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Regular Paper

A Review of Recent Studies of Geographical Scale-Free Networks

Yukio Hayashi†

The scale-free (SF) structures that commonly appear in many complex networks are a hot
topic in social, biological, and information sciences. These self-organized generation mecha-
nisms are expected to be useful for efficient communication or robust connectivity in socio-
technological infrastructures. This paper is the first review of geographical SF network models.
We discuss the essential generation mechanisms for inducing the structures with power-law
behavior, and consider the properties of planarity and link length. Distributed design of geo-
graphical SF networks without the crossing and long-range links that cause interference and
dissipation problems is very important for many applications such as communications, power
grids, and sensor systems.

1. Introduction

A breakthrough in network science 1) has
been the discovery 2) that many real systems
with social, technological, and biological origins
have surprisingly common topological struc-
tures called small-world (SW) 3) and scale-free
(SF) 4). Such structures are characterized by
the SW properties that the average path length
over all nodes (vertices) is short, like that in
random graphs, and that the clustering coeffi-
cient, defined as the average ratio of the num-
ber of links (edges) connecting a node to its
nearest neighbor nodes to the number of possi-
ble links between all these nearest neighbors, is
large, like that in regular graphs. A large clus-
tering coefficient means a high frequency of the
case that “the friend of a friend is also one’s
friend.” The SF property is that, the degree
distribution follows a power-law, P (k) ∼ k−γ ,
2 < γ < 3; the fat-tail distribution consists of
many nodes with low degrees and a few hubs
with very high degrees. Moreover, a proposal
of universal mechanisms 4) for generating SF
networks inspired elucidation of the topologi-
cal properties of such networks. One of the ad-
vantages of SF networks is that they are opti-
mal in minimizing both the effort of commu-
nication and the cost of maintaining the con-
nections 5). Intuitively, a SF network is posi-
tioned between a star or clique graph for min-
imizing the path length (the number of hops
or legs) and a random tree for minimizing the
number of links within the connectivity. An-
other important property is that SF networks

† School of Knowledge Science, Japan Advanced In-
stitute of Science and Technology

are robust against random failures but vulner-
able against the targeted attacks on hubs. This
vulnerability, called “the Achilles’ heel of the
Internet,” 6) frightened us. Although the vul-
nerability is a double-edged sword for informa-
tion delivery and spreading of viruses, we ex-
pect that the above properties will be useful
for developing efficient and fault-tolerant net-
works with a defense mechanism based on the
protection of hubs. Since the SF structure is
at least selected with self-organized manners in
social and biological environments, the evolu-
tional mechanisms may provide insight into dis-
tributed network design or social management
in communication or business.

On the other hand, in contrast to abstract
graphs, many real networks are embedded in a
metric space. It is therefore natural to investi-
gate the possibility of embedding SF networks
in space. The range of related applications is
very wide, and includes Internet, power grids,
airlines, mobile communication 7), and sensor
networks 8). However, most of the studies on SF
networks do not take any acount of geographical
space. In this paper, focusing on the SF struc-
ture found in many real systems, we consider
rules for generation of geographical networks
whose nodes are set on a Euclidean space and
in which the undirected links between nodes are
weighted by the Euclidean distance.

The organization of this paper is as follows.
In Section 2, we introduce an example that
shows the restriction of long-range links in real
networks. Indeed, the decay of the connection
probability for the distance between nodes fol-
lows an exponential or power-law. In Section 3,
we review recent studies of geographical SF net-
work models, which are categorized into three
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classes based on generation rules. We refer to
the analytical forms of degree distributions that
characterize the SF structure. In Section 4,
we consider the relations among these models.
In addition, we compare the properties of pla-
narity and the distance of connections. Finally,
in Section 5, we summarize the above proper-
ties and briefly discuss further issues.

