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A link layer protocol based on SR (Selective-Repeat) ARQ (Automatic Repeat reQuest)
is required to achieve high performance over a lossy and large delay link. In spite of its
effectiveness, SR ARQ has problems of large resequencing delay and bursty packet output
due to the resequencing function. To mitigate these problems, this paper proposes a scheme
where the resequencing is not performed by a receiver of SR ARQ, but by TCP end to
end. The proposed scheme has advantages of scalability with regard to link bandwidth, the
number of TCP connections on the link, and the size of the TCP window. It also preserves the
end-to-end semantics of TCP and requires no modification to the existing TCP. To suppress
unnecessary retransmissions by TCP, a sender of SR ARQ is aware of retransmitted TCP
data packets and drops duplicate ACKs due to out-of-order packets, which are caused by the
lack of resequencing by SR ARQ. The effectiveness of this proposed scheme is evaluated by
simulations, which show that it attains high performance in comparison with other schemes.

1. Introduction

In broadband networks that employ lossy and
large delay links, such as satellite or terres-
trial radio networks, a retransmission protocol
as well as forward error correction (FEC) is
generally required. In the case of wireline IP
networks, retransmissions are performed by an
end-to-end protocol such as TCP or locally by a
link layer protocol. If transmission errors over
a link are rare, end-to-end retransmissions by
TCP are capable of recovering packet losses.
However, TCP assumes that losses of packets
occur as a result of congestion of a network. It
decreases its congestion window after it retrans-
mits packets, and as a result the throughput of
TCP temporarily decreases 1). Because of this
effect, end-to-end retransmissions by TCP in-
cur degradation of throughput when it is used
for a network employing a lossy and large delay
link.

For a network including such a link, an ap-
proach that employs local retransmissions over
the link and hides losses of packets from end-
to-end TCP is able to achieve high perfor-
mance 2). For example, in the protocol stack
of W-CDMA, Acknowledged Mode (AM) and
Unacknowledged Mode (UM) are provided by
Radio Link Control, which is a sub-layer of the
link layer (layer 2) 3),4). RLC segments a Ser-
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vice Data Unit (SDU) from the upper layer into
one or more Protocol Data Units (PDUs). AM
performs retransmissions of PDUs to recover er-
rors over a radio channel, while DM does not
recover lost PDUs. In order to obtain high per-
formance for the case where TCP is employed
end-to-end, local retransmissions by AM over a
radio channel are required.

In this paper we assume a link layer proto-
col that performs local retransmissions over a
lossy link. Among such local retransmission
protocols applicable to a large delay link, SR
(Selective-Repeat) ARQ (Automatic Repeat re-
Quest) is superior to other ARQ protocols,
since it retransmits the minimum number of
packets that are actually lost over the link.
However, this SR ARQ requires resequencing
of packets at a receiver to preserve the order of
packets. This resequencing causes the problems
described below.

Figure 1 shows an example of a conventional
sequence of TCP data packets over a link layer
protocol based on SR ARQ. SR ARQ retrans-
mits a packet that encountered transmission er-
rors over a link. SR ARQ retains packets that
are correctly received after the lost packet to
preserve the original order of packets. Although
the efficiency of SR ARQ is excellent, this rese-
quencing incurs a large delay for each retained
packet. There is also another problem: when
a retransmitted packet is successfully received,
all retained packets waiting for the retransmit-
ted one are released and forwarded to outgoing
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Fig. 1 Example of a conventional sequence of TCP
data packets, where a link layer protocol based
on SR ARQ is employed.

links at the same time. Therefore, SR ARQ pro-
duces bursts of packets, which cause undesir-
able effects such as buffer overflow at a forward-
ing node and QoS degradation of other flows
sharing bandwidth. The problems described
above become significant if the product of the
delay and the bandwidth of a link increases,
since the number of outstanding packets has to
be large enough to fully utilize the link band-
width. A typical case is a high-speed satellite
link, but recent terrestrial wireless links, whose
bandwidth is increasing rapidly, also need high-
performance ARQ and will have the same prob-
lems. This paper deals with the problems asso-
ciated with general SR ARQ protocols on the
assumption that SR ARQ will be increasingly
employed as the transmission rate of terrestrial
wireless and satellite communications becomes
large.

