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Abstract: This work discusses a di�erence in typical work�ow in HPC and cloud-based Big Data
analytics with particular focus on distributional semantics, one of the areas of Natural Language
Processing. We introduce a framework in which the use of scripting language and interactive envi-
ronment is combined with data-intensive computation capacity of an HPC cluster. In scope of this
framework we develop a kernel for collocation extraction based on hybrid radix and ternary trees.
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1. Introduction

The amount of data generated by humans and digital
infrastructure is rapidly increasing. In 2007 the overall
amount of this information was estimated as 281 exabytes
[19] and this number has increased manifold since then.
The ability to access and process this data allowed for im-

portant scienti�c discoveries and commercial applications.
The term Big Data was coined to refer to the datasets too
big to be processed by traditional tools. Another charac-
teristic of Big Data is that it comes from various sources is
often not well structured.
The importance of data-driven methods is generally rec-

ognized and calls for e�ective solutions for data distribu-
tion, management and processing. Perhaps the most famous
among such solutions is MapReduce programming model
proposed by Google[26] and its open-source implementa-
tion called Hadoop [25]. Hadoop MapReduce framework
is a part of Apache Big Data stack also including Hapoop
Distributed File Systems, various libraries and orchestra-
tion tools. Clouds and ABDS became immensely popular
for BigData computations; for many practitioners they are
largely associated with each other.
On the other hand, supercomputers have always been

around to solve problems of magnitude which is prohibitive
for traditional computing systems. Modern supercomputers
reach multi-peta�op performance as measured by High Per-
formance Linpack (HPL) - the benchmark on which main
supercomputer rating Top 500 is based. This benchmark
measures how fast a computing system solves a dense n by
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n system of linear equations Ax = b, which is a common
task in engineering. Most traditional workloads for super-
computers are indeed for physical simulations and largely
compute-intensive. This is why some Big Data practitioners
express the opinion that supercomputers are not the best �t
for Big Data processing and Clouds are the better choice.
However, it might be not quite true. Even traditional

compute-intensive workloads require tremendously e�cient
inter-node communication to scale to thousands of nodes.
However, typical Clouds inherit their design form Internet
Data Centers and hosting providers with high vertical band-
width (user wants to access his hosting quickly) but poor
horizontal bandwidth (between nodes), which makes them
less than optimal hardware infrastructure. On the other
hand, modern supercomputers are built so as to allow very
fast interconnect. For example, the Tsubame 2.5. supercom-
puter installed in Tokyo Institute of Technology is equipped
with In�niband fabric with 200 Tb/s bisection bandwidth.
It is also noteworthy that supercomputing is increasingly

interested in data-intensive computations. The complimen-
tary Graph 500 benchmark was introduced in 2010[29]. This
benchmark solves breadth-�rst search problem on a large
scale (up to 240 nodes) Kronecker graphs and is mostly data-
intensive. Since the introduction of this benchmark all the
top positions are occupied by HPC systems - no Cloud in-
frastructures at all.
Another important di�erence between typical Cloud and

HPC setups is that HPC systems tend to have storage sep-
arated in form of a cluster with Lustre GPFS or another
parallel �lesystem, while ABDS set-ups use same nodes for
storage and computing and can be build even from commod-
ity hardware.
The biggest di�erence, however, lies in the software stack.
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HPC clusters rely mainly on MPI and RDMA for the lower
communication level and use resource systems like PBS or
Slurm for resource management. Tasks are typically queued
and executed in batch fashion. Various libraries for linear
algebra, machine learning etc. are implemented on top of
MPI layer. Detailed comparison of software stack of these
two paradigms can be found in Jha et al. [23]
Another important aspect is the user experience and

work�ow. Big Data analytics is often characterized by
the diversity of data and the exploratory nature of the re-
search. This is why interactive work�ows are often favored
[2], [11], [22], [33], and there are big commercial start-ups like
Wakari that provide interactive cloudy platform for Big Data
analytics. Interactivity allows the researchers to quickly
modify the logic of their applications without having to re-
run the whole application.
One of the ares that actively uses data-driven methods is

Natural Language Processing.
This paper discusses the possibility of having interactive

scripting environment to deal with one particular case study
in the the area of Natural Language Processing, namely re-
search in distributional semantics. Distributional models are
becoming increasingly popular, but many researchers report
prohibiting computational requirements they encounter [16].
We propose a framework for working with vector space mod-
els of word similarity and demonstrate its potential in the
experiment with automatic identi�cation of synonyms in a
multiple-choice test.