2. Spatial Distribution in Real-world
Networks

The restriction of long-range links has been
observed in real networks, e.g., Internet at both
router and autonomous system (AS) levels ob-
tained by using the NETGEO tool to iden-
tify the geographical coordinates of 228,265
routers 9). These data suggest that the distribu-
tion of link lengths (distances) is inversely pro-
portional to the lengths, invalidating Waxman’s
exponential decay rule 10), which is widely used
in traffic simulations. Other evidence has been
reported for the real Internet data at the AS
level (7,049 nodes and 13,831 links) compiled by
the University of Oregon’s Route Views project,
the road network of US interstate highways
(935 nodes and 1,337 links) extracted from GIS
databases, and flight connections (187 nodes
and 825 links) for a major airline 11). It has
been shown that all three networks have a clear
bias towards shorter links to reduce the costs of
construction and maintenance. However, some
differences exist: the road network has only
very short links on the order of 10 km to 100 km
in the sharply decaying distribution, while the
Internet and airline networks have much longer
ones in the bimodal distribution, with distinct
peaks around 2,000 km or less and 4,000 km.
These differences may derive from physical con-
straints in the link cost or from the require-
ments of long distance direct connections.

As a similar example, we investigate the dis-
tributions of link lengths (distances of flights)
in Japanese airline 12). The network consists of
52 nodes (airports) and 961 links (flights) for
Japan AirLines (JAL), 49 nodes and 909 links
for All Nippon Airlines (ANA), and 84 nodes
and 1,114 links for other flights including in-
ternational ones. Figure 1 shows the cumula-
tive number of flights for the decreasing order
of length measured in miles. We note an expo-
nential decay in domestic flights (red and blue
lines in Fig. 1), whereas it follows a power-law
when international flights (green line in Fig. 1)
are added. Note that the distribution of the

 
 

Fig. 1 Cumulative number of flights by Japanese air-
lines. The red, blue, and green lines corre-
spond to domestic flights by JAL and ANA,
and other flights including international flights
(inset: semi-log scale). The magenta and
cyan lines show the estimated exponential and
power-law functions, respectively.

Fig. 2 Network generation in each model. The analyt-
ically obtained degree distributions for (a)-(c)
follow P (k) ∼ k−3, P (k) ∼ k−γ with a cutoff
kc < K, and P (k) ∼ k−γRA , γRA ∼ 3, respec-
tively.

link lengths is obtained from the differential of
the cumulative one and that the decay form of
the exponential or the power-law is invariant.

Thus, link lengths are restricted in real sys-
tems, although the distribution may have vari-
ous forms, as the case of degree distribution 13).

3. Geographical SF Network Models

We review state-of-the-art geographical SF
network models. Based on the generation rules
of networks, they can be categorized into three
classes, as shown in Table 1. The generation
rules are explained by variations in the trade-
off between minimizing the number of hops be-
tween nodes (benefits for transfers) and mini-
mizing the link lengths.
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Table 1 Summary of geographical SF network mod-
els. The symbols ©, �, and × denote good-
ness levels for P: the palanarity and S: the
shortness of links.

Class of SF Generation rule P S Models
With Connect (i, t) × © Modulated

disadvan. with probability BA 14),19)

long-range Πi(t) ∼ ki(t)lα

links Connect (i, j) iff × © Geo. thresh.
(wi + wj)h(rij) ≥ θ graph 18)

Embedded in With randomly × � Warren 24),
a lattice assigned degree kj

restricted links Avraham 22),23)

in the radius Ak
1/d
j

Created by Triangulation © � Apollonian
space-filling (geo. attach. pref.) nets. 27)∼29)

Pref. attach. by × � Growing spatial
selection of edges SF nets 37)

In this section, we refer to the generation
rules and the power-law behavior only in their
essential forms, because of the space limitation.
The properties of planarity without crossing
links and the link lengths will be discussed in
the next section.