Hitherto, link layer protocols have been de-
signed on the principle that the order of pack-
ets has to be preserved. However, TCP was
originally designed for networks providing data-
gram services, where the order of IP packets is
not guaranteed. TCP is capable of reordering
packets received out of order. If the reordering
capability of TCP can be employed for out-of-
order packets derived from packet losses over a
lossy link, resequencing by a link layer proto-
col is not required. With this motivation, we
propose a link layer protocol based on SR ARQ
with no resequencing, where the resequencing
of packets is performed by TCP end to end.
As for link layer protocols, this paper assumes
no specific SR ARQ protocol; examples of the

SR ARQ protocols supposed are RLC in the
case of W-CDMA and HDLC with SREJ for
general wireless or terrestrial lines 5). In the
simulation we employ SSCOP because of its
large sequence number space and simple pro-
tocol mechanism 14).

The rest of this paper is organized as fol-
lows: Section 2 discusses related work concern-
ing local retransmissions. Section 3 proposes
a scheme to mitigate problems caused by the
resequencing by the link layer protocol. Sec-
tion 4 describes the simulation conditions and
presents the results along with some discussion.
Finally, our conclusions are presented in Sec-
tion 5.

A unit of data is generally called a segment,
a packet, or a frame, depending on the layer
which handles it. In this paper we use the term
“packet” for all the layers, to unify the termi-
nology.

2. Related Work

To mitigate the above-mentioned problems,
the PFRS (Per-Flow ReSequencing) scheme
was proposed 6), where the resequencing is per-
formed for each upper layer flow independently,
while detection of lost packets and associated
retransmissions are carried out on the basis of
the overall flows in the same way as in the con-
ventional SR ARQ. As the resequencing is car-
ried out for each flow, the PFRS scheme sup-
presses the resequencing delay and the number
of packets in a burst. The PFRS scheme re-
quires no awareness with regard to upper layer
protocols except identification of upper layer
flows. It is reported that this PFRS scheme
achieves excellent throughput in comparison
with the conventional full resequencing scheme,
and can limit the size of a burst to the TCP
window size 6). However, if a large number of
upper layer flows are multiplexed over SR ARQ,
the PFRS scheme still requires a large number
of resequencing buffers. Furthermore, if TCP
employs a large window size by introducing the
TCP window scale option 7) to achieve a large
throughput, the PFRS scheme produces large
bursts.

A number of ongoing research efforts are re-
lated to local retransmissions by a link layer
protocol 8),16). Snoop 9) performs local retrans-
missions and conceals from TCP all packet
losses over a wireless link. It keeps a local copy
of each packet that has been forwarded over
this link. A packet loss over the link is detected
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by means of duplicate TCP ACKs and a re-
tained copy of the lost packet is retransmitted.
Since Snoop merely performs retransmission of
lost packets, packets are delivered out of order.
In order to avoid unnecessary duplicate ACKs,
which are caused by the out-of-order packets,
Snoop drops duplicate ACKs. As previously
mentioned, Snoop utilizes duplicate TCP ACKs
to detect loss of packets. It generally takes
longer to detect loss of packets than with a link
layer protocol, which is optimized for local re-
transmissions. If a retransmitted packet is also
lost, Snoop cannot use duplicate ACKs to de-
tect this, and recovery using a TCP timeout is
needed. Generally, a link layer protocol is ef-
ficient even in this case. Another problem of
Snoop is that its retransmission mainly targets
transfers from a base station to a terminal. For
the reverse direction, local negative acknowl-
edgments are needed to inform a TCP sender of
packet losses over the wireless link. TCP with
SACK is required for end terminals to realize
the local negative acknowledgments.

In another study, called delayed duplicate ac-
knowledgments (DDA) 10), a link layer protocol
with no resequencing is assumed. However, the
link layer protocol itself is not described in de-
tail; the main object is to obtain a Snoop-like
protocol that is TCP-unaware. The study fo-
cuses on delaying acknowledgments at a TCP
receiver in order to prevent unnecessary dupli-
cate ACKs, which will incur a retransmission
by TCP. Although this approach does not re-
quire TCP awareness at the link layer protocol,
it is hard to specify the delay needed to make
a decision as to whether duplicate ACKs - or
more precisely the third and subsequent dupli-
cate ACKs - should be released or not. Modifi-
cation of the TCP receiver is also needed. This
approach has a further defect of unnecessary
delay in responding to packet losses due to net-
work congestion in a wireline part of a network.

