less, ADSL and satellite) have introduced some
bandwidth asymmetry, where the downstream
link bandwidth is larger than the upstream, in
consideration of the implementational limita-
tion of access systems at customer premises and
the characteristic of Internet traffic that cus-
tomers mainly download information from the
Internet.

Meanwhile, most Internet applications such
as web access use TCP 1) as a transport proto-
col. For reliable data transfer, TCP should re-
turn acknowledgement segments (ACKs) in the
opposite direction to the transfer of data seg-
ments (DTs). Therefore, TCP file download-
ing throughput can be limited in an extremely
asymmetrical environment, because the up-
stream link bandwidth is insufficient for tran-
fer of ACKs 2). Furthermore, some new appli-
cations (e.g., P2P and VoIP) which tend to
use upstream bandwidth constantly, are now
becoming popular. Such applications can re-
duce the residual upstream bandwidth for ACK
transfer.

In order to solve this problem, various pro-
posals have been made for reducing ACK traf-
fic 2)∼6). However, these proposals require some
changes in customer premises such as access

† KDDI R&D Laboratories, Inc.

routers or host terminals. From the viewpoint
of initial and maintenance costs, it is problem-
atic to require every customer to adopt such
modifications. In addition, reducing the num-
ber of ACKs 5) creates another problem in that
the TCP congestion avoidance and retransmis-
sion mechanisms 7) can be influenced because
the relation between DTs and ACKs is cor-
rupted.

In this paper, we propose a new mechanism
for reducing ACK traffic based on a “PEP
(performance enhancement proxy) 8) with large
MSS (maximum segment size) 2)” approach.
This mechanism requires the introduction of a
special proxy only on the carrier side, such as
the ISP’s access network edge. The following is
a summary of our mechanism:
(1) The proxy splits a TCP connection es-

tablished between a server and a client
into two individual TCP connections in
order to prefetch DTs from the server and
accumulate them.

(2) The proxy reassembles several DTs into
a large DT whose segment size is several
times larger than the path MTU (max-
imum transfer unit) size (and hence the
receiver host’s MSS), and then transmits
it to the client. This reduces the number
of corresponding ACKs.

(3) This oversized DT is compulsorily frag-
mented into several IP fragments accord-
ing to the path MTU size, using the IP
fragmentation function in the proxy.

(4) In order to prevent TCP throughput
degradation due to large propagation
delay in a satellite or wireless access

322

Vol. 47 No. 2 A Mechanism for TCP Performance Improvement 323

environment 9), the TCP gateway ap-
proach 10),11) with its speculative “send-
ing ahead” mechanism can be also ap-
plied instead of the TCP window scale
option 12).

The above procedures can accelerate TCP in
bulk data transfer throughput without requir-
ing the introduction of any additional functions
into customer premises. It is also expected that
the relation between DTs and ACKs will not
be corrupted. This can eliminate the impact
on TCP congestion avoidance and retransmis-
sion mechanisms. Furthermore, it is possible to
eliminate the effort of TCP window size tun-
ing on the customer side by harmonizing with
our TCP gateway approach even in the case
of an access environment with a large propaga-
tion delay. On the other hand, it is necessary to
verify the behavior of real TCP/IP implemen-
tations, especially toward items 3 and 4, which
may cause some unexpected TCP/IP packets.
We have therefore verified and evaluated the
proposed mechanism through our experimen-
tal proxy implementation using a real instance
of TCP data transfer, i.e. web-page access and
10MB binary file downloading based on HTTP.

The reminder of this paper is organized as
follows. Section 2 summarizes the impact of
an asymmetrical environment on TCP perfor-
mance, and surveys some related work. Section
3 explains the details of our new mechanism.
Section 4 describes our experimental implemen-
tation of the proposed mechanism using the
Linux kernel and Apache proxy software. Sec-
tion 5 gives the results of our evaluation, taking
account of a large propagation delay. Section 6
offeres some discussion. Section 7 concludes the
paper.

2. TCP with Bandwidth Asymmetry

2.1 Overviews
Figure 1 shows an example of a network

configuration with asymmetrical access links.
A client host on the customer side accesses a
server on the Internet, using a broadband down-
stream link (e.g., 8Mbps) and a narrowband
upstream link (e.g., 64 kbps).

An example of a TCP data communication
sequence between the server and the client is
shown in Fig. 2. Because TCP generally re-
turns an ACK after receiving two DTs, TCP
performance can be limited by the transmis-
sion speed of ACKs if the upstream bandwidth
is insufficient.

Fig. 1 Network with asymmetrical link.

Fig. 2 TCP data communication sequence.

The following equation is used as an index to
decide whether the upstream link bandwidth is
large enough 5):

k =
BWdownstream/PSdownstream

BWupstream/PSupstream
, (1)

where BW and PS denote the link bandwidth
and packet size, respectively. Let N be the
number of DTs acknowledged by an ACK. Gen-
erally, the value of N is equal to 2, because
the delayed ACK mechanism 13) is effective. At
least k ≥ 1/N is required to avoid upstream
link congestion caused by ACK transmission.
For example, if the IP datagram size of an ACK
on the upstream link is 40 bytes and that of a
DT on the downstream link is 1,500 bytes, as
shown in Fig. 2, more than 110 kbps upstream
bandwidth should be arranged for an 8 Mbps
downstream bandwidth. In addition, the data
link layer overhead (e.g., PPP header/trailer,
Ethernet header/trailer, etc.) should be con-
sidered.