3.1 SF Networks with Disadvantaged
Long-range Links

The modulated Barabási-Albert (BA)
model 14) and the geographical threshold
graph 18) belong to the first class: SF net-
works with disadvantaged long-range links be-
tween nodes whose positions are random on
a space☆. They are natural extensions of the
previous non-geographical SF network models,
generated by adding competition between pref-
erential linking based on the degree or weight
and the restriction of link length (distance de-
pendence).

3.1.1 Modulated BA Model in Eu-
clidean Space

Before explaining the first class, we introduce
the well-known BA model 4) generated by the
following rule: growth with a new node at each
time step and preferential attachment of links
to nodes with large degrees (see Fig. 2 (a)).
BA-Step 0: A network grows from an initial

N0 nodes with m < N0 links among them.
BA-Step 1: At every time step, a new node

is introduced and is randomly connected to
m previous nodes as follows.

BA-Step 2: Any of these m links of the new
node introduced at time t is connected to a
previous node i with an attachment proba-
bility ΠBA

i (t) which is linearly proportional
to the degree ki(t) of the i-th node at time

☆ To simplify the discussion, we assume an uniformly
random distribution of nodes on a space. However,
the procedure can be generalized to any other dis-
tributions.

t, ΠBA
i (t) ∼ ki(t).

Preferential attachment creates a heteroge-
neous network with hubs. More precisely, the
degree distribution P (k) ∼ k−3 is analyti-
cally obtained by using a mean-field approxima-
tion 4) in the continuum approach 2), in which
the time dependence of the degree ki of a given
node i is calculated through the continuous real
variables of degree and time.

Based on a competition between preferen-
tial attachment and the distance dependence
of links, the modulated BA model on a space
with physical distance has been considered 14).
Note that the position of new nodes is random.
The network is grown by introducing randomly
positioned nodes on a Euclidean space (e.g., a
two-dimensional square area), and the proba-
bility of connection is modulated according to
Πi(t) ∼ ki(t)lα, where l is the Euclidean dis-
tance between the t-th node introduced at time
t and the older i-th node, and α is a parameter.
The case of α = 0 is the original BA model 4).
In the limit of α → −∞, only the smallest value
of l corresponding to the nearest node will con-
tribute with probability 1. Similarly, in the
limit of α → ∞, only the furthest node will
contribute. Indeed, it has been estimated that
the distribution of link lengths follows a power-
law l−δ (long-range links are rare at δ > 0),
whose exponent is calculated as δ = α + d − 1
for all values of α 14).

In the modulated BA model on a one-
dimensional lattice (circumference), it has been
numerically shown 19) that for −1 < α < 0 the
degree distribution is close to a power-law, but
for α < −1 it is represented by a stretched expo-
nential P (k) = a exp(−bkγ), where the param-
eters a, b, and γ depend on α and m, although
the SW property 3) is preserved at all values of
α. For the transition from the stretched expo-
nential to the SF behavior, the critical value
is generalized to αc = 1 − d in the embedded
d-dimensional space 14). More systematic clas-
sification in a parameter space of the exponents
of degree, distance, and fractal dimension has
also been discussed 9).

Other studies related to the form of connec-
tion probability Πi ∼ kβ

i lα include a phase di-
agram of the clustering properties in the α-
β plane 15), a comparison of the topological
properties for the special case where the con-
nection probability is proportional to the dis-
tance (α = 1, β = 0) and the inverse distance
(α = −1, β = 0) 16), and a numerical inves-
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tigation of the scaling for the quantities (de-
gree, degree-degree correlation, clustering coef-
ficient) of the network generated by the connec-
tion probability proportional to the degree with
the exponential decay of the distance 17).

3.1.2 Geographical Threshold Graphs
A geographical threshold graph 18) is a non-

growing network model extended from the
threshold SF network model 20),21). It is embed-
ded in the d-dimensional Euclidean space with
disadvantaged long-range links. We briefly an-
alyze the degree distribution.