TULIP 11),12) has been proposed as a link-
layer-based solution tailored for half-duplex ra-
dio links. It is basically an SR ARQ protocol
employing a sequence number and a bit vector,
which is used for selective retransmissions. A
bit of the vector is associated with each trans-
mitted packet and identifies whether the packet
has been received successfully or not. Since this
scheme preserves the order of TCP data pack-
ets, duplicate ACKs are not generated; thus,
TCP awareness is not needed. As this scheme
completely preserves the order of all TCP data

packets, it is basically equivalent to the conven-
tional SR ARQ with resequencing of all packets.
If the number of outstanding packets becomes
large, TULIP has the same problems as the con-
ventional SR ARQ, such as the “head of line”
blocking described in Section 3.4.

All of the above approaches employ local re-
transmissions over a lossy link. However, ex-
cept for the PFRS scheme, they focus mainly on
links with small delays. It seems that their per-
formance or protocol mechanisms are not suit-
able for links where the product of the delay
and the bandwidth is large. In this paper, we
propose a link layer protocol architecture suit-
able for lossy links with large delay and high
bandwidth.

3. A Link Layer Protocol Based on SR
ARQ with No Resequencing

3.1 Basic Architecture
The basic idea of the proposed scheme is

shown in Fig. 2, where drawing of ACKs is
omitted to improve readability. The proposed
scheme does not perform resequencing at the
SR ARQ receiver, while SR ARQ detects a
packet loss and retransmits the packet in the
conventional way. The resequencing of packets
due to transmission errors is performed by TCP
end to end. A receiver of TCP generally allo-
cates receive buffers required for the resequenc-
ing and notifies the sender of TCP the volume
of buffers available as an advertising window.
A sender of TCP transmits packets at such a
rate as not to exceed the capacity of either the
congestion window or the advertising window.

3.2 A Problem due to the Lack of Re-
sequencing

The link layer protocol with no resequenc-
ing causes out-of-order packets at the receiver
of TCP. These packets incur duplicate ACKs,

Fig. 2 Basic architecture of the proposed scheme.
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Fig. 3 A problem in the basic scheme.

as shown in Fig. 3. The receiver of TCP ac-
cepts out-of-order packets S3, S4, and S5, while
waiting for a reception of packet S2. Each
time it receives an out-of-order packet, it re-
turns the same (duplicate) ACK2, which iden-
tifies the sequence number of the packet ex-
pected to be received next. When TCP receives
a fixed number (normally three) of duplicate
ACKs, it invokes the fast retransmit, which re-
transmits packet S2. As packet S2 has already
been retransmitted by the link layer protocol,
the retransmission by TCP is duplicated, and
the second packet S2 is dropped by the receiver
of TCP. Thus, unnecessary retransmission of
a packet is performed by the duplicate ACKs.
After the fast retransmit, TCP also performs
fast recovery, where the size of the congestion
window (cwnd) is reduced to half of its previ-
ous value. Although, after the fast recovery, the
size of the congestion window increases in the
congestion avoidance phase, its rate of increase
is relatively slow, and the total throughput is
suppressed on account of the insufficient size of
the congestion window.

3.3 An Approach to Mitigating the
Problem

One approach to mitigating the problem of
unnecessary retransmission by duplicate ACKs
may be to modify TCP so that it can be ro-
bust with respect to out-of-order packets. As
explained before, this approach is adopted by a
scheme called delayed duplicated acknowledg-
ments (DDA) 10), but it requires modification of
the existing TCP and still has issues to be ad-

Fig. 4 Proposed scheme.

dressed, as mentioned in Section 2. We propose
a TCP-aware link layer protocol that does not
require any modification of the existing TCP.
Like Snoop, the proposed link layer protocol
drops duplicate ACKs caused by loss of packets
in the link layer, as shown in Fig. 4.

However, we have to preserve conventional
fast retransmit by end-to-end TCP in provi-
sion for packet losses in a wireline part of the
network. Therefore, duplicate ACKs should be
dropped only in cases where they are caused
by losses of packets over a lossy link on which
SR ARQ is employed. Since SR ARQ is aware
of which packets are lost and retransmitted, it
is able to identify whether duplicate ACKs are
caused by losses over the lossy link or by the
wireline part of the network.

For this purpose, a sender of SR ARQ uses
a table to record both the flow identification
and the TCP sequence number for each retrans-
mitted packet. The flow identification consists
of the source and destination IP addresses, the
source and destination port numbers, and the
protocol ID. Figure 5 shows an outline of the
processing flow. Each time a sender of SR ARQ
retransmits a TCP data packet, it stores the
flow identification and TCP sequence number
(TCP SN) of the packet in the table.