2. Problem Domain

Distributional hypothesis was formulated in 1954; its main
idea is that similar words appear in similar contexts[21].
Later it was transformed to the idea that the word can be
characterized by the company it keeps[18], i.e. by the context
it appears in. For example the word croissant is more likely
to be found in a context of words like sweet, butter, break-
fast etc rather than megabytes, cylinders or decibel. Finally,
statements like "the representation that captures much of
how words are used in natural context will capture much of
what we mean by meaningâ�� are being made [27].
The exact de�nition of what a word means is one of the

biggest theoretical as well as practical issues in linguistics.
Traditionally the meaning of word is de�ned with the list
of dictionary senses, but human experts are not consistent
when asked to classify certain word usage against given def-
initions. Moreover, dictionaries can only de�ne words with
other words. The de�nition of meaning as "what the source
or sender expresses, communicates, or conveys in their mes-
sage to the observer or receiver, and what the receiver in-
fers from the current context" also does not give much clue
for the computational representation. This is why some re-
searchers suggest giving up on dictionary de�nitions com-
pletely in favor of distributional similarity as an equivalent
of semantic similarity [17].
The interest in Distributional Hypothesis comes not only

from linguistics but also from cognitive science. The so-

called usage-based models hypothesize that human infants
infer word meanings from the stream of text they encounter,
and that the process of learning is largely statistical [9]. This
model is probably not the whole story, since it does not ex-
plain how humans can also learn new words from dictionary
de�nitions, and also does not allow for distinguishing be-
tween homophones and homographs (but here some extra
computational apparatus might help). But still, it does ex-
plain a lot with regards to human language acquisition. As
far as computers go, distributional semantic models have
been shown to perform remarkably well on various perfor-
mance criteria [7], [8]

2.1 Vector-Space Models

Although distributional models originate in the middle of
20th century, only recently the progress in digital technol-
ogy allowed to collect and process bodies of text (corpora)
large enough to get practical results for semantics based on
vector space models (VSMs). In these models every word is
represented as a vector in multi-dimensional space and each
dimension is a possible context when it can occur. This vec-
tor is hypothesized to represent word meaning, as it can be
inferred from the context where the word occurs.
Saying that a word "appears in a context" is rather

vague; it needs further clari�cation. First of all, roughly
we can classify models into document-based, window-based
or syntax-based. Each of these models can be further speci-
�ed by various parameters, including the size of the window
and penalty for the larger distance to the target word inside
the window (triangular, Gaussian etc [28]). It is also impor-
tant whether we count words appearing before and after the
target word together or independently.
Document-based models are typically used to classify doc-

uments rather then words in the information retrieval prob-
lem. Window-based and syntax-based models are typically
used to describe individual words. Larger windows capture
more of topical properties of the word and smaller windows
- more of semantic properties.
More formally, in VSMs we build matrices with rows cor-

responding to terms (words) or sometimes other instances of
interest, such as pairs of words and columns correspond to
contexts (documents, paragraphs or windows). Thus each
row is a feature-vector of a term with elements determined
by frequencies of this term in each context. Detailed survey
on existing Vector-Space Models can be found in [32]
When the researcher has determined the type, size and

shape of context that would match his task, it is possi-
ble to build a feature vector for a world with frequencies
p(c|t) = p(c,t)

p(t) and apply one of the many known metrics.
Here are some of the most commonly used distance metrics
for vectors:
Euclidean d(t1, t2) =

√∑
c

(p(c|t1)− p(c|t2))2

City Block d(t1, t2) =
∑
c
|p(c|t1)− p(c|t2)|

Cosine d(t1, t2) = 1−
∑
c
p(c|t1)×p(c|t2)√∑

c
(p(c|t1)×p(c|t1))

√∑
c
(p(c|t2)×p(c|t2))
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Fig. 1: Correlation between corpus size and the number of
unique elements

Less commonly used information-theoretic measures have
also been applied in vector-space models and led to good
results in particular tasks. Here are some examples of such
mtrics:
Hellinger d(t1, t2) =

∑
c

(
√
p(c|t1)−

√
p(c|t2))2

Bhatacharya d(t1, t2) = − log
∑
c

(
√
p(c|t1)

√
p(c|t2))

Kullback-Leibler d(t1, t2) =
∑
c
p(c|t1) log

(
p(c|t1)
p(c|t2)