2.2 Related Work
There have been several studies of how to re-

alize sufficient TCP performance in an asym-
metrical environment. The following section
surveys some representative ones.

2.2.1 Header Compression
RFC1144 3) and RFC2507 4) specify TCP/

UDP/IP header compression mechanisms for
point-to-point (e.g., PPP) links. Here, the
header information volume is compressed by
transmitting only the information on the differ-

324 IPSJ Journal Feb. 2006

ence between the present header and the previ-
ous one in the same IP flow. This can reduce
ACK traffic volume on a byte-count basis.

2.2.2 ACK Filtering and Reconstruc-
tion

Balakrishnan, et al.5) proposed an ACK Fil-
tering (AF) mechanism in which access routers
at customer premises select proper ACKs re-
turning in the upstream direction. This can
reduce ACK traffic volume on a packet-count
basis. The same authors suggested that only
the latest ACK in a TCP connection should be
left in the transmission queue, and that pre-
vious ACKs in the same connection should be
discarded when an upstream link is congested.

However, since TCP congestion avoidance
and retransmission mechanisms work on the ba-
sis of the number of ACKs as well as their con-
tents 7), numerical reduction of ACKs caused
by AF can produce harmful side effects on
these mechanisms. To mitigate such side ef-
fects, Balakrishnan, et al.6) propose ACK Re-
construction (AR), where edge routers in car-
rier premises re-generate ACKs filtered on the
customer side.

2.2.3 Large MSS
RFC3449 2) also mentions the possibility of

large MSS to reduce the number of ACKs gen-
erated per transmitted byte of DTs. Large MSS
can be realized at both ends if individual sub-
networks between the sender and receiver sup-
port large MTU size. However, the majority of
current Internet hosts and routers use a 1,500-
byte MTU size, and the corresponding MSS
is 1,460 bytes, based on the standard Ethernet
frame size. Although RFC3449 also points out
that end hosts may use large MSS employing IP
fragmentation by routers even if the path MTU
is smaller than that of the end hosts, at least
enlargement of the IP MTU size is required for
almost all the end hosts in customer premises
in order to realize large (i.e., over 1,460-byte)
MSS.

3. Proposed Mechanism

3.1 Design Principles
We designed a new enhancement mechanism

for TCP performance with bandwidth asymme-
try according to the following principles 14),15).
(1) All the existing approaches described in

Section 2.2 require some changes in cus-
tomer premises, in terms of kernel-level
protocol implementation or network in-
terface configuration. In contrast, taking

account of the initial and maintenance
costs, our mechanism aims to improve
TCP performance by introducing a small
number of additional apparatuses into
carrier premises, requiring only a slight
(or if possible no) effort such as proxy
setting in customer premises.

(2) These apparatuses use an approach
based on packet count reduction of ACKs
over asymmetrical links. In order to
prevent it from having side effects (see
Section 2.2.2) on the TCP entity of In-
ternet servers, the apparatuses individu-
ally return ACKs according to the TCP
standard and conceal the ACK reduction
from the Internet servers.

3.2 Communication Sequence
Figure 3 shows a network configuration ex-

ample in which the proposed mechanism is
adopted. As shown in the figure, a special proxy
system is installed on the carrier side. In a sim-
ilar way to that described in Refs. 16) and 17),
this proxy splits a TCP connection established
between a server and a client into two individual
TCP connections: one between the server and
the proxy, and the other between the proxy and
the client.

An example of a sequence of TCP communi-
cation using the proposed mechanism is shown
in Fig. 4. The proxy accelerates the TCP per-
formance as follows:
(1) When a client accesses a server via the

proxy, two individual TCP connections
are established: one between server and
the proxy, and the other between the
proxy and the client.

(2) On establishment of a TCP connection,
the TCP maximum segment size (MSS),
whose value is decided the basis of the
IP MTU size, is advertised by both TCP
ends. Between the server and the proxy,
both TCP ends use a smaller MSS value
according to the TCP standard. In the
case of Fig. 4, the MSS value is set to
1,460. The server starts transmission of

Fig. 3 Network with proposed mechanism.

Vol. 47 No. 2 A Mechanism for TCP Performance Improvement 325

Fig. 4 Communication sequence example.

DTs whose segment sizes (excluding the
TCP/IP header) are equal to or less than
1,460 bytes.

(3) On the other hand, between the proxy
and the client, the proxy reports an over-
sized MSS value (e.g., 4,420) to the client
irrespective of the proxy’s MTU size.
Moreover, the proxy compulsorily uses
this oversized MSS to generate DTs, even
if the client advertises a smaller MSS
(e.g., 1,460).

(4) Instead of the client, the proxy returns
ACKs to the server according to the TCP
standard so that the proxy can prefetch
DTs from the server. These prefetched
DTs are re-segmented into user data and
accumulated in the proxy. In order to
accumulate sufficient user data for gen-
erating an oversized TCP DT, the Nagle
algorithm 18) is used in the proxy’s TCP
on the client side, which prohibits the
consecutive transmission of small (non-
oversized) TCP DTs.

(5) The TCP layer in the proxy generates
a large TCP DT in accordance with the
oversized MSS (see item (3)) and feeds
this down to the IP layer. The IP layer in
the proxy fragments this oversized TCP
DT into multiple IP fragments accord-
ing to the path MTU (e.g., 1,500) 19) be-
tween the proxy and the client, and then
transmits these fragments to the client.
In Fig. 4, one TCP DT is transmitted by
using three IP fragments.

Fig. 5 Communication sequence with insufficient
window size.