When a duplicate ACK is received, if both
the flow identification and sequence number of
ACK are recorded in the table, the ACK is
dropped; otherwise, it is forwarded. If a packet
loss occurs on account of congestion in the wire-
line part of the network, information concern-
ing duplicate ACKs is not listed in the table,
and they are forwarded normally. Then, con-
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Fig. 5 Outline of the processing flow.

ventional fast retransmit and fast recovery are
invoked by end-to-end TCP. The above scheme
assumes that the sender of SR ARQ is aware of
the retransmission of TCP data packets.

In the proposed scheme, dropping of dupli-
cate ACKs is terminated when a new ACK,
which newly acknowledges outstanding TCP
data packets, is received. There is a case where
the maximum number of retransmissions is lim-
ited in SR ARQ: if a packet is not received cor-
rectly after the maximum number of retrans-
missions, it is not recovered by SR ARQ. There
is also another case where a packet retransmit-
ted by SR ARQ is correctly received but is lost
in the wireline part of the network because of
congestion. In these cases, a timeout at the
TCP sender occurs and end-to-end retransmis-
sion is invoked. If this packet retransmitted by
TCP is received correctly by the TCP receiver,
a new ACK carrying an updated sequence num-
ber is returned to the TCP sender, and drop-
ping of duplicate ACKs is terminated.

If a timeout occurs in TCP while SR ARQ
is still trying to retransmit a TCP data packet,
the TCP sender retransmits a duplicate TCP
data packet. SR ARQ receives this packet and
sends it normally. If the duplicate packet is re-
ceived correctly while SR ARQ is still trying
to retransmit the original packet, dropping of
duplicate ACKs ends when a new ACK is re-
ceived. If the duplicate packet is also lost due
to transmission errors, SR ARQ will register
the flow identification and the sequence number
of the duplicate packet. Since this information
has already been stored in the table, SR ARQ
overwrites the same information. When either
the original packet or the duplicated packet is
correctly received, a new ACK is returned, and
dropping of duplicate ACKs is terminated.

Fig. 6 The problem of HOL blocking.

3.4 Advantages of the Proposed Ar-
chitecture

The proposed scheme has the advantage that
it requires no resequencing buffers at the re-
ceiver of SR ARQ. In the conventional scheme,
the required volume of resequencing buffers
at the SR ARQ receiver increases significantly
when one or more of the the following factors
becomes large:
• The product of the bandwidth and the de-

lay of a link
• The number of TCP connections over the

link
• The TCP window size
Since the number of TCP connections and

the size of the TCP window for each connec-
tion are not predictable, it is generally difficult
to specify the required number of resequencing
buffers. On the other hand, the proposed archi-
tecture has scalability in the resequencing, since
the resequencing is performed at each TCP end
independently. Another advantage is that the
receiver of SR ARQ does not produce bursts
of packets. A further advantage is the lack of
HOL (head of line) blocking, which occurs when
a number of upper layer flows are multiplexed
over conventional SR ARQ, where the order of
all packets is preserved 6). Figure 6 shows an
example sequence of this problem. Two TCP
connections are multiplexed over a lossy link
where SR ARQ is employed. In the conven-
tional scheme, since the order of all packets is
preserved, packets S12 and S13 are delayed un-
til packet S21 is received. In this case, packets
S21 and S22 belong to a different TCP connec-
tion from packets S12 and S13. There is no need
to keep packets S12 and S13 for resequencing. If
the resequencing is not performed by SR ARQ,
this HOL blocking never occurs, and packets
S12 and S13 are forwarded without being de-
layed. In addition to the above-mentioned ad-
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vantages, since the proposed scheme only drops
duplicate ACKs, it still preserves the end-to-
end semantics of TCP, including network con-
gestion control.

4. Simulation

4.1 Simulation Configuration
Simulations were performed to evaluate the

performance of the proposed scheme. We em-
ployed the network simulator ns-2 (ns-2.27)
developed by the VINT project 13). Fig-
ure 7 shows the configuration of the simula-
tion. Three nodes were connected by a wired
link and a lossy wireless link. There were multi-
ple TCP connections over these links. The sim-
ulation conditions are summarized in Table 1.
The propagation delay and bit error rate of the
wireless link were changed as listed in the ta-
ble. A link layer protocol was employed over
the lossy wireless link. For the actual protocol,
we employed SSCOP (Service Specific Connec-
tion Oriented Protocol) 14), which realizes SR
ARQ by a relatively simple mechanism.

The normal size of the TCP window that we
used was 32 kbytes 4). This value is too small for
a single TCP connection to utilize the available
link bandwidth fully, because of the large prod-

Fig. 7 Configuration of the simulated network.

Table 1 Simulation conditions.