Let us consider a set of nodes with size N . We
assume that each node i is randomly distributed
with uniform density ρ in a space whose coordi-
nates are denoted by x1, x2, . . . , xd, and that it
is assigned a weight wi ≥ 0 by a density func-
tion f(w). According to the threshold mecha-
nism 18), a pair of nodes (i, j) is connected iff

(wi + wj)h(rij) ≥ θ, (1)
where θ is a constant threshold, and h(rij) is
a decreasing function of the distance rij > 0
between the nodes.

If f(w) is the Dirac delta function at w∗ > 0,
then the condition of connection of Eq. (1) is
equivalent to rij ≥ h−1

(
θ

2w∗
) def= r∗, derived

from the inverse function h−1. This case is the
unit disk graph, as a model of mobile and sen-
sor networks, in which two nodes within the ra-
dius r∗ are connected according to the energy
consumption. However, the degree distribution
P (k) is homogeneous. We need more inhomo-
geneous weights.

Thus, if the exponential weight distribution

f(w) = λe−λw, (2)

and the power-law decay function h(rij) =
(rij)−β, β ≥ 0, are considered, then the degree
is derived as a function of weight

k(wi) =
∫ ∞
0

f(wj)dwj

× ∫
(wi+wj)/(rij)β≥θ

ρdx1 . . . dxd

∼ eλwi ,

(3)
after slightly complicated calculations. The sec-
ond integral in the r.h.s of Eq. (3) is the volume
of a d-dimensional hypersphere. As in Refs. 18)
and 21), by using the relation of cumulative dis-
tributions

∫ k(w)

0
P (k)dk =

∫ w

−∞ f(w′)dw′, we
have

P (k) = f(w)
dw

dk
. (4)

From Eqs. (3) and (4), we obtain the power-law

degree distribution

P (k) ∼ e−2λw ∼ k−2.

Note that this result is derived only if the value
of β is sufficiently small; otherwise, the degree
distribution has a stretched exponential decay
or an exponential decay.

On the other hand, for the power-law weight
distribution (called Parete distribution in this
form)

f(w) =
α

w∗

(
w∗

w

)α+1

, (5)

we similarly obtain

k(w) ∼ wd/β , P (k) ∼ k−(1+αβ/d).

The exponent γ
def= 1 + αβ/d is a variable that

depends on the parameters α and β.
Furthermore, we mention a gravity model

with h(rij) = 1/ log rij . In this case, the condi-
tion of connection (1) is rewritten as wi +wj ≥
θ log rij , and converted into

WiWj

(Rij)β
≥ θ, (6)

by the variable transformations Wi
def= ewi ,

Wj
def= ewj , and (Rij)β def= (rij)θ/θ. Equa-

tion (6) represents a physical, sociological, or
chemical interaction with power-law distance
dependence. From a combination of Eq. (6)
and the weight distributions f(w) in Eqs. (2)
and (5), we can also derive the more compli-
cated forms of P (k). Thus, the choice of f(w)
matters for the SF properties, in contrast to
an approximately constant exponent γ ≈ 2 in
non-geographical threshold graphs 21) without
h(rij).

3.2 SF Networks Embedded in Lat-
tices

The second class is based on the SF networks
embedded in regular Euclidean lattices (SFL)
accounting for graphical properties 22),23). We
distinguish this class from the first one, because
the positions of nodes are not randomly dis-
tributed but well-ordered on a lattice with a
scale (one-hop unit) that gives the minimum
distance.

Let us consider a d-dimensional lattice of
size R with periodic boundary conditions. The
model is defined by the following configuration
procedures (see Fig. 2 (b)) on an assumption of
power-law degree distribution.
SFL-Step 0: To each node on the lattice, as-

sign a random degree k taken from the dis-
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tribution P (k) = Ck−λ, m ≤ k ≤ K,
λ > 2 (the normalization constant: C ≈
(λ − 1)mλ−1 for large K).

SFL-Step 1: Select a node i at random, and
connect it to its closest neighbors until its
connectivity ki is realized, or until all nodes
up to a distance,

r(ki) = Ak
1/d
i (7)

have been explored: The connectivity
quota kj of the target node j is already
saturated. Here A > 0 is a constant.