)
In alternative to raw probabilities there is a number of

other association measures which can be used to construct
feature vectors. They include entropy based normaliza-
tion and odds ratios. Perhaps the most widely consid-
ered one is the Pointwise Mutual Information (PMI) [12],
which quanti�es the discrepancy between probability of two
random variables coincidence given their joint distribution
and their individual distributions, assuming independence:
pmi(c, t) ≡ log p(c,t)

p(c)p(t) = log p(c|t)
p(c)

Positive PMI is the variation of PMI that sets all the neg-
ative components to zero which leads to better accuracy on
angular distance metrics.
All of the step described above can be quite challenging in

terms of memory and compute power requirements. Katrin
Erk from, University of Texas writes "The lower end for this
kind of a research is a text collection of 100 million words.
If you can give me a few billion words, I'd be much happier.
But how can we process all of that information? That's
where supercomputers and Hadoop come in. In a simple
case we count how often a word occurs in close proximity to
other words. If you're doing this with one billion words, do
you have a couple of days to wait to do the computation?
It's no fun. With Hadoop on Longhorn, we could get the
kind of data that we need to do language processing much
faster. That enabled us to use larger amounts of data and
develop better models. [16]

2.2 Sources of data

Distributional semantics and other areas of computational
linguistics require large bodies of text to work. In linguis-
tics such a collection of texts is called a corpus. Corpora can
be structured and contain additional layers of information,
such as part of speech tags, syntactic structure annotation,
bibliographic data about individual texts in the collection,
etc.
Many corpora are made to be balanced across di�erent

genres and registers (i.e spoken and written language). Per-
haps the �rst academic corpus of English language was The
Brown University Standard Corpus of Present-Day Ameri-
can English (or just Brown Corpus). It was compiled in the
1960s by Henry Kucera and W. Nelson Francis at Brown
University, Providence, Rhode Island as a general corpus
(text collection) in the �eld of corpus linguistics. It contains
500 samples of English-language text, totaling roughly one
million words.
Nowadays the standard size for a balanced national cor-

pus is 100 millions words. A good example is the British
National Corpus (BNC) [1]. It covers British English of
the late 20th century from a wide variety of genres, and it
was compiled to be a representative sample of spoken and
written British English of that time. Impressive as it may
sound, 100 million words is a lower-end for research in distri-
butional semantics. The largest corpus of American English
currently available is Corpus of Contemporary American En-
glish (COCA)[14]. It contains 450 million words in a wide
array of texts from a number of genres.
Of course word-wide-web can provide tremendous amount

of textual data; but the quality of Internet texts is inferior
to corpora built by linguists. By low quality we mean abun-
dance of incorrect spellings, texts in other languages, texts
by non-native speakers, not to mention the disbalance in the
genres and registers. However, due to the sheer volume of
data web-based corpora are a viable alternative. Although
some researchers even use even direct web search[31], it is
more convenient way to pre-compile a corpus from the re-
sults of web crawling.
A good example of such a corpus is ukWac [3] which was

constructed from the Web limiting the crawl to the .uk do-
main and using medium-frequency words from the BNC as
seeds. It comprises 2 billion words and also contains syntac-
tic annotation obtained by automatic parsing.
Finally, the Wikipedia is a good source of texts in many

languages. Wikipedia text are one-sided in terms of stylis-
tics, but they cover wide range of topics, and authors of
Wikipedia pages tend to be more consistent in spelling
and grammar than authors of random web resources. En-
glish portion of Wikipedia contains about one billion words.
Many tasks in computational linguistics clearly demonstrate
signi�cant sensitivity to corpus size and require billion-
words-scale corpora for good accuracy [30].

2.3 Multiple-Choice Synonym Judgment

One of the good illustrations of vector-space model's
utility is the experiment with automatic identi�cation of
synonyms in the Test of English as a Foreign Language
(TOEFL)*1. In this test for each of 80 target words, the
word most closely related in meaning must be chosen from
four other words. For example, given the word pensive and
answer options caged, thoughtful, oppressed and happy one
should choose thoughtful as the right answer.

*1 For our experiment the test data was obtained from the In-
stitute of Cognitive Science, University of Colorado Boulder
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The �rst attempt to solve this problem automatically us-
ing VSMs scored about 64% [27]. In this experiment the
strategy was to choose the word with the largest cosine (i.e.,
smallest angular distance) between its derived co-occurrence
vector and that of the target. Authors note that this score
is comparable to the average score by applicants to U.S.
colleges from non-English speaking countries, and would be
high enough to allow admission to many U.S. Universities.
After this �rst attempt many other researchers had a go

with this task and �nally achieved 100% accuracy [8] *2

It is noteworthy that one of the largest available academic
corpora of English language do not even contain some of
the rare words found in this text (e.g. unequaled and bi-
partisanly) and for some other words contain only few oc-
currences (words like customarily, apathetically and uncon-
ventionally). This again highlight the need for much larger
corpora.