Bandwidth of wireless link 5Mb/s, 50Mb/s
Propagation delay 0.025 s (50Mb/s)

0.25 s (5Mb/s)

Bit error rate 10−8, 10−7,
10−6, 10−5

Type of bit error Random
Link layer protocol SSCOP

Polling interval of SSCOP 0.2 sec
TCP type NewReno

TCP data packet length 1,460 bytes
TCP delayed acknowledgment No Delay

Overhead by SSCOP 10bytes
TCP window size 32 kbytes

No. of TCP connections 5, 10
Packet generation Data always exists
Simulation time 60 sec

No. of simulation runs 10

uct of the delay and the bandwidth in the sim-
ulations. We assumed that multiple TCP con-
nections exist over an SR ARQ connection and
that the bandwidth of the link is fully utilized
by the aggregated TCP connections. Packet er-
rors occurred randomly following the bit error
rate and the length of a packet.

The following five schemes were simulated
and compared:
• Full resequencing
• PFRS
• SR ARQ with no resequencing (proposed

scheme)
• Snoop
• No-link-layer ARQ (end-to-end retransmis-

sions by TCP)
As Snoop is used for transmission from a base
station to a terminal, the direction of all packet
flows is from the wireline to the wireless, as in
Fig. 7. The results of simulations are plotted in
figures based on values averaged over 10 simu-
lation runs.

4.2 Simulation Results
Figures 8 and 9 show comparisons of the

above schemes where the numbers of TCP con-
nections are 5 and 10, respectively. The band-
width of a wireless link is assumed to be 5 Mb/s
and its propagation delay is 0.25 sec, which cor-
responds to the value for a satellite link. These
figures present the total throughput, which is
the sum of the throughput of all TCP connec-
tions normalized by the bandwidth of the wire-
less link. In the simulation condition, the band-
width of the link cannot be fully utilized in the
case where the number of TCP connections is
5. The total throughput becomes large when
the number of TCP connection is increased to
10.

Fig. 8 Comparison of throughput. The number of
TCP connections is 5, and the bandwidth and
delay of the link are 5Mb/s and 0.25 sec.
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Fig. 9 Comparison of throughput. The number of
TCP connections is 10, and the bandwidth and
delay of the link are 5Mb/s and 0.25 sec.

The performance of the PFRS scheme and
the proposed scheme are the best among all
the schemes. When the bit error rate is large
(10−5), the throughput of the proposed scheme
is inferior to that of the PFRS scheme, but the
difference is not significant. The same trend is
observed in both Figs. 8 and 9, irrespective of
the number of TCP connections.

When the bit error rate is 10−8, the perfor-
mance of Snoop is slightly better than that of
the other schemes, since it has no link layer
protocol overhead. However, as the bit er-
ror rate increases, its performance is degraded
in comparison with the PFRS and the pro-
posed schemes. The reason is considered to
be that the retransmission capability of the SR
ARQ-based link layer protocol is better than
that of Snoop, which relies on duplicate ACKs
and TCP timeouts. The conventional full re-
sequencing scheme, which preserves the order
of all packets over the link, shows low perfor-
mance, since the delay due to resequencing and
associated HOL blocking is large. The perfor-
mance of the no link layer ARQ is also low, since
retransmissions are performed by TCP end to
end, and thus it takes time to retransmit lost
packets and the congestion window is also de-
creased after each retransmission.

Figure 10 shows a comparison of the
throughput for the case where the bandwidth
of the wireless link is 50 Mb/s and its delay
is 0.025 sec. The bandwidth of the wired link
is changed to 100 Mb/s to avoid a bottleneck
due to this link. Its delay is also changed
to 0.005 sec so that the product of the delay
and the bandwidth of the wireless link is al-
most the same as in the case shown in Fig. 9.
Although the delay is small, the performance

Fig. 10 Comparison of throughput. The number
of TCP connections is 10, and the band-
width and delay of the link are 50Mb/s and
0.025 sec.

of the network is degraded when the bit error
rate of the link becomes worse. The perfor-
mance of the proposed scheme and the PFRS
scheme is exactly the same in this case. Both
schemes achieve excellent performance in com-
parison with other schemes. From these simula-
tion results, it is clear that the proposed scheme
achieves excellent performance close to that of
the PFRS scheme. The superior performance of
the proposed scheme is significant not only for
long propagation links but also for high-speed
wireless links.