SFL-Step 2: Repeat the above process for all
nodes.

As in Ref. 22), we derive the cutoff connectiv-
ity. Consider the number of links n(r) entering
a node from a surrounding neighborhood of ra-
dius r, when the lattice is infinite, R → ∞.
The probability of connections between the ori-
gin and nodes at distance r′ is

P

(
k>

(
r′
A

)d
)

=
∫ ∞
(r′/A)d P (k′)dk′

∼
{

1 r′<A
(r′/A)d(1−λ) r′>A.

Thus, from n(r)=
∫ r

0
Sdr

′d−1dr′
∫ ∞
(r′/A)dP (k′)dk′,

we obtain

n(r) = Vdr
d
{(

A
r

)d ∫ (r/A)d

0
kP (k)dk

+
∫ ∞
(r/A)d P (k)dk

}
,

where Vd = Sd/d and Sd are the volume and the
surface area of the d-dimensional unit sphere,
respectively. The cutoff connectivity is then

kc = lim
r→∞n(r) = VdA

d〈k〉, (8)

where 〈k〉 =
∫

kP (k)dk denotes the average
connectivity.

If A is large enough such that kc > K, the
network can be embedded without cutoff. Oth-
erwise, by substituting Eq. (8) into Eq. (7), the
cutoff connectivity kc implies a cutoff length

ξ = r(kc) = (Vd〈k〉)1/dA2. (9)

The embedded network displays the original
(power-law) distribution up to length scale ξ
and repeats, statistically, at length scales larger
than ξ.

Whenever the lattice is finite, R < ∞, the
number of nodes is finite, N ∼ Rd, which im-
poses a maximum connectivity

K ∼ mN1/(λ−1) ∼ Rd/(λ−1), (10)

Fig. 3 Warren’s SF network embedded in a two-
dimensional lattice.

where the first approximation is obtained from∫ ∞
K

P (k)dk =
[

C
1−λk1−λ

]∞
K

= 1/N . From

Eqs. (7) and (10), a finite-size cutoff length is

rmax = r(K) ∼ AR1/(λ−1). (11)

These three length scales, R, ξ, rmax, de-
termine the nature of networks. If the lat-
tice is finite, then the maximum connectiv-
ity K is attained only if rmax < ξ. Oth-
erwise (rmax > ξ), the cutoff kc is imposed.
As long as min(rmax, ξ) 
 R, the lattice size
R imposes no serious restrictions. Otherwise
(min(rmax, ξ) ≥ R), finite-size effects bounded
by R become important. In this regime, sim-
ulation results 22),23) have also shown that for
larger λ the network resembles the embedding
lattice because of the rare long-range links,
while the long-range links becomes noticeable
as λ decreases.

Concurrently with the above work, Warren,
et al. 24) have proposed a similar embedding al-
gorithm in a two-dimensional lattice. As shown
in Fig. 3, the number of nodes in each circle is
equal to the connectivity without cutoff. Thus,
the main difference in their approach is that a
node can be connected to as many of its closest
neighbors as necessary, until its target connec-
tivity is fulfilled.

In addition, Ref. 25) has discussed the short-
est paths on d-dimensional lattices with the
addition of an average of p long-range bonds
(shortcuts) per site, whose length l is dis-
tributed according to Pl ∼ l−µ.

3.3 Space-Filling Networks
The third class is related to space-filling pack-

ing in which a region is iteratively partitioned
into subregions by adding new nodes and links.

