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Mean Polynomial Kernel and Its Application to Vector
Sequence Recognition
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Abstract: Classification tasks in computer vision and brain-computer interface research have presented several ap-
plications such as biometrics and cognitive training. However, determining suitable data representation has been
challenging, and recent approaches have deviated from the familiar form of one vector for each data sample. This
paper considers a kernel between vector sets, the mean polynomial kernel, motivated by recent studies where data
are approximated by linear subspaces, in particular, methods on Grassmann manifolds. The kernel supports vector
sequences as input. We discuss how the kernel can be associated with the Grassmann Projection kernel, and provide
experimental results showing how it outperforms existing subspace-based methods on Grassmann manifolds.

Keywords: kernel methods, support vector machines, Grassmann distance and kernels, face recognition, brain-
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1. Introduction

Among currently trending fields, research efforts particularly
related to computer vision and brain-computer interface (BCI)
have been aimed at modeling data either as a low-dimensional
subspace or a sequence of vectors. There have been studies
in these areas dedicated to algorithms for such type of input
[11, [3], [7], [9], [17], [21], [25], [29], [30]. For computer vi-
sion, this approach may be motivated by the presence of abun-
dant material derived from videos and sets of image sequences
[31, [7]. [9], [21], [25], [29], [30] such as in Figure 1a. Each video
image extracted is represented by a vector, while the whole vector
sequence, concatenated as a matrix, approximates the video for a
given time frame. As for BCI adopting a similar approach, this
may be induced by the nature of the data, which is commonly
time series, such as electroencephalography (EEG) signals col-
lected while subjects perform motor tasks or during induction of
visual stimuli [1], [17]. EEG data is generated by placing several
sensors accordingly on the head of the subject as shown in Figure
2, and each sensor records neural activity depicted by the signals.
The vector sequence illustrated in Figure 1b corresponds to the
signals collected from all sensors.

Appropriate data representation has been considered as one
of the most important challenges in dealing with classification
tasks. Vector form may be the simplest and most common rep-
resentation of samples in existing literatures, especially when us-
ing popular techniques such as support vector machines (SVM)
and kernel methods. However, this may not be the best repre-
sentation to encompass significant, if not all, attributes and in-
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formation useful for discrimination. To address this problem,
new modes of data representation are constantly being explored
(2], [5], [6], [8], [10], [11], [12], [13], [14], [15], [18], [19], [24],
[25], [26], [27]. Along with this, various feature extraction tech-
niques and discrimination methods are also being investigated,
and several studies have proven kernel methods to be a flexible
technique in supporting various data structures, such as graphs
[81, [12], [13], [18], [24], [26], strings [14], [15], [19], [27], and
even subspaces and sets of vectors [2], [5], [6], [10], [11], [25].

Kernel-based algorithms [22], [23] have come a long way since
their introduction. Aside from the fact that kernel functions have
provided algorithms a bridge between linearity and nonlinearity,
their performance have been proven comparable to, if not better
than, existing algorithms in various areas where they have been
applied. Moreover, applying the so-called ‘kernel trick’ is very
straightforward and new kernels can be easily derived from old
kernels. Compared to other methods, the dimension of the fea-
ture space can also be treated more lightly since the technique
can be reduced to simply performing inner products between data
images on the space, thus making the algorithm computationally
inexpensive.

In this paper, we focus on data represented as sets of vec-
tors. Different algorithms have been formulated in such a way
that data are approximated by low-dimensional linear subspaces
[3], [6], [71, [9], [21], [25], [29], [30]. However, as previously
pointed out [7], the task of appropriately handling data has be-
come an issue, such as inconsistency in strategy when feature ex-
traction is done in a Euclidean space while non-Euclidean metrics
are used. For this purpose, they proposed a unified framework for
subspace-based approaches by formulating the problem on the
Grassmann manifold, a space of linear subspaces with a fixed di-
mension. On the other hand, these methods involve dimension
reduction, and even with the use of the usual dimension reduc-



IPSJ SIG Technical Report

1| \
1.1 i 1
gl
]
. B
‘. | B
T Ty T3 To—1Tg
(a) Video sequence data.
||
H N ||

[ |
|
n
T1 T2 I3 Ty

(b) EEG signals.