4.3 Comparison with the DDA Scheme
As previously mentioned, the DDA scheme

takes a similar approach to the proposed one,
where the link layer protocol does not perform
the resequencing. In the DDA scheme, a TCP
receiver delays release of duplicate ACKs so
that they do not return to a TCP sender un-
necessarily. If the packet that is expected to
be received next arrives at the receiver dur-
ing this delay period, transmission of the du-
plicate ACKs is canceled. But the problem
is the selection of the optimal delay value. If
the delay is small, the probability of duplicate
ACKs, which will lead to unnecessarily fast re-
transmit, becomes large; otherwise, recovery of
packet losses in the wireline part of the network
is delayed. Figure 11 shows a comparison of
the DDA scheme with the PFRS and proposed
schemes, where the value of delay (d) is changed
to 1.0 sec and 2.0 sec; the delay of a wireless link
and its bandwidth are 0.25 sec and 5 Mb/s, re-
spectively. When the value of the delay (d) is
1.0 sec, the performance of the DDA scheme is
inferior to that of other schemes in the case of
the large bit error rate. When the delay (d) is
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Fig. 11 Comparison with the DDA scheme. The num-
ber of TCP connections is 10, and the band-
width and delay of the link are 5Mb/s and
0.25 sec.

Fig. 12 Delay in responding to a lost packet. The
number of TCP connections is 10, the band-
width and delay of the link are 5Mb/s and
0.25 sec, and the probability of packet loss in
the wireline part of the network is 0.001.

2.0, the performance is comparable with that of
the PFRS scheme and the proposed scheme.

Figure 12 shows the delay in responding to
a packet loss that occurs randomly in the wire-
line part of the network. The probability of
this packet loss is assumed to be 0.001. There
are also packet losses over the wireless link. A
response to a packet loss consists of both re-
transmission and a decrease in the size of the
congestion window through either a fast recov-
ery or a slow start. Recovery of packet losses in
the wireline part of the network is delayed by
transmission errors over the wireless link. It is
clear that the DDA scheme takes longer to re-
cover the packet losses than the PFRS and the
proposed schemes. Since packet losses in the
wireline part of the network occur because of
congestion, rapid reactive control that reduces
the size of the congestion window should be per-

Fig. 13 Configuration of the simulated network.

formed. The proposed scheme and the PFRS
scheme are excellent in this regard, while the
DDA scheme takes a long time to react to con-
gestion.

4.4 Performance in the Case where
the Number of Buffers in a For-
warding Node is Limited

To compare the proposed scheme with the
PFRS scheme, simulations were performed for
the case where the number of buffers at a for-
warding node is limited. Figure 13 shows
the configuration of the network simulated. In
this figure, the direction of packet flows is from
Node C to Node A. When the PFRS scheme
is employed, bursts of packets are produced by
Node B due to the resequencing and forwarded
to Node D through a 100Mb/s link. Node
D transfers the packets to Node A through a
10 Mb/s link. Queuing of packets occurs at
Node D because of the difference in link band-
width. Simulations were performed for cases
where the number of buffers (b) from Node
D to Node A was changed to 50, 20, 18, 15,
and 10. As the proposed scheme does not pro-
duce bursts of packets, the performance is the
same irrespective of the number of buffers. The
PFRS scheme produces bursts of packets, where
the number of packets in a burst is limited by
the TCP window size 6). Since the size of the
window was 32 kbytes in the simulations, up to
22 packets were forwarded at the same time and
queued at Node D. If the number of buffers
is smaller than the window size, packet losses
are likely to occur. Figure 14 shows the re-
sults of the simulations. It is observed that the
throughput of the PFRS scheme is degraded as
the number of buffers becomes small.

Figure 15 shows the number of resequenc-
ing buffers occupied by the receiver of SR ARQ,
where the number of buffers in Node D is un-
limited and the number of TCP connections
NTCP is changed to 5 and 10. As the bit rate
and the number of TCP connections NTCP in-
crease, the number of resequencing buffers be-
comes large in the PFRS scheme. Since the
proposed scheme does not perform resequenc-
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Fig. 14 Comparison of the throughput in the PFRS
scheme and the proposed scheme when the
number of buffers at a forwarding node is lim-
ited.

Fig. 15 Average number of resequencing buffers
occupied.

ing, no buffer is occupied for all cases.
Figures 14 and 15 clearly show the advan-

tages of the proposed scheme over the PFRS
scheme in the case where the number of buffers
at a forwarding node or at the receiver of SR
ARQ is limited.

4.5 Spurious Timeouts and Recovery
of the Congestion Window

As previously mentioned, the throughput of
the proposed scheme is slightly inferior to that
of the PFRS scheme in the case where the bit
error rate is high. This difference is due to the
following reasons:
• In the case of the proposed scheme, spu-

rious timeouts of TCP are more likely to
occur than in the PFRS scheme when the
bit error rate is high.