2.4 Singular Value Decomposition

Singular value decomposition (SVD) is a factorization of a
real or complex matrix, with many useful applications. It is
particularly popular in Machine Learning for dimensionality
reduction or for revealing correlations in the data.
Singular value decomposition is de�ned as a factorization

of anm×n real or complex matrixM in a formM = UΣV ∗

[20], U - m×m real or complex unitary matrix, Σ - m× n
rectangular diagonal matrix with non-negative real numbers
on the diagonal and V ∗ (the conjugate transpose of V, or
simply the transpose of V if V is real) - n×n real or complex
unitary matrix.
The diagonal entries σi, of Σ are known as the singu-

lar values of M and are typically sorted in descending or-
der. The matrices U and V contain left-singular vectors and
right-singular vectors of M respectively.
Imagine some correlated data like illustrated in the �gure

2a. Singular Value Decomposition will transform the data
to the new orthonormal basis (�g. 2b). Elements of diago-
nal matrix Σ represent how much of the overall variance is
retained by each dimension in the new basis (this is why it
is convenient to have σi sorted in descending order).
The next typical step is to discard dimensions capturing

the insigni�cantly small portion of the variance and thus to
decrease the size of data (�g. 2c)
This technique is also used in Vector-Space Models, how-

ever there are some alternative approaches. For example,
some researches suggest to discard few of most signi�cant
dimensions [?ref]. The idea is that they correspond to id-
iomatic expressions and are more speci�c to particular term.
Finally, the approach that proved to lead to the best

performance on a set of tests was proposed by Caron et
all [10]. The Σ matrix is raised to the power of P where
0 < P ≤ 1. This helps tp give more "weight" to less fre-

*2 Chronological information about attempts to solve
TOEFL synonyms test available at ACL Wiki poge:
http://aclweb.org/aclwiki/index.php?title=TOEFL_
Synonym_Questions_\%28State_of_the_art\%29
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Fig. 2: Illustrating Singular Value Decomposition

quent co-occurrences (�g. 2d).

3. Available Tools and Infrastructure

One of the popular software packages for NLP research is
the Natural Language Toolkit, or more commonly NLTK. It
is a suite of libraries and programs for symbolic and statis-
tical natural language processing for the Python program-
ming language [6]. It comes with some sample data (Brown
Corpus and several full-text books) and rich visualization
functionality. It has been used successfully as a teaching
tool, as an individual study tool, and as a platform for pro-
totyping and building research systems for NLP and closely
related areas, including empirical linguistics, cognitive sci-
ence, arti�cial intelligence, information retrieval, and ma-
chine learning.
NLTK, however, can not coupe with volumes of text larger

than million of words. Few other single-node tools experi-
ence same limitations. To overcome this limitations many
of the researches has resorted to MapReduce frameworks.
The "MapReduce System" (also called "infrastructure"

or "framework") orchestrates the processing by marshalling
the distributed servers, running the various tasks in parallel,
managing all communications and data transfers between
the various parts of the system, and providing for redun-
dancy and fault tolerance. There are MapReduce frame-
works written in Python and Python bindings for frame-
works in other languages, notably Hadoop.
MapReduce frameworks usage is particularly known for

N-Gram extraction [5]. Counting words frequencies is text-
book example of Hadoop use-case, as the task lies naturally
on MapReduce ideology. Every word generates <word,1>
pair and serves as an arguments to hash-function which iden-
ti�es which node process particular set of pairs. Each re-
ducer collects all the singular occurrences of corresponding
word and outputs the cumulative count. N-grams extraction
extends basically this idea, is easy to implement and scales

4ⓒ 2014 Information Processing Society of Japan

Vol.2014-HPC-146 No.12
2014/10/2



IPSJ SIG Technical Report

5

12

21

2519

9

2

3-4

(a) For numerical values

abra

abracadabra

apple

......

abracadabr

aaasomething

......

(b) For strings

Fig. 3: Binary Search Trees

well, however use of MapReduce infrastructure and network
interaction where it is not needed leads to suboptimal per-
formance and resource utilization.

