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Abstract: Given an image sequence with corrupted pixels, usually big holes that span over several frames, we propose
to complete the missing parts using an iterative optimization approach which minimizes an optical flow functional and
propagates the color information simultaneously. Inside one iteration of the optical flow estimation, we use the solved
motion field to propagate the color and then use the newly inpainted color back to the brightness constraint of the
optical flow functional. We then introduce a spatially dependent blending factor, called the mask function, to control
the effect of the newly propagated color. We also add a trajectory constraint by solving the forward and backward
flow simultaneously using three frames. Finally, we minimize the functional by using alternating direction method of
multipliers.
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1. Introduction

Video inpainting or completion is the process of recovering
missing parts of videos either by interpolation or duplication of
the known parts. Missing parts or holes could come from damage
such as in old vintage videos, missing edges due to frame align-
ment, intermediate frames in frame interpolation, and object re-
moval. The goal of inpainting is a visually pleasing output video
that is both spatially and temporally consistent. Spatial consis-
tency requires objects to maintain their geometry while temporal
consistency requires parts of the same object to move in the same
manner.

Numerous methods have been formulated to solve the video
inpainting problem (Refs. [7], [8], [9], [16], [17], [18] and [19]
among others). Some work directly extended image inpainting
methods to videos. With the addition of a third dimension (time),
these methods result in poorly inpainted sequence especially
when both background and holes are moving. Non-parametric
sampling by Wexler et al. [23] use global spatio-temporal opti-
mization and 3D patches to fill in holes. Jia et al. [9] use large
fragments based on color similarity instead of using fixed size
patches and use tracking to complete the video. Some meth-
ods use frame alignment using features (low-rank [25], SURF [5],
etc.) with variants such as separately inpainting background and
foreground using layers [8].

One particular approach is the use of optical flow to propa-
gate pixels with known colors toward the hole. This approach
is straight-forward, as long as the optical flow is available in the
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immediately succeeding or preceding frame. However in most
practical cases, such as removing pedestrians in street videos, the
holes extend several frames which makes immediate copying of
colors using motion information insufficient. To solve this prob-
lem, one approach is to also estimate the motion inside the hole
using similarity measures. Shiratori et al. [17] utilize fixed size
patch motion fields instead of colors. Tang et al. [18] also inpaint
motion but use weighted priority of patches to select the best-
match patch.

Video inpainting can benefit from frame interpolation methods
that use motion inpainting [2], [22]. The difference between the
two problems is the unavailability of spatial information in the lat-
ter. Instead of exclusively interpolating the trajectory, color and
motion consistency assumption at the boundary of the hole could
be used to improve the inpainting results. Werlberger et al. [22]
used optical flow to estimate the velocity of pixels between two
consecutive frames and applied a TV-L1 denoising algorithm to
inpaint holes. However, in their method, the solution for optical
flow and inpainting are separately done.

In our method, we use an iterative optimization approach that
uses optical flow to complete the color frames. Our method re-
lies heavily on the accurate estimation of the motion fields at the
boundary of and inside the hole, therefore we improve the stan-
dard optical flow by adding a trajectory constraint and introduc-
ing a spatially dependent mask function. Compared to existing
methods, we solve the inpainting problem in a unified approach
by simultaneously removing an object, inpainting the background
motion, and completing the color frames, all within our iteration
method.

2. Optimization Function

Given an image sequence with brightness values I, n frames
{n|n ∈ Z, 0 ≤ n ≤ N} and a hole H ⊆ I, we define un,n+k as
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the optical flow between frames In and In+k where k = {−1, 1}.
Our objective is to find 1) uH,n,n+k = (uH,n,n+k, vH,n,n+k) between
Hn and Hn+k, where u and v are the horizontal and vertical mo-
tion vectors, and; 2) the brightness Hn inside the hole for all n.
The method that will be presented here can be easily extended to
colored frames, hence from now on, we will use the term color in-
stead of brightness. For simplicity reasons, we will explain only
one segment of the sequence {n − 1, n, n + 1} therefore, we will
use the subscript {b, 0, f } or the backward, reference, and forward
(flow) for those frames. We will also let x as the 2D position
(x, y).