(6) The IP layer in the client defragments
these IP fragments into an oversized TCP
DT. Since this TCP DT will be pro-
cessed as one DT in the client, the num-
ber of ACKs can be reduced, but the re-
lation between DTs and ACKs is not cor-
rupted.

(7) It should be noted that this mechanism
assumes that the following conditions are
satisfied:
• The client side TCP implementation

makes it possible to process a DT
whose size is larger than the MSS ad-
vertised by the client itself.

• The IP defragmentation process is
not a very heavy load in the client.

In addition, our mechanism cannot sup-
press the number of ACKs efficiently
in the case of short-lived TCP sessions,
where 1 or 2 segments related to a TCP
3-way handshake transmitted on the up-
stream link (e.g., SYN and the first ACK
in Fig. 4) are not negligible compared
with the number of DTs.

3.3 Consideration of Access Environ-
ment

As described in item (4) of Section 1, the
large propagation delay in satellite links is an-
other performance bottleneck in addition to
the bandwidth asymmetry, because originally
the maximum TCP window size is limited to
65,535 bytes. Figure 5 shows a typical TCP
communication sequence with an insufficient
TCP window size, where the server suspends
DT transmission until an ACK with window
update returns from the client.

In order to cope with this problem, we adopt
either of the following two approaches:
(1) The TCP window scale option 12), which

enlarges the maximum window size to
1 GB and has been implemented in to-
day’s major OSes. However, some config-
uration effort is required in the customer
premises as well as the carrier-side proxy.

(2) The TCP gateway approach 10),11), where

326 IPSJ Journal Feb. 2006

Fig. 6 Communication sequence with TCP gateway
approach.

the proxy speculatively sends DTs ahead
of the advertised window from the client,
as shown in Fig. 6 for bulk data trans-
fer. Although this is quite an aggres-
sive approach, which can ignore receiver-
initiated flow control, TCP window size
tuning can be omitted in the customer
premises. The merits and demerits
(including some workarounds) of our
TCP gateway approach are discussed in
Refs. 10) and 11).

4. Implementation

4.1 Implementation Principles
Since our mechanism assumes that some con-

ditions described in Section 3.2 item (7) are
satisfied, it is essential to verify the applicabil-
ity of our mechanism to today’s major operat-
ing systems (OSes). We therefore experimen-
tally implemented a proxy system according to
the following principles:
(1) The system is constructed by adopting

existing proxy and TCP/IP implemen-
tations wherever possible. The com-
munication sequences described in Sec-
tion 3.2 are realized by adding the mini-
mum modifications to these implementa-
tions.

(2) There are two methods whereby a client
can access an Internet server via a proxy.
One is for the client to explicitly set
proxy configurations in its application
level. The other is for some intermedi-
ate node (e.g., the carrier edge router
or the proxy itself) to redirect the pack-
ets automatically to the proxy. The lat-
ter method (e.g., transparent proxy 20))
is better in terms of ease of use. How-
ever, we adopt the former method, be-
cause it is easier to implement and there
is no difference between these two meth-
ods from the viewpoint of our implemen-

tation objectives, i.e., applicability and
performance evaluation.

(3) The path MTU value, which is used in IP
fragmentation of the proxy, can be var-
ious for each client. For example, some
clients may access the proxy via a link
with a small MTU size (e.g., 552 bytes).
Strictly, the path MTU discovery mech-
anism 19) should be introduced to decide
the path MTU value. On the other hand,
such a mechanism is not crucial to our
objectives. Thus, for ease of implemen-
tation, the proxy simply uses the down-
stream link MTU size as the value of the
path MTU.

4.2 Implementation Details
According to the above principles, we have

constructed the proxy system on the basis of
the Linux 2.2.14 kernel and Apache 1.3.12 21)

software. We added the following configura-
tion and modifications into the TCP/IP stack
in the Linux kernel. For the proxy server, we
executed Apache unchanged on this modified
kernel. Note that this implementation does not
support some TCP options such as T/TCP 22).
(1) By executing the route 23) command with

the mss option in the proxy system,
it is possible to change the path MTU
size (and hence the TCP MSS) for the
downstream link. If the proxy wants to
use a 4,460-byte path MTU size (i.e., a
4,420-byte MSS), the following command
should be executed:
route add -net NWaddr/NWpref gw GW

mss 4460
Here, NWaddr/NWpref and GW indi-
cate the network address/prefix of the
client and the IP address of the next hop
router, respectively. It should be noted
that the mss option corresponds to the
path MTU size, and therefore its value
needs to be set 40 bytes larger than the
requested MSS.

(2) Some TCP kernel routines (tcp ipv4.c:
tcp v4 rcv()) are modified so that the
MSS field in a SYN segment received
from the client is overwritten to the MSS
value given in item (1) (e.g., 4,420). As
a result, the TCP layer in the proxy is
spoofed and considers that the large MSS
value is successfully exchanged.

(3) According to the above procedures, the
proxy’s TCP layer generates a oversized
DT and delivers it to the IP layer. Mean-

Vol. 47 No. 2 A Mechanism for TCP Performance Improvement 327

Table 1 Hardware and software specifications.