4. Implementation

As described in the section 2 , the typical work�ow based
on vector-space model is as follows:
( 1 ) extract cooccurrences and their frequencies from cor-

pus;
( 2 ) build co-occurrence matrix;
( 3 ) enhance co-occurrence matrix (SVD);
( 4 ) compute distances between row-vectors.
Let's take a closer look at each step, starting from co-

occurrence extraction. Even this task is already reported to
be prohibitively resource consuming by NLP practitioners.
Consider a trivial task of counting word frequencies in a cor-
pus. It can be solved with a few lines of code in most of the
modern programming languages. One should create associa-
tive container with words as keys and frequencies a values,
then scan the text word by word. For each word, if corre-
sponding key is not in a container, the key is added and the
value set to 1. If the key is present, then the corresponding
value is simply incremented by one.
This looks like an easy task for students who just started

learning programming. However, straight-forwards imple-
mentation of this algorithm with Python dictionaries works
�ne only on small texts. If we try to process a corpus of bil-
lion words, the performance turns out to be quite daunting.
However, Python is an interpreted language and cannot

be expected to provide high performance. C++ standard
solution for this task is map container from Standard Tem-
plate Library. By way of an experiment, we used the decla-
ration like std::map<std::string,unsigned long>. This
allowed us to process 100 million words of BNC corpora in
about 50 seconds and using about 50 megabytes of memory.
We used node with Intel Core i7-3820 4 core hyper-threaded
CPU and 16 GB of RAM.
This does not seem like a bad performance, but we should

remember that we actually need to count frequencies for co-
occurrences, i.e. for each word we counting we individually
count frequencies of all the words occurring is some proxim-
ity. This makes the associative container structure nested
and space and time complexity - quadratic.
In fact, even this �rst step can not be performed with
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some traditional tools. Therefore NLP practitioners resort
to distributed solutions at this step. But let's take a closer
look at the implementation based on std::map. The un-
derlying data structure for this container is Binary Search
Tree (BST)[13] (possibly in a form improved for better bal-
ance, e.g. Red-Black tree). BST is a node-based binary tree
data structure where each node has a comparable key (and
an associated value) and satis�es the restriction that the
key in any node is larger than the keys in all nodes in that
node's left subtree and smaller than the keys in all nodes
in that node's right sub-tree. Each node has no more than
two child nodes (Fig 3). BSTs have an average a depth of
O(logn) levels and enable O(logn) performance for search
and insertion of elements.
The problem is that for string keys (�g. 3b) the compari-

son operation requires examining certain number of symbols
at the beginning of each key. As words tend to share com-
mon pre�xes, this leads to redundant comparisons of indi-
vidual characters and poor performance. By the same logic
storing complete keys in each of the BST nodes leads to a
very ine�cient memory space utilization.
Better data structure for storing and searching string keys

is a Radix Tree or Trie [24]. Unlike a binary search tree, no
node in the tree stores the key associated with that node;
instead, its position in the tree de�nes the key with which
it is associated. The key can essentially be obtained by
traversing the path from he root to the target node. All the
descendants of a node have a common pre�x of the string
associated with that node, and the root is associated with
the empty string. Values are normally not associated with
every node; they are associated only with leaves and some
inner nodes that correspond to keys of interest.
The problem with ternary tree is that although concep-

tually a node has as many children as needed (�g. 4a), in
practice making this number dynamic requires extra com-
mands (and implies performance degradation). More typi-
cally each node stores an array of pointers corresponding to
all possible symbols in alphabet for possible continuations of
a key (�g. 4b). This leads to allocation of unused memory
especially closer to the bottom of the tree where most of the
keys have unique pre�xes.
An elegant solution to this memory over-utilization prob-
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lem was introduced by Bentley in Sedgwick [4] as a data
structure called Ternary tree which combines the concept of
Binary Search Tree with the concept of Radix Tree. It is
widely used in spell-checking and auto-completion systems,
but it has not received much attention from Big Data com-
munity. In this data structure, each node of a ternary search
tree stores a single character, an (optionally) associated val-
ues, and pointers to its three children conventionally named
equal kid lo kid and hi kid. For each symbol of the key lo and
hi kids act as in BST. If the symbol is matched, the search
continues to the equal subtree and the next symbol of the
key until there are no more symbols left (�g. 5, dashed lines
represent equal kid).
In our experiment at the top of the tree variety of keys

covers most of possible pre�xes and search/insertion require
traversing a lot of lo and hi links to move to the next char-
acter. This observation allowed to make a further optimiza-
tion by way of combining radix tree for the upper level of
the search tree with ternary tree for continuations. This
approach lead to improved timing of about 15 seconds for
counting all words in BNC corpus.
For the collocations extraction we propose the following

scheme: �rst we build a search tree for every word in a cor-
pus and assign unique integer id from a continuous range
from 0 to N (the number of words in the corpus). Then
we allocated an array of N pointers to empty search trees
for the words occurring in a context. Then we perform a
second pass though the data and populate those subtrees.
With this approach we were able to collect all collocations
from the Wikipedia corpus (about one billion words) using
less than 4 gigabytes of memory space in about 2 minutes
of execution time.