3.3.1 Growing Small-World Networks
Let us consider a growing network with ge-
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Fig. 4 Growing networks with geographical
attachment preference.

ographical attachment preference 26) as a mod-
ification of the SW model 3). In this network,
from an initial configuration with m + 1 com-
pletely connected nodes on the circumference
of a circle, at each subsequent time step, a new
node is added in an uniform-randomly chosen
interval, and connects the new node to its m
nearest neighbors w.r.t the distance along the
circumference. Figure 4 (left) illustrates the
case of m = 2. We denote n(k, N) as the num-
ber of nodes with degree k when the size (or
time) is N . At time N , a new node with degree
m is added to the network, and if it connects to
a preexisting node i, then the degree is updated
by ki → ki+1 with equal probability m/N to all
nodes because of the uniform randomly chosen
interval.

Thus, we have the following evolution equa-
tion:

n(k, N + 1) =
(
1 − m

N

)
n(k, N)

+m
N n(k − 1, N) + δk,m,

where δk,m is the Kronecker delta. Note that
considering such an equation for the average
number of nodes with k links at time N is called
“the rate-equation approach,” while consider-
ing the probability p(k, ti, t) that at time t a
node i introduced at time ti has a degree k is
called “the master equation approach” 2).

When N is sufficiently large, n(k, N) can be
approximated as NP (k). In the term of degree
distribution, we obtain

P (k) =
1

m + 1

(
m

m + 1

)k−m

for k � m (P (k) = 0 for k < m), although it is
not a power-law.

3.3.2 Apollonian Networks
The growing small-world networks model 26)

can be extended from polygonal divisions on a
circle to polyhedral divisions on a sphere, as
shown in Fig. 4. We should remark that the
extended model becomes a planar graph when
each node on the surface is projected onto a

plane such as one from a Riemannian sphere.
It is nothing but a random Apollonian net-
work (RAN) 27),28), and also the dual version of
Apollonian packing for space-filling disks into
a sphere 29), whose hierarchical structure is re-
lated to the SF network formed by the min-
ima and transition states on the energy land-
scape 30). The power-law degree distribution
has been analytically shown in RAN 27),28). To
derive the distribution P (k), we consider the
configuration procedure for a RAN as follows
(see Fig. 2 (c)).
RAN-Step 0: Set an initial triangulation

with N0 nodes.
RAN-Step 1: At each time step, a triangle is

randomly chosen, and a new node is added
inside the triangle.

RAN-Step 2: The new node is connected to
its three nodes of the chosen triangle.

RAN-Step 3: The processes in Steps 1 and
2 are repeated until the required size N is
reached.

Since the probability of connection to a node
increases with the number of its related trian-
gles, it is proportional to its degree as the pref-
erential attachment. Thus, we have the follow-
ing rate-equation:

n(k + 1, N + 1) = k
N�

n(k, N)

+
(
1 − k+1

N�

)
×n(k + 1, N),

(12)

where the number of triangles N� (at the grown
size or time N) is defined as N� = 2(N −4)+4
for an initial tetrahedron, N� = 2(N − 3) + 1
for an initial triangle, and so forth.

In the term of P (k) ≈ n(k, N)/N , Eq. (12)
can be rewritten as

(N + 1)P (k + 1) = NkP (k)
N�

+ NP (k + 1)

− N(k+1)P (k+1)
N�

.

By continuous approximation, we obtain the
solution P (k) ∼ k−γRA with γRA = (N� +
N)/N ≈ 3 for large N . Figure 5 (a) shows
an example of a RAN.

Moreover, in the deterministic version 29),31),
analytical forms of the power-law degree dis-
tribution P (k), clustering coefficient ci, and
degree-degree correlation knn(k) can be de-
rived 29), since the calculations are easier on
the recursive structure without randomness for
selection of subregions, as shown in Fig. 5 (b).
Here, knn(k) is defined by the the average de-
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(a) RAN

(b) Deterministic AN

Fig. 5 Apollonian Networks: (a) Random AN gener-
ated from an initial triangulation of square and
(b) deterministic AN generated from an initial
triangle of back lines. The dashed and dotted
lines show the added links at the first and sec-
ond steps, respectively.

gree of the nearest neighbors of nodes with de-
gree k. It has been observed in technological
and biological networks and in social networks
that two types of correlations exist, namely, dis-
assortative and assortative mixings 32). These
types of networks tend to have connections be-
tween nodes with low-high degrees and with
similar degrees, respectively. RANs exhibit dis-
assortative mixing 29).