Type CPU, Memory OS Application
Web server P2-300MHz, 128MB Linux 2.4.2 Apache 1.3.19
Proxy server P2-450MHz, 64MB Linux 2.2.14 Apache 1.3.12
Router P3-1GHz×2, 1.5GB FreeBSD 4.7 dummynet
Packet monitor P2-233MHz, 128MB Linux 2.4.2 tcpdump 3.4
Client #1 Ppro-200MHz×2, 128MB FreeBSD 4.5 wget 1.8.1
Client #2 P2-233MHz, 128MB Linux 2.4.2 Netscape 4.76, wget 1.6
Client #3 P3-600MHz, 256MB Windows 2000∗ IE 5.5, wget 1.5.3
Client #4 P3-600MHz, 128MB Windows 98∗ IE 5
Client #5 P3-800AMHz-M, 256MB Windows XP∗ IE 6
*No service pack is applied.

while, the IP layer considers that such
oversized DTs can be transmitted with-
out fragmentation, because of the con-
figuration described in item (1). In
order to fragment this DT into multi-
ple IP fragments suited to the down-
stream link MTU size, some IP kernel
routines (ip output.c: ip queue xmit(),
ip fragment()) are rewritten.

(4) To realize it sending ahead mechanism
for the TCP gateway, we also arranged
another Linux kernel image in which one
of the TCP kernel routines (tcp input.c:
tcp ack()) is changed so that the proxy’s
TCP layer always recognizes the adver-
tised TCP window size as 524,280 (=
65535 × 23) bytes, taking account of
our evaluation network configuration (see
Section 5.1). Note that the TCP segment
loss recovery mechanism taking account
of the sending ahead mechanism 10),11) is
not implemented.

5. Evaluation

5.1 Network Configuration
We have evaluated our experimental imple-

mentation not only from the viewpoint of per-
formance but also from that of conformance
with today’s major OSes. Figure 7 shows the
network configuration for our evaluation. We
arranged several PCs, whose hardware and soft-
ware specifications are shown in Table 1.

In this configuration, both web and proxy
servers and a router are accommodated in a
FastEthernet switch. The proxy can commu-
nicate with all the clients via the router. The
TCP MSS values in the proxy are decided as
follows:
• For the client side, either 4,420 or

1,460 bytes is selected. IP fragmentation
is forced in the former case only.

• For the server side, only 1,460-byte MSS is

Fig. 7 Evaluation network configuration.

used.
On the other hand, the router and the clients

are connected via a shared Ethernet hub so that
the monitor can capture and analyze packets
exchanged between the proxy and the clients.
Note that no packet loss occurs in this network
configuration.

In addition, the dummynet 24) function is ac-
tivated in the router in order to emulate an
asymmetrical environment with some propaga-
tion delay between the proxy and the clients.
The bandwidth and delay assignments are as
follows:
• 8 Mbps downstream bandwidth is assigned.
• On the other hand, one of the following up-

stream bandwidth is assigned: 128, 64, or
32 kbps.

• A propagation delay of 0 or 250ms is in-
serted in each direction, i.e., Rtd (Round-
trip delay) is 0 or 500ms.

5.2 Conformance Verification
In conformance verification, all the clients

(from #1 to #5) illustrated in Fig. 7 individ-
ually accessed the web server via the proxy and

328 IPSJ Journal Feb. 2006

Table 2 TCP parameters.

Rtd Type Rxwin Txbuf Note
Proxy – 65535 default

0ms Client #1 66608 – default
Client #2 63712 – default
Client #3 17520 – default
Proxy – 700000

500ms Client #1 524140 –
(WSO) Client #2 520144 –

Client #3 524140 –
Proxy – 700000

500ms Client #1 66608 – default
(TGW) Client #2 63712 – default

Client #3 17520 – default

Fig. 8 TCP throughput (no delay).

tried HTTP-based web-page access and binary
file downloading using Internet Explorer (IE).
As a result, all the clients were able to success-
fully download a file. These results prove that
our mechanism can work with today’s major
OSes.

5.3 Performance Test
For the performance test, three clients (from

#1 to #3) individually access the server via
the proxy and perform HTTP-based 10MB
binary file download using the wget applica-
tion. The TCP parameters in the proxy and/or
clients are changed from the default values in
500ms Rtd cases according to the approach
adopted, i.e., the window scale option (WSO)
or the TCP gateway (TGW). On the other
hand, no TCP parameter modification is ap-
plied in 0ms Rtd cases, where no WSO or TGW
approach is used. Table 2 shows the details
of the parameters, where Rxwin is the maxi-
mum window size advertised by the clients and
Txbuf is the sender socket buffer size config-
ured in the proxy. Note in the TGW case that
the proxy works as if it received a 524,280-
byte window advertisement (see Section 4.2
item (4)), and note in the WSO case that
Rxwin becomes nearly 524,280 bytes (shift.cnt
= 3), considering that Bandwidth-Delay Prod-

Fig. 9 TCP throughput (Rtd = 500ms, WSO).

Fig. 10 TCP throughput (Rtd = 500ms, TGW).

uct (BDP) is 500KB (1MB/sec × 0.5 sec) in
500 ms Rtd cases. The other TCP parameters
are unchanged from the default settings in both
clients and proxy. As a result, the TCP times-
tamp option, which requires an 12 additional
bytes per ACK, is enabled in the cases of clients
#1 and #2.

Figures 8, 9, 10 depict the TCP throughput
calculated from the captured packet informa-
tion. These results show that our experimental
proxy implementation is successfully accelerat-
ing TCP throughput in all cases, including the
500 ms Rtd cases. In particular for a 32 kbps
upstream bandwidth, the throughput for client
#2 is approximately 3 times as fast.