Our main contribution is the use of an iterative method to solve
the optical flow and color. We do this by alternately solving an
optimization function Eq. (1) and propagating the color informa-
tion using the solved optical flow. We generalize the optimization
function as:

min
uf ,ub

(Edata + Espatial + Etra jectory)(uf ,ub) (1)

where Edata, Espatial and Etra jectory are the energy terms which we
will elaborate in the following sections. It is important to note that
we solve the forward and backward flows simultaneously among
three frames. From this point on, we will tackle the details of
each of the terms that are essential in our method.

2.1 Data Term
The data term consists of two parts: the mask function m(x) and

the optical flow brightness constancy terms [6] shown in Eq. (2).

Edata = m(x)
[
ϕ
(
I f (x + uf) − I0

)
+ ϕ (Ib(x + ub) − I0)

]
(2)

We use the differentiable approximation of the L1 data penalty
ϕ(s) =

√
s2 + ε2 where ε is an arbitrary small constant. Our data

term is special due to the mask function which separates the ef-
fect of the color values into two ways. At the boundary of the
hole, we give the mask a positive value (highest), which allows
the known color to have more influence in the minimization of
Eq. (1). Inside the hole, we give the mask function a lower value
to control the effect of the newly inpainted color values. It is es-
sential to elaborate first the two remaining energy terms in order
to fully explain how the mask function works, therefore, we will
suspend this discussion until Section 2.4.

2.2 Spatial Smoothness Constraint
To allow the flows to be spatially smooth, we implement the

spatial energy term as the widely used Total Variation regularizer
shown in Eq. (3).

Espatial = λ1(|∇uf |TV + |∇ub|TV ) (3)

The TV term is discretized as

|∇u|TV =
∑

i

√
(∇xu)2 + (∇yu)2 (4)

where ∇x and ∇y is the gradient in the x and y direction, respec-
tively, and λ1 is the blending constant.

2.3 Smooth Trajectory Constraint
In practical applications, smooth trajectory constraint applies

more appropriately compared to temporal smoothness. Tempo-
ral smoothness [11], [26] assumes that the motion in one pixel
position of two frames is the same (or smooth if more than one
frame). This constraint holds only if the pixels in two different
frames belong to the same object (hence, similar motion). On the
other hand, smooth trajectory constraint ensures that real-world
points register smooth motion in the image frame.

Several works use smooth trajectory as an additional constraint
to the optical flow functional. Werlberger et al. [21] solve the op-
tical flow using three frames by imposing a hard constraint be-
tween the forward and the backward flow. Since they assume that
both motion is equal which is not always true, the authors re-
ported a degradation in the result on some of their data. Salgado
et al. [15] impose a soft constraint between the flows however,
their method require warping of the flows to each other, which
makes it difficult to solve because flow fields refer to many dif-
ferent coordinate frames. Volz et al. [20] on the other hand, solve
the flow fields with respect to one reference frame thus removing
the need to warp them. In their method, the authors used multiple
frames and only one direction which makes solving the trajec-
tory simpler. We reformulate Volz method, but instead we use
only three frames and solve both the backward and forward flow.
We then impose the trajectory smoothness as a soft constraint as
shown below:

Etra jectory = λ2φ(uf , ub) (5)

where λ2 is a positive constant and φ(uf , ub) = |uf − ub|22 is the
quadratic penalty function.

The term uf − ub refers to the similarity measure between uf

and ub. The measure could be angular difference or end-point
error [1]. To simplify the computation, we implemented the con-
straint using constant velocity assumption as used in Ref. [15].

The usage of only three frames in our method results in the im-
plicit propagation of information among succeeding frames with
the use of the mask function. Similarly, using three frames al-
lows for the strong dependency of the hole on immediate frames
and the diffused effect of color information from distant frames.
While it is true that using more frames will improve the estima-
tion of the trajectory, it does not always hold in our case since we
are dealing with holes that span several frames. In other words,
the solved trajectory will have less effect on the accuracy of the
inpainted motion compared the propagated color from an imme-
diate neighboring frame.

2.4 Mask Function
The mask function m(x) allows us to control the effect of in-

painted color pixels on the estimation of the motion inside the
hole. We generalize m(x) = [0, 1]. Outside the boundary of the
hole, the color values should have maximum influence on the so-
lution of Eq. (1), therefore we set m(x) = 1.0 for all x in I \ H.
Inside the hole, we set m(x) as the function of the distance of the
pixel’s source wrt. the reference frame.