4.1 Building and Storing Co-Occurrence Matrix

After all the collocations are collected they can be repre-
sented as co-occurrence matrix. The size of the lexicon of a
natural language is usually estimated as at most hundreds
of thousands of words. However, in a real-world data this
number can easily reach several millions due to misspellings,
extensive use of proper nouns etc. (�g. 1a)
This factor increases the size of the co-occurrence matrix

to several billions of elements. This magnitude dos not allow

to store the co-occurrence matrix as a contiguous memory
block. However, the number of actual collocations found
in a corpus is much smaller, hundreds of millions in case of
Wikipedia corpus (�g 1b), so the matrix has signi�cant spar-
sity and can be stored in some of the sparse matrix formats.
Dictionary of keys format allows to construct a matrix in-
crementally, but we have already used hybrid ternary tree
structure for this. Depth-�rst traversal of the tree iterates
over all keys in alphabetical order and allows us to dump
matrix directly in the compressed sparse row format.
Compressed sparse row format [15] stores a sparse matrix

A as three one-dimensional arrays val, col ind and row ptr.
An array val contains all non-zero elements of A as they are
traversed in a row-wise fashion. The col ind array stores the
column indexes of the elements in the val vector and row ptr

array stores the locations in the val that starts a row.
This format is space e�cient and can be used by most of

the linear algebra subroutines libraries. Another important
property of this format is that it allows for quick access to in-
dividual rows, which is exactly what we need for comparing
feature vectors of target words.

4.2 Work�ow and Interactive Set-up

We used Python language for programming high-level
logic of the experiment. For out implementation of collo-
cation extracting kernel and for linear algebra subroutines
libraries we provided Python bindings. The pythonic objects
just reference to the data managed by C code or to �les in
disc storage if the data is too big. For API we largely mim-
icked that of NLTK.
On a dedicated node of in-house experimental cluster

we deployed IPython Notebook server with our framework
available to the notebook documents and used other nodes
for running MPI versions of linear algebra libraries.

5. Conclusions

HPC and ABDS represent two di�erent approaches to
data-intensive computing. HPC set-ups clearly outperform
their counterparts both in terms of underlying hardware in-
frastructure and the e�ciency of available software libraries
which are more tightly coupled to resource speci�cs, though
in some particular cases ABDS can bene�t from better data-
locality. However, ABDS set-ups seem to be more "user-
friendly" with rich ecosystem covering most of functionality
typically needed for Big Data analytics. Growing demand
of greater computational power is moving these approaches
closer to each other, but the gap is still big. So even now,
even researchers who do have access to big university super-
computers often tend to use "easy" solutions for mid-size
problems.
Besides growing volumes and velocity at which data is

generated, another characteristic of Big Data is its variety.
In many instances research has an exploratory character and
in such cases there is high demand for tools like scripting lan-
guages and interactive environments that allows to quickly
try di�erent hypotheses or re-run certain parts of code with-
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out re-running or recompiling the whole program.
In this paper we focused on the state of practice in the

area of Natural Language Processing, namely distributional
semantics. Distributional models are becoming increasingly
popular and many researchers report prohibiting computa-
tional requirements they encounter.
We proposed a hybrid framework for working with vector

space models of word similarity and demonstrated its util-
ity in the experiment with automatic judgment in multiple-
choice test on English synonyms. kernel for collocation ex-
traction based on hybrid radix and ternary trees which al-
lows to process billion-words-scale corpora using a single
node memory. For sparse linear algebra (SVD) we used ex-
isting libraries like SVDPACK and SLEPC.
Furthermore, we built a set-up in which user can en-

joy working in interactive environment (IPython Notebook)
while all the computationally intensive kernels are delegated
to HPC cluster and demonstrated that such set-up is a vi-
able alternative to Hadoop-based solutions, and would not
require any extra e�ort from the end-user.
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