6. Discussion

6.1 TCP Throughput Analysis
According to the discussion in Section 2.1,

upstream bandwidth is expected to be ex-
tremely limited in the 32 kbps and 64 kbps
cases. As shown in Figs. 8 through 10,
the results without our mechanism (MSS:
1,460 bytes) confirm this expectation, i.e., TCP
throughput is degraded in proportion to the up-
stream bandwidth. On the other hand, when
our mechanism is used (MSS: 4,420 bytes), all
the clients can obtain higher throughput in any

Vol. 47 No. 2 A Mechanism for TCP Performance Improvement 329

Fig. 11 Number of ACKs (32 kbps upstream).

upstream bandwidth case. For client #2 in the
32 kbps case, the throughput is about 3 times
as fast.

Figure 11 shows the number of ACKs trans-
mitted on the upstream link when its band-
width is set to 32 kbps. Almost the same re-
sults are observed in other bandwidth cases.
These results confirm that our proposed mech-
anism can suppress the number of ACKs. The
suppression ratio is about 1/2 in client #1
(FreeBSD), and about 1/3 in clients #2 (Linux)
and #3 (Windows 2000). The ratios observed
in clients #2 and #3 are quite reasonable, be-
cause our mechanism uses 4,420 bytes MSS in
the evaluation, where one TCP DT will be
fragmented into three IP fragments. On the
other hand, some analysis is required for the
result in client #1. By tracing the correspon-
dence between DTs and ACKs using captured
packet data, we found that client #1 returns an
ACK on receipt of every DT. This means that
the delayed ACK mechanism does not work in
FreeBSD when the received DT size is larger
than the MSS value advertised by itself on es-
tablishment of a connection. Since client #1
generates more ACKs, the throughput improve-
ment is relatively small compared with that for
other clients, as shown in Figs. 8 through 10.
On the other hand, we also confirmed the situ-
ation for clients #2 and #3, where an ACK is
generated after receipt of two DTs, i.e., the re-
lation between DTs and ACKs is maintained.
Note that client #2 generates slightly more
ACKs than #3 because the Linux TCP imple-
mentation yields one ACK per DT at the be-
ginning of data transfer.

A throughput difference is also observed be-
tween clients #2 and #3 for A 1,460-byte
MSS in Fig. 8 in the 32 kbps and 64 kbps up-
stream cases. This is mainly due to the seg-

Fig. 12 Time sequence graph (client #2, 64 kbps
upstream).

ment size of ACKs in addition to the num-
ber of ACKs. As described in Section 5.3,
the segment size of ACKs is 52 bytes (#2) or
40 bytes (#3), depending on the presence of
the TCP Timestamp option. For example, in
the 32 kbps upstream case, the byte amounts of
ACKs are 200,928 bytes (#2) and 143,800 bytes
(#3) which are inversely proportion at to the
throughput results, i.e., 1.6 Mbps (#2) and
2.2 Mbps (#3). Since client #1 generates more
ACKs with a 52-byte length, the byte amount
of ACKs is 266,188 bytes and the throughput is
limited to 1.2 Mbps.

On the other hand, comparing WSO cases
with TGW cases (see Figs. 9 and 10), there
are some throughput differences in client #2
(Linux) with a 4420-byte MSS, where TGW
cases are 5–9% faster than WSO cases. Fig-
ure 12 illustrates the relation between commu-
nication time and TCP sequence number in
client #2 at 64 kbps upstream. It is easy to see
that the sequence number increase in the WSO
case is slower than in the TGW case. By trac-
ing the window field of ACKs, we found that the
receive window advertised in client #2 is insuffi-
cient, starting from 5,840 bytes and increasing
gradually (5,840, 5,840, 8,816, 13,224, ...) at
the beginning of data transfer in the WSO case.
As a result, the proxy can send only one DT per
ACK until the third ACK is received, so that
the speed of congestion window increase in the
proxy’s TCP is suppressed (see Time ≤ 1.1 sec
in Fig. 12). As the response of the fourth ACK
advertising a 13,224-byte receive window, two
DTs are consecutively transmitted at Time =
1.6 sec.

In the case of TGW, on the other hand there
is no restriction on congestion window increase,
because a 524,280-byte receive window is al-

330 IPSJ Journal Feb. 2006

ways given to the proxy’s TCP. Therefore 2,
4, and 8 DTs are transmitted at Time = 0.5,
1.1, and 1.6 sec, respectively.

6.2 Comparison with RFC3449 Large
MSS Approach

As described in Section 2.2.3, RFC3449 2)

mentions the possibility of large MSS. How-
ever, MSS is practically limited to 1,460 bytes
(or smaller) because the majority of current In-
ternet hosts and routers use a 1,500-byte MTU
size, which is directly reflected in end-to-end
MSS selection and path MTU discovery. Al-
though RFC3449 refers to the possibility of IP
fragmentation by routers in the case of a smaller
path MTU than that of the end hosts, it does
not mention the usage of oversized MSS irre-
spective of the end hosts’ MTU size. In other
words, servers (or the proxy) cannot use larger
MSS than 1,460 bytes as long as the client hosts
in the customer premises use a 1,500-byte MTU
size.

Therefore, from the viewpoint of providing
a carrier-side-only solution for TCP through-
put improvement, we proposed a mechanism
which dares to use oversized MSS (i.e., ignoring
the client host’s MSS and the proxy’s IP MTU
size) with intentional IP fragmentation inside a
proxy itself. Note that further fragmentation
in routers can be avoided by the use of a path
MTU discovery mechanism 19). Although ap-
plying oversized MSS violates RFC1122 13) for a
TCP sender, we believe our approach is promis-
ing on the basis of the following conviction:
(1) MSS information mainly affects TCP

sender side behavior, helping to avoid un-
wanted IP fragmentation in routers and
defragmentation in a receiver host. On
the other hand, there is no critical rea-
son to prohibit accepting oversized DTs
from the viewpoint of TCP receiver side
behavior, which is byte-stream-oriented.