We give more weight on inpainted pixels that come from im-
mediate frames. It follows that as the source of the color comes
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from more distant frames, the motion relies more on the solved
trajectory and spatial smoothness. The mask function needs to be
controlled efficiently, because adding it to the optimization func-
tion makes the latter unstable. Instead of explicitly solving m(x),
we define it as a constant during one iteration and updates it after
that.

3. Solution to Optimization Problem

To make this paper self-sufficient, we describe the solution to
Eq. (1) including the color propagation and iteration stages in de-
tail.

3.1 Linear Warping and Coarse-to-fine Approach
We linearize or warp the image frame I f using the first order

Taylor approximation near x + u0, where u0 is the solved optical
flow after an iteration (or zero at initialization). We use linear
interpolation to solve the value of I f (x + u0). Assuming that u0

is a good approximation of u f , we can say that the brightness
constancy term I f (x + u0) − I0) ≈ 0. The same holds for Ib.

To further impose the above assumptions, we implement a
coarse-to-fine strategy by building image pyramids. We do this
by repeatedly down-sampling the image frames by a factor of α.
Using this approach, we can compensate for large pixel motions
that is usually present our videos. We use α > 0.5 so that each of
the succeeding pyramid is a blurred version of the lower level.

3.2 Alternating Direction Method of Multipliers
To solve for the backward and forward flow simultaneously,

we implement the split Bregman method [4] which is a variant of
ADMM. We define an iteration variable bk+1 = bk + φ(uf , ub) to
decouple uf and ub. Combining Eqs. (2), (3) and (5), we get the
resulting minimization function:

min
uf ,ub

m(x)
[
ϕ
(
I f (x + uf) − I0

)
+ ϕ (Ib(x + ub) − I0)

]

+ λ1[|∇uf |TV + |∇ub|TV ] + λ2 |φ(uf , ub) − bk |22 (6)

We first solve uf by holding ub constant and vice versa. We
then update the iteration variable bk. For each variable, we mini-
mize the following function.

min
uf

m(x)ϕ
(
I f (x + uf) − I0

)
+ λ1 |∇uf |TV

+ λ2 |φ(uf ,ub) − bk|22 (7)

To minimize Eq. (7), we use the iterative method described by
Papenberg et al. [13]. We call this step as the inner iteration and
elaborate it in Algorithm 1.

3.3 Iterative Stage
The algorithm of the iterative stage is shown in Algorithm 2

and is detailed in the following sections.
3.3.1 Initialization of u

During the first iteration, the hole does not have any informa-
tion. Therefore the mask function inside the hole is set to zero.
This initialization method is similar to Ref. [14] instead we added
a trajectory smoothness constraint. In some cases, the initial
value is very close to the final output especially when the surface
is flat and there are no obvious occlusion boundaries.

Algorithm 1 Inner Iteration
Require: uf ,ub

initialize uf ,ub,b0,k← 0

while convergence�TRUE do

linearize I f , Ib

Hole Warping

ub = constant, solve u f

u f = constant, solve ub

update bk+1

k ← k + 1

end while

Algorithm 2 Our Proposed Method
Require: color of H

solve image pyramids

initialize m(x ∈ H) = 0

for level < max level do

while error > thresh do

Inner Iteration

Color Propagation

update m(x)

end while

upsample u f , ub

end for

Fig. 1 Optical flow at the boundary of the hole (a) without removing the
object prior to estimation; (b) without warping the hole of the next
frame to the reference frame; (c) with hole warping.

Fig. 2 Color propagation.

3.3.2 Hole Warping
One problem that is apparent in estimating optical flow is the

effect of occluding objects. There are two cases where occluding
objects will degrade the result of motion inpainting and therefore
the overall result. The first case occurs when the removed object
is at the foreground and the inpainted region is the background.
If we solve the optical flow before removing the object, the er-
ror at the boundary will remain in the final solution (Fig. 1 (a)).
Therefore, motion inpainting methods that rely on spatial smooth-
ness [14] as well as non-parametric sampling methods that uses
motion fields [17], [18] will fail.

The second case occurs when the region to be estimated is also
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occluded on the succeeding frame by the same foreground object
(Fig. 1 (b)). The only case where this does not happen is when
the background moves and the foreground object remains in the
same position with respect to the camera frame (i.e., raindrop re-
moval [24]).