Similarly, the analytical forms in both high-
dimensional random 33),34) and deterministic 35)

Apollonian networks have been investigated by
using slightly different techniques. They are
more general space-filling models embedded in
a high-dimensional Euclidean space, although
the planarity is violated.

3.3.3 SF Networks Generated by Se-
lecting Edges

Another modification of growing SW net-
works 26) is based on random selection of
edges 36),37). We classify them in the relation
to their manner of partitioning an interval or
region, as mentioned in Section 3.3.1, and a
Voronoi diagram. The following two models
give typical configurations (see Fig. 6).

The growing SW network generated by se-
lecting edges 36) is constructed as follows. Ini-
tially, the network has three nodes, each with
degree two. As shown in Fig. 6 (a), at each time
step, a new node is added, which is attached via
two links to both ends of one randomly chosen
link that has never been selected before. The

(a) Growing SW network

(b) Growing spatial SF network

Fig. 6 SW and SF networks generated by randomly
selecting edges.

growth process is repeated until the required
size N is reached. Since all nodes have two
candidates links for selection at each time, an
exponential degree distribution is analytically
obtained. If the multi-selection is permitted for
each link, it follows a power-law. The differ-
ence in the configuration procedures for a RAN
is that, instead of triangulation with three links
added, two links are added at each step. We as-
sume that the position of added node is random
(but the nearest to the chosen link) on a metric
space, although only the topological properties
are discussed in the original model 36).

In a growing spatial SF network 37) on a two-
dimensional space, m links whose centers are
nearest to an added new node (as indicated by
the dashed lines in Fig. 6 (b)) are chosen at each
time step. Both end nodes of the nearest link(s)
have an equal probability of connection. If a
Voronoi region 38),39) for the centers of links is
randomly chosen for the position of a new node
in the region☆, the selection of a link is uni-
formly random, and therefore the probability of
connection to each node is proportional to its
degree. Thus, we can analyze the degree distri-
bution. Note that any point in the Voronoi re-
gion is closer to the center (called the generator
point) belong in it than to any other centers.

For the case of m = 1 as a tree, the number
of nodes with degree k is evolved in the rate-

☆ Although the position of nodes is randomly selected
on a two-dimensional space in the original paper 37),
it is modified to the random selection of a Voronoi
region which is related to triangulation such as in
a RAN. Note that it gives a heterogeneous spatial
distribution of points.
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equation
n(k, t + 1) = n(k, t) + (k−1)

2t n(k − 1, t)

− k
2tn(k, t) + δk,1,

(13)
where n(k, t) denotes the number of nodes with
degree k, and 2t is the total degree at time t.

In the term of degree distribution P (k, t) ≈
n(k, t)/t at time t, Eq. (13) is rewritten as

(t + 1)P (k, t + 1) − tP (k, t)
= 1

2 [(k − 1)P (k − 1, t) − kP (k, t)] + δk,1.

At the stationary value independent of time t,
we have

P (k) =
1
2

[(k − 1)P (k − 1) − kP (k)] + δk,1.

From the recursion formula and P (1) = 2/3, we
obtain the solution

P (k) = k−1
k+2P (k − 1)

= 4
k(k+1)(k+2) ∼ k−3.

4. Relations among the Models

We discuss the relations among the indepen-
dently proposed models. Remember the sum-
mary of the geographical SF network models in
Table 1.