(2) TCP implementations in today’s major
OSes are robust enough to accept over-
sized DTs and manage to process them as
long as they are within the receive win-
dow.

The results of our conformance verification
prove that our approach can work with today’s
major OSes.

However, it is also very important to guar-
antee interoperability with hosts that cannot
accept such oversized DTs. We think the fol-
lowing workaround can be adapted:
(1) At the beginning of DT transmission,

the proxy’s TCP duplicately and consec-
utively transmits the following two types
of DTs:
• DTs applying oversized MSS (e.g.,

4,420 bytes) with fragmentation, and
• DTs truncated from the above

DTs applying normal MSS (e.g.,
1,460 bytes) without fragmentation.

(2) The proxy’s TCP selects one of the above
MSS values based on the acknowledg-
ment number in the corresponding ACK.

Note that throughput fairness may be degraded
between an oversized MSS session and a nor-
mal one, because the congestion window grows
rapidly in proportion to the MSS. Further-
more, in oversized MSS cases, correspondence
between DTs and ACKs is not maintaind in
FreeBSD, as decribed in Section 6.1. In order to
preserve throughput fairness, some additional
mechanism needs to be designed for the proxy,
based on Increasing TCP’s Initial Window 25)

and Appropriate Byte Counting 26) techniques.
6.3 Consideration of IP Fragmenta-

tion Processing Overhead
The proxy uses the IP fragmentation tech-

nique, whose drawbacks in processing overhead
were pointed out by Kent and Mogul27). How-
ever, with regard to the CPU load and memory
usage in both proxy and the clients, we can-
not distinguish the difference between the cases
with and without IP fragmentation and defrag-
mentation in our experimental environment.
Since the additional overhead in the proxy is
merely fragmenting TCP DTs one by one in-
coming from the TCP layer, which does not re-
quire any additional state information and/or
buffer memory, we consider that the proxy over-
head is not particularly harmful. Furthermore,
by the use of the path MTU discovery mecha-
nism for adjusting the MSS in the proxy, an ad-
ditional IP fragmentation effort at intermediate
routers, which may cause serious performance
degradation, can be avoided. Meanwhile, as for
the client, at least this fact proves that IP de-
fragmentation is not a very heavy task for to-
day’s PCs if the following conditions are satis-
fied, considering the discussion in Ref. 27) and
our evaluation environment:
(1) There is no fragment loss between the

proxy and the client.
(2) There is no fragment re-ordering between

the proxy and the client.
(3) There is no harmful defragmentation

conflict, i.e., the client has only one DT

Vol. 47 No. 2 A Mechanism for TCP Performance Improvement 331

(= one IP IDentification) in the defrag-
mentation process.

With regard to items (1) and (3), we sup-
pose that the fragment loss ratio is very small
(see Section 6.4). In such an environment, the
number of DTs in an incomplete defragmenta-
tion situation is just one in most cases (i.e.,
no packet loss). Even if a packet loss occurs,
at most two incomplete DTs need to be pro-
cessed if the same IP ID is used on both the
original and retransmitted DTs 27). In addi-
tion, as is shown in Fig. 3, there are few multi-
plexing and demultiplexing points between the
proxy and the client, i.e., it is expected that the
client can receive IP fragments without reorder-
ing and conflict situations. Therefore items (2)
and (3) can be preserved. As a result, we con-
sider that the processing overhead of IP frag-
mentation and defragmentation is negligible.

6.4 Applicability of Proposed Mecha-
nism

In order for the proposed mechanism to work
effectively, it is important to discuss the influ-
ence of packet loss and MSS values.

The degradation of TCP-level DT segment
loss probability is a serious problem in IP frag-
mentation. Since our experiments were con-
ducted without any fragment loss, such a prob-
lem was concealed. However, if networks in-
clude links with some transmission error or
nodes with congestion, DT losses can easily oc-
cur corresponding to MSS, because even a sin-
gle IP fragment loss in a DT causes the loss
of the whole DT. We therefore briefly stud-
ied how the increase in DT losses affects The
TCP throughput and retransmission ratio for
the original TCP user data amount in WSO
cases.

First we will clarify our preconditions clear.
Our approach is PEP 8) -based, where IP frag-
ments caused by oversized MSS appear only in
the asymmetrical access link and customer-side
LANs behind it (if any), as shown in Fig. 3. We
suppose that the proxy accommodates all the
traffic outgoing to and incoming from customer
premises, and does not overrun the access link
capacity. This we consider only the transmis-
sion error probability on the access link. In ad-
dition, we also assume that every DT loss is
detected on the basis of triple duplicate ACKs
and recovered by single DT retransmission.