• Recovery of the congestion window in the
proposed scheme is slower than in the
PFRS scheme when a TCP timeout occurs.

4.5.1 Spurious Timeouts
Table 2 shows the average number of time-

Table 2 Average number of timeouts on one TCP
connection and the average RTT value mea-
sured by TCP, where the number of TCP
connections (NTCP ) is 10.

Bit error rate Scheme Timeouts RTT [sec]

10−6 PFRS 0.38 0.617
No reseq. 0.56 0.593

10−5 PFRS 0.41 0.955
No reseq. 0.59 0.804

outs that occurred on one TCP connection dur-
ing the simulation time (60 sec). In this table
“No reseq.” represents the proposed scheme. It
can be observed that spurious timeouts occur
more frequently in the proposed scheme than
in the PFRS scheme. The reason timeouts are
likely to occur in the proposed scheme is con-
sidered to be as follows. Table 2 also presents
the average round-trip time (RTT) measured
by TCP during simulation runs. From this ta-
ble, we can see that the measured RTT val-
ues for the proposed scheme are smaller than
those for the PFRS scheme when the bit error
rate is high. In the simulations, TCP always
performs one RTT measurement at a time 15).
When resequencing is performed by the TCP
receiver after a retransmission by SR ARQ, a
single ACK acknowledging multiple TCP data
packets is returned to the TCP sender. Mea-
surement of RTT is likely to be terminated at
this moment, and the next RTT measurement
is started when the next new TCP data packet
is sent. This new packet is unlikely to encounter
resequencing, since there are no or few remain-
ing outstanding packets preceding this packet.
The measured RTT value tends to be smaller
than the normal RTT value. This leads to a
small retransmission timer value, which is con-
sidered to be the cause of the frequent timeouts.

4.5.2 Recovery of the Congestion
Window after a Timeout

Figure 16 shows an example of a congestion
window (cwnd) change made by the proposed
scheme when the bit error rate is 10−6 and the
number of TCP connections is 5. Figure 17
also shows an example of the same change made
by the PFRS scheme in the same conditions.
In both figures, the configuration of the simu-
lated network is the same as in Fig. 13, except
that Node D has unlimited buffers. In Fig. 17,
one spurious timeout occurs, while two spurious
timeouts occur in Fig. 16. A spurious timeout
by TCP is likely to occur while a lost packet
is being retransmitted by the link layer proto-
col. If a timeout occurs, the size of the conges-
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Fig. 16 Example of a cwnd change made by the pro-
posed scheme. The bit error rate is 10−6,
the number of TCP connections is 5, and the
bandwidth and delay of the link are 5Mb/s
and 0.25 sec.

Fig. 17 Example of a cwnd change made by the PFRS
scheme. The bit error rate is 10−6, the num-
ber of TCP connections is 5, and the band-
width and delay of the link are 5Mb/s and
0.25 sec.

tion window (cwnd) is reduced to 1 and a slow
start is invoked. As shown in the figures, the
recovery of the congestion window in the pro-
posed scheme is much slower than in the PFRS
scheme. This causes the throughput of the pro-
posed scheme to be small.

In the PFRS scheme, multiple in-sequence
TCP data packets collectively arrive at the
TCP receiver after the resequencing by SR
ARQ. Multiple new ACKs are then returned
to the TCP sender. These new ACKs are likely
to arrive at the TCP sender collectively after
a spurious timeout. Since update of cwnd is
performed each time a new ACK is received,
the congestion window increases rapidly in the
PFRS scheme. Figure 18 shows the changes
in the sequence numbers of ACKs received by
the TCP sender in the PFRS scheme. The box

Fig. 18 Changes in TCP data and ACK sequence
numbers in the case shown in Fig. 17.

in this figure shows details from 17.055 sec to
17.65 sec. The figure also presents the sequence
numbers of TCP data packets sent by the TCP
sender. In the simulations, a sequence num-
ber is assigned to each TCP data packet, and
its value is incremented by 1 each time a new
TCP data packet is sent. A retransmission by a
TCP timeout occurs at around 16.9 sec. After
this moment, 22 new ACKs are received from
17.057 sec to 17.083 sec. One or two data pack-
ets are sent each time a new ACK is received;
the gap in sequence numbers between a received
ACK and a sent data packet corresponds to the
congestion window (cwnd). We can see that re-
covery of the congestion window is performed
rapidly during this period.