The first class is based on a combination of
preferential attachment or a threshold mecha-
nism and a penalty for long-range links between
nodes whose position is random, while the sec-
ond one is based on embedding of a SF struc-
ture with a given power-law degree distribution
in a lattice. Since the degree assigned to each
node can be regarded as a fitness value 2), the
SFL is considered as a special case of the fitness
model 20) embedded in a lattice. In contrast,
the penalty for age or distance dependence of
each node can be regarded as an inverse of
fitness value in general terms. If we neglect
the differences among penalties, this explana-
tion links the modulated BA 14),19), SFL 22),23),
and aging models 40) with a generalized fitness
model. The crucial difference is the positioning
of nodes: in one case they are randomly dis-
tributed on a space and in the other they are
well-ordered on a lattice with the minimum unit
distance between nodes. Moreover, the weight
in the threshold graphs 18),21) corresponds to a
something of fitness value; however, the deter-
ministic threshold and the attachment mecha-
nisms should be distinguished in non-growing
and growing networks. We also remark that,
in the third class, the preferential attachment

is implicitly performed, although the configu-
ration procedures are more geometric, being
based on triangulation 27)∼29) or selection of
edges 37). In particular, the positions of nodes
in the Apollonian networks are given by itera-
tive subdivisions (as neither random nor fixed
on a lattice), which may be related in practice
to territories for communication or supply man-
agement.

Next, we qualitatively compare the proper-
ties of planarity without crossing links and link
lengths. We emphasize that the planarity is an
important and natural requirement to avoid in-
terference of beams (or collision of particles) in
wireless networks, airlines, layout of VLSI cir-
cuits, vas networks clinging to cutis, and other
networks on the earth’s surface 28).

In modulated BA models and geographi-
cal threshold graphs, long-range links are re-
stricted by the strong constraints with decay
terms; however, crossing links may be gener-
ated. There exist longer links from hubs in the
SFL, because such nodes have large numbers
of links. Moreover, the positions of nodes are
restricted on a lattice. The density of nodes
is constant, and therefore they must connect to
some nodes at long distances. More precisely, it
depends on the exponent λ of the power-law de-
gree distribution, as mentioned in Section 3.2.
In addition, the planarity condition is not sat-
isfied by the crossing between the lattice edges
and the short-cuts. On the other hand, RANs
have both good properties of planarity and av-
eragely short links. However, in a narrow trian-
gular region, long-range links are partially gen-
erated, as shown in Fig. 5. Similarly, SF net-
works generated by selection of edges may have
long-range links, as shown in Fig. 6 (b): the cho-
sen end point for connection is far from the
newly added node at a random position, even
though the selected edges have the nearest cen-
ters.

5. Conclusion

In this review of geographical SF network
models, we have categorized them into three
classes based on the generation rules: disadvan-
taged long-range links, embedding in a lattice,
and space-filling. We have shown that these
models have essential mechanisms for generat-
ing power-law degree distributions, whose ana-
lytical forms can be derived on an assumption
that the restricted link lengths are consistent
with real data. Furthermore, the basic topolog-
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ical properties of the planarity and link length
have been discussed for each model. In partic-
ular, geographical threshold graphs and RANs
are attractive because of the tunable exponent
γ of P (k) ∼ k−γ or the locality related to unit
disk graphs, and the planarity of networks with
heterogeneous positioning of nodes. However,
they have drawbacks of crossing and long-range
links, respectively. To avoid long-range links,
an improvement using a combination of RANs
and Delaunay triangulation based on diagonal
flipping 38),39) is under consideration 41).

We have considered several configuration pro-
cedures for geographical SF networks and dis-
cussed their properties; however, these are still
at the fundamental level. We must consider
further issues, such as,
• Quantitative investigation of the topolog-

ical properties, including the diameter of
a network, the clustering coefficient, the
degree-degree correlation, and the between-
ness centrality (related to congestion of in-
formation flow).

• Analysis of the dynamics of traffic and the
fault-tolerance, especially in disasters or
emergent environments.

• Positioning of nodes with aggregations ac-
cording to population density in evolu-
tional and distributed manners.

We will progress from current stage, the ob-
servation of real networks, to the next stage,
the development of future networks. The dis-
tributed design and management will have use-
ful applications in many socio-technological in-
frastructures.
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