We estimate the theoretical throughput Bb on
a bit-rate basis. According to Ref. 28), the theo-
retical packet rate Bp and the expected packet

number of congestion windows cwndp at loss
detection satisfy

Bp ≈ 1
Rtd

√
3

2Np
(2)

and

cwndp ≈
√

8
3Np

, (3)

where p (� 1), N , and Rtd indicate the prob-
ability of DT segment loss, the number of DTs
acknowledged by an ACK (normally N = 2),
and the round-trip delay, respectively. Suppose
that with a random bit error whose ratio is
e (� 1) on the access link, the probability of
DT segment loss p is given by:

p = 1 − (1 − e)L ≈ eL, (4)
where L is the total bit amount in the physical
layer for one DT transmission. Hereafter we
neglect the TCP/IP header and datalink layer
overhead for simplicity; i.e., L is approximated
by the MSS value on a bit basis. Bp and cwndp

can be replaced by bit- based valuables Bb and
cwndb as follows:

Bb = Bp × L ≈ 1
Rtd

√
3L

2Ne
(5)

and

cwndb = cnwdp × L ≈
√

8L

3Ne
. (6)

The estimation of the retransmission ratio is
described below. Let U = U0 be the total bit
amount of user data, which yields U1 = pU0

bits retransmission. Since (re) transmission of
Un yields further retransmission Un+1 = pUn,
the total bit amount of retransmission R = Rw

and retransmission ratio r = rw = R/U are
expressed by

rw =
1
U

∞∑
i=1

piU =
p

1 − p

=
1 − (1 − e)L

(1 − e)L
≈ eL, (7)

using Eq. (4).
According to Eqs. (4), (5) and (7), we can

summarize the DT loss probability and its ef-
fects for small p (� 1) as follows.
(1) The DT loss probability p becomes worse

in proportion to L (i.e., MSS).
(2) Meanwhile, the bit-rate-based through-

put Bb is increased in proportion to
√

L,
because a larger congestion window is ex-

332 IPSJ Journal Feb. 2006

pected.
(3) The retransmission ratio r tendency is

the same as in item (1).
In order to use our mechanism efficiently, it is
necessary to keep p small. For example, in the
case of p = 1E-3, 0.1% retransmission bytes
will occur between the proxy and the client.
Since L is approximately 3.5E+4 bits in 4,420-
byte oversized MSS, e = 2.8E-8 is required as
the transmission quality of the access link in
order to realize p = 1E-3. We are convinced
that such quality is probable, e.g., IESS-308 29)

G.826 quality requires e = 1E-9 with more than
99.36% reliability as a typical performance in
degraded conditions.

Appropriate MSS value selection is another
important issue. From the viewpoint of the
ACK suppression ratio and expected through-
put (see Eq. (5)), a larger MSS is preferred.
However, considering the TCP fast retransmit
mechanism 30), a sufficient number of DTs (i.e.,
a smaller MSS) is required either per receive
windows or per congestion window (the smaller
one) in order to ensure the generation of triple
duplicate ACKs. In addition, a markedly larger
MSS may cause an aggressive initial window in-
crease, as described in Section 6.2. Practically,
therefore, we think that the MSS should not be
larger than 4 times the size of a normal MSS. In
view of the 17520 receive window size in Win-
dows 2000 and assuming a very small packet
loss rate, we decided on a 4,420-byte MSS where
6 DTs exist in a receive window. Note that
Eq. (6) will be used to decide the MSS size in-
stead of the receive window size if the packet
loss rate is relatively high.

7. Conclusions

In this paper we have described a novel mech-
anism for obtaining sufficient TCP bulk-data
transfer performance over a link with band-
width asymmetry. The proposed mechanism
does not require any additional functions to
be used in customer premises, but can sup-
press the number of ACKs by using our over-
sized MSS with compulsory IP fragmentation
technique to avoid upstream link congestion.
Moreover, it is possible to realize a completely
configuration-free environment on the customer
side by harmonizing with our proprietary TCP
gateway approach even in the case of an ac-
cess environment with a large propagation de-
lay. We also implemented the mechanism as
a proxy system and evaluated its effectiveness

using a real instance of TCP/IP communica-
tion, downloading 10MB file via HTTP in an
error- free environment. The proxy can work
together with today’s major OSes without any
problem. The results of our performance evalu-
ation show that our experimental proxy imple-
mentation is capable of increasing the speed of
TCP throughput in 10 MB bulk-data transfer
by about 3 times in an extremely asymmetri-
cal environment (32 kbps upstream and 8 Mbps
downstream) in comparison with the case with-
out the proxy. We also confirm that the pro-
cessing overhead of this mechanism is negligible
in both the clients and the proxy.

Acknowledgments The authors wish to
thank Dr. T. Asami, President & CEO of KDDI
R&D Laboratories Inc., for the continuous en-
couragement of this study.

References

1) Postel, J.: Transmission Control Protocol,
RFC793 (Sep. 1981).

2) Balakrishnan, H., Padmanabhan, V.N.,
Fairhurst, G. and Sooriyabandara, M.: TCP
Performance Implications of Network Path
Asymmetry, RFC3449 (Dec. 2002).

3) Jacobson, V.: Compressing TCP/IP Headers
for Low-Speed Serial Links, RFC1144 (Feb.
1990).

4) Degermark, M., Nordgren, B. and Pink, S.: IP
Header Compression, RFC2507 (Feb. 1999).

5) Balakrishnan, H., Padmanabhan, V.N. and
Katz, R.H.: The Effects of Asymmetry on TCP
Performance, Proc.ACM MOBICOM ’97 (Sep.
1997).

6) Balakrishnan, H., Padmanabhan, V.N. and
Katz, R.H.: The Effects of Asymmetry on TCP
Performance, ACM Mobile Networks and Ap-
plications (MONET), Vol.4, No.3, pp.219–241
(1999).

7) Allman, M., Paxson, V. and Stevens, W.: TCP
Congestion Control, RFC2581 (Apr. 1999).

8) Border, J., Kojo, M., Griner, J., Montenegro,
G. and Shelby, Z.: Performance Enhancing
Proxies Intended to Mitigate Link-Related
Degradations, RFC3135 (June 2001).