On the other hand, in the proposed scheme,
when the resequencing is performed by the TCP
receiver after a retransmission by SR ARQ, only
a single new ACK that acknowledges multi-
ple TCP data packets is returned to the TCP
sender. Update of cwnd is performed only once,
when a lost packet is recovered by the link layer.
This is why recovery of the congestion window
in the proposed scheme is slower than in the
PFRS scheme.

4.6 Bursts of Packets Sent by TCP
In the proposed scheme, as mentioned above,

when resequencing is performed by the TCP re-
ceiver after retransmissions by SR ARQ, a sin-
gle new ACK that acknowledges multiple TCP
data packets is sent to the TCP sender. When
the TCP sender receives the ACK, it can send
a number of new TCP data packets at the same
time. We call a group of packets sent by TCP
at the same time a burst. Since packets whose
number is equal to the TCP window size be-
come outstanding during one RTT period, the
number of new packets in a burst can also take
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Fig. 19 Distribution of bursts at the TCP sender in
the PFRS scheme. The bit error rate is 10−5

and the number of TCP connections is 10.

Fig. 20 Distribution of bursts at the TCP sender in
the proposed scheme. The bit error rate is
10−5 and the number of TCP connections is
10.

any value up to or including the TCP window
size.

Figures 19 and 20 show the distribution
(relative frequency) of bursts at the TCP sender
in the PFRS scheme and the proposed scheme,
respectively, where the bit error rate is 10−5

and the number of TCP connections is 10.
The box inside each figure presents details of
small frequency values. Since the TCP window
size is 32 kbytes and the length of a packet is
1,460 bytes, up to 22 packets can be outstand-
ing. From Fig. 20, we can see that the pro-
posed scheme produces bursts consisting of up
to 22 packets. On the other hand, the PFRS
scheme produces bursts of up to 2 packets,
which are mainly sent during the slow start
phase. In the simulation, a node accepting the
bursts has enough buffers, but there is a possi-
bility of packet losses if the number of buffers
in the node is limited.

One approach to mitigating this problem is

to limit the number of packets sent simulta-
neously when a new ACK is received 17). In
the simulations, TCP has a parameter called
“maxburst” to limit the number of packets that
can be sent in response to a single new ACK,
but simulations were performed without mak-
ing this parameter effective. Another approach
is to suppress bursts by employing TCP pacing,
where packets of the TCP window size are dis-
persed over one RTT period 18). Since SR ARQ
drops duplicate ACKs, there is also a possibil-
ity that SR ARQ regenerates new ACKs when
a new ACK that collectively acknowledges mul-
tiple TCP data packets is received. Further in-
vestigations are needed to evaluate the effec-
tiveness of these approaches.

5. Concluding Remarks

In this paper, we have studied a link layer
protocol based on SR ARQ, focusing on its rese-
quencing function. Instead of reordering pack-
ets at the receiver of SR ARQ, we proposed
an architecture where the resequencing of pack-
ets is done by TCP end to end. The proposed
approach has the advantages of no buffer re-
quirement and no burst generation at the re-
ceiver of SR ARQ. It also has no HOL blocking
when multiple upper layer flows are multiplexed
over SR ARQ. These advantages become signif-
icant for broadband wireless networks, where
the product of the bandwidth and the delay is
increasing rapidly. It should also be noted that
the proposed scheme preserves the end-to-end
semantics of TCP, including network congestion
control.

The performance of the proposed scheme was
compared with that of other schemes through
simulations, and was found to be excellent in
the case where the product of the link band-
width and the delay is large. When the number
of buffers at a forwarding node is limited, the
proposed scheme achieves a higher throughput
than the PFRS scheme, since it does not pro-
duce bursts of packets.

Although the PFRS scheme has the advan-
tage of TCP-unawareness, it has problems of
scalability with regard to the number of TCP
connections, the link bandwidth, and the size of
the TCP window. The proposed scheme has no
such defects, but TCP awareness is needed in-
stead. These two schemes are complementary.
For packet flows whose protocols are unknown,
the PFRS scheme should be applied. However,
if the type of packet flows is known to be TCP
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and the number of buffers at a receiver of SR
ARQ is limited or bursts of packets by SR ARQ
are not allowed, the proposed scheme provides
an promising solution.

As mentioned in Section 4.6, the proposed
scheme still has possible ways of improving spu-
rious timeouts, slow recovery of the conges-
tion window and bursts of packets generated
by TCP. Approaches for mitigating these issues,
and their evaluations, are left for further study.
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