The first problem is solved implicitly in our method because
we remove the object prior to the motion estimation stage. The
second problem is solved by warping the hole from the succeed-
ing frame to the reference frame using the estimated flow in one
iteration. We use the same interpolation technique we used for the
color frames but with nearest neighbor approach. The improve-
ment in optical flow estimation using this technique is shown in
Fig. 1 (c).
3.3.3 Color Propagation

Given uf and ub of all the frames, we propagate the colors by
following the motion to another frame. This is a straight-forward
method except when the color is not available on the succeed-
ing frame. We illustrate our approach to this problem in Fig. 2.
Given the hole at frame t, we follow the forward flow of the hole
to the next frame t + 1. In this frame, the pixels in blue are avail-
able, therefore we directly copy them to frame t using the same
warping technique in Section 3.1. We then follow the flow of the
remaining hole to frame t + 2 and this time, the pixels in yellow
become available. We copy this to frame t + 1 and on to frame
t. At this point, we give the a weight μ to each inpainted pixels
in frame t proportional to the distance of their source to the ref-
erence frame (μ = 1 for blue pixels, μ = 2 for yellow pixels).
We do this approach in both directions until all the pixels are in-
painted, under the assumption that all pixels are visible at any of
the available frames.

By giving the inpainted pixels some weight μ, we can then con-
trol how much effect it has relative to the spatial and trajectory
smoothness. We use this weight directly as the new value of the
mask and perform the iterative step of our method. The mask in-
side the hole is updated as m(x) = γ−μ similar to the weighting
parameter used in Refs. [3] and [23].

4. Experimental Results

In Fig. 3, we show first the improvement in the inpainted mo-

Fig. 5 Inpainting result on ‘alley’ sequence. (a) Input frames (b) Ground-truth optical flow (c) Solved
and inpainted optical flow using our method (d) Inpainted gray image sequence.

tion by using the newly inpainted pixels compared to a fixed
mask function (zero inside the hole). The result suggests that
the smoothing effect of the spatial and temporal constraint is reg-
ulated resulting in a more detailed optical flow especially at the
object boundaries.

Next, we show the effectiveness of our method using an im-
age sequence (Fig. 4) taken using a hand-held camera with min-
imum motion (only camera shaking). We introduce a moving
box as noise and inpaint the damaged part to recover the origi-
nal video. We would like to demonstrate that under track-able
foreground motions (real world motion) and static background,
temporal aliasing (ghosts) can be easily noticed. In our result, we
successfully inpainted the video sequence with little noticeable
motion. We compare the inpainted frames to the original ones and
solved the Mean Absolute Error MAE = 1

i

∑
i

∣∣∣Ioutput − Iorginal

∣∣∣ to

Fig. 3 Effect of using newly inpainted colors in motion inpainting of ‘Rub-
berwhale’ sequence [12]. (a) Color frame (b) Initial mask (c) Ground
optical flow (d) Inpainted without trajectory constraint and fix mask
(m = 0) (e) Inpainted with trajectory constraint (f) Inpainted with our
mask function.

Fig. 4 Results of inpainting on ‘room’ sequence. Top row: masked input.
Bottom row: inpainted output.
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Fig. 6 Inpainting result of street video. Top row: input sequence. Bottom row: removed pedestrian and
inpainted sequence.

be 1.08 pixel intensity units.
We also tested our method on synthetic image sequences [10].

We use the first 30 frames of the ‘alley’ sequence in Ref. [10] and
remove the running girl. We show the representative frames in
Fig. 5.

Finally, we tested our method on a rectified and stabilized street
video (Fig. 6) taken from one side of an omnidirectional camera
(the reason for the rotated appearance). We used 62 frames for
this sequence and remove the walking pedestrians. We success-
fully inpainted the video including the parts that are represented
only on few frames due to occlusion (ground).

5. Conclusion and Future Work

In this paper we have demonstrated the efficiency of our
method in inpainting videos. Several improvements can be done.
First, using spatio-temporal pyramid could increase the efficiency
of motion estimation especially during cases where severe oc-
clusion and plane homography occurs. Second, since we used
split Bregman method, the penalty functions could be improved
to make each iteration faster. Finally, the initialization of u could
be improved so that the solution can converge faster.
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