9) Allman, M., Glover, D. and Sanchez, L.: En-
hancing TCP over Satellite Channels Using
Standard Mechanisms, RFC2488 (Jan. 1999).

10) Miyake, Y., Hasegawa, T., Hasegawa, T.
and Kato, T.: Proposal of TCP gateway
for Satellite-Based Internet Access, IEICE
Trans. Commun. (Japanese Edition), Vol.J84-
B, No.12, pp.2330–2341 (Dec. 2001).

11) Hasegawa, T., Miyake, Y. and Hasegawa, T.:
TCP Gateway for Satellite-Based Internet Ser-

Vol. 47 No. 2 A Mechanism for TCP Performance Improvement 333

vice Considering Accommodation of Multiple
Customers, J. IPS Japan, Vol.43, No.12, pp.
3869–3877 (Dec. 2002).

12) Jacobson, V., Braden, R., and Borman,
D.: TCP Extensions for High Performance,
RFC1323 (May 1992).

13) Braden, R. (ed.): Requirements for Internet
Hosts: Communication Layer, RFC1122 (Oct.
1989).

14) Hasegawa, T., Lagreze, M. and Hasegawa,
T.: A Study of TCP Throughput Improve-
ment over Asymmetrical Environment, Proc.
IPSJ DICOMO 2002 Symposum (July 2002)(in
Japanese).

15) Hasegawa, T., Hasegawa, T. and Lagreze, M.:
A Mechanism for TCP Performance Enhance-
ment over Asymmetrical Environment, Proc.
IEEE ISCC 2003 (June 2003).

16) Bakre, A. and Badrinath, B.R.: I-TCP: In-
direct TCP for Mobile Hosts, Proc. IEEE
ICDCS’95 (May 1995).

17) Hasegawa, T., Hasegawa, T., Kato, T. and
Suzuki, K.: Implementation and Performance
Evaluation of TCP Gateway for LAN Inter-
connection through Wide Area ATM Network,
IEICE Trans. Commun. (Japanese Edition),
Vol.J79-B-I, No.5, pp.262–270 (May 1996).

18) Nagle, J.: Congestion Control in IP/TCP In-
ternetworks, RFC896 (Jan. 1984).

19) Mogul, J. and Deering, S.: Path MTU Discov-
ery, RFC1191 (Nov. 1990).

20) Kiracofe, D.: Transparent Proxy with Linux
and Squid Mini-HOWTO (Jan. 2002).

21) http://www.apache.org/
22) Braden, R.: T/TCP — TCP Extensions

for Transactions Functional Specification,
RFC1644 (July 1994).

23) Route(8), Linux Programmer’s Manual (Aug.
1997).

24) Rizzo, L., Dummynet: A simple approach
to the evaluation of network Protocols, ACM
Computing Communication Review (Jan.1997).

25) Allman, M., Floyd, S. and Partridge, C.: In-
creasing TCP’s Initial Window, RFC2414 (Sep.
1998).

26) Allman, M.: TCP Congestion Control with
Appropriate Byte Counting, RFC3465 (Feb.
2003).

27) Kent, C. and Mogul, J.: Fragmentation Con-
sidered Harmful, Proc. ACM SIGCOMM ’87
(Aug. 1987).

28) Padhye, J., Firoiu, V., Towsley, D. and
Kurose, J.: Modeling TCP Reno performance:
A simple model and its empirical validation,
IEEE/ACM Trans.on Networking, Vol.8, No.2,
pp.133–145 (Apr. 2000).

29) INTELSAT: Performance Characteristics for

Intermediate Data Rate Digital Carriers Us-
ing Convolutional Encoding/Viterbi Encoding
and QPSK Modulation, Intelsat Earth Station
Standard (IESS)-308 (Rev. 11) (Jan. 2003).

30) Stevens, W.: TCP Slow Start, Congestion
Avoidance, Fast Retransmit, and Fast Recov-
ery Algorithms, RFC2001 (Jan. 1997).

(Received May 19, 2005)
(Accepted November 1, 2005)

(Online version of this article can be found in
the IPSJ Digital Courier, Vol.2, pp.108–119.)

Teruyuki Hasegawa received
the B.E. and M.E. degrees
of electrical engineering from
Kyoto University, Japan, in 1991
and 1993 respectively. Since
joining KDD (now KDDI) in
1993, he has been working in

the field of high speed communication proto-
col and multicast system. He is currently a
senior research engineer of IP Communication
Quality Lab. in KDDI R&D Laboratories Inc.
He received Best Paper Award for Young Re-
searchers of the National Convention of IPSJ in
1996, Best Paper Award of the National Con-
vention of IPSJ in 1999 and 2002, Young Engi-
neer Award of IEICE in 2000, and The Merito-
rious Award on Radio of ARIB in 2003. He is
a member of IEICE.

Toru Hasegawa received the
B.E., the M.E. and Dr. Infor-
matics degrees in information
engineering from Kyoto Univer-
sity, Japan, in 1982, 1984 and
2000, respectively. Since joining
KDD (now KDDI) in 1984, he

has been working in the field of formal descrip-
tion technique (FDT) of communication pro-
tocols. From 1990 to 1991, he was a visiting
researcher at Columbia University. His current
interests are Internet measurement and rout-
ing protocols. He is currently the executive di-
rector of IP Network Division in KDDI R&D
Laboratories Inc. He is also a guest professor at
National Institute of Informatics. He received
IPSJ Convention Award in 1987 and The Mer-
itorious Award on Radio of ARIB in 2003. He
is a member of IEICE.