Fig. 1: Examples of data modeled as vector sequences. (a) For
video sequences, each image frame extracted is represented as
a vector of pixel intensity values. The vector sequence are usu-
ally concatenated to represent the vector set input. (b) For BCI,
EEG signals are recorded over a certain time interval using sev-
eral channels or sensors. Each vector in the sequence corresponds
to a channel used in the procedure, and vector entry represents an
instantaneous signal intensity.

tion techniques such as Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA), there is always a possibil-
ity of information loss. This makes the selection of the subspace
dimension a crucial step. Furthermore, methods such as PCA
and LDA usually employ eigendecomposition, and hence, may
be very time consuming especially for high dimensional data.

With the aforementioned issues in mind, the goal of this pa-
per is to examine a kernel function, which we refer to as the
mean polynomial kernel, that can retain data information while
being computationally inexpensive. Also, as a more general ap-
proach than kernels for subspaces, we treat data as a common
collection of vectors, instead of a linear subspace. The kernel is
invariant of the permutation order of the vectors in the set. In
addition, we present an interesting relationship between this ker-
nel and the Projection kernel, which is a known Grassmann ker-
nel. We give emphasis to face recognition and BCI applications
posed as binary classification problems, which are of particular
interest due to their practicality in various areas, biometrics and
cognitive training and improvement, among others. Experimen-
tal results using real data modeled as vector sequences show that,
aside from being computationally efficient, the performance of
the mean polynomial kernel is comparable to methods employing
kernels in the Grassmann manifold and subspace methods using
Grassmann distances.

2. Preliminaries

Consider a set of data x1,...,x, € R?, where ¢ is the number

of data points. Let us denote the Ath entry in the ith data point x;
o] L

by xp;. A sample statistic, 7 le [—[Z:1 x‘l’ ”,, is said to be the gth

order moment if the d-dimensional vector p € (N U {0})¢ satisfies

p1 + -+ pq = q. The uncentered covariance matrix defined

© 2014 Information Processing Society of Japan

Vol.2014-MPS-100 No.25
2014/9/26

Fig. 2: Sample position map of sensors for EEG.

by l Zf:;l x,-xl.T contains all the second order moments. Indeed,
the (4, k)th entry in the uncentered covariance matrix is the the
second order moment with p = ej, + e;, where e, is a unit vector
whose hth entry is one and the rest of the entries are zero. Let
X = [%1,...,%4]" be the mean vector of the data points. With the
d-dimensional vector p satisfying p; + - -+ + ps = g, the gth or-

der central moment is defined as l Zf.;l HZ:I(xh,,- — Xp)P". Every
second order central moment is included in the central covari-
ance matrix 7 Zle (x; — %)(x; — %)7, which is usually referred to
simply as the covariance matrix.

For succeeding sections, we refer to a matrix U
as orthonormal if U'U = I, and define the vector-
ization of an m X n matrix A as the column vector

vec(A) = [ar1,a12,...,G1ps -, Q1> A, - - - 9amn]T-

3. Grassmann Kernels and Related Methods

We give a concise discussion of the Grassmann kernels [6], [7],
[28], their analogy with the mean polynomial kernel, and some
related methods.

A Grassmann manifold, or Grassmannian, is defined as a set of
linear subspaces with a fixed number of dimensions, say, m. Sev-
eral metrics used in literatures have been specified in this man-
ifold, mostly incorporating principal angles or angles between
subspaces in their characterization [3], [6], [7], [21], [25], [28],
[29], [30]. Moreover, kernels over these manifolds have also been
introduced. In particular, we are interested in the following ker-
nels:

Definition 1. Let U, and U, be orthonormal matrices whose
columns are bases of linear subspaces. The Projection kernel is
defined as

kerot(U., Uy) = ||[UTU, |7

where |||z denotes the Frobenius norm, and the Binet-Cauchy
kernel is given by

ksc(U., Uy) = (det ULU,)* = det U U, U, U,.

Many existing problems can be realized on nonlinear mani-
folds such as the Grassmannian. This being said, various meth-
ods in the Grassmannian setting have been proposed. One such
technique is the use of Grassmann kernels in conjunction with
support vector machines (GK-SVM) [25]. This approach entails
the computation of kernel matrices, which then proceed as the
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Fig. 3: Flow of methodology for computing values for Grassmann kernels and the mean polynomial kernel. Grassmann kernels are

defined on a Grassmann manifold which is a set of linear subspaces. When employing these kernels, each vector sequence, represented

by a set of data points on space, is approximated by a principal subspace obtained via PCA. However, this poses a threat of some degree

of information loss, and is more likely to consume more time due to eigendecomposition. The mean polynomial kernel, on the other

hand, can be directly applied to compute the kernel value between the sets of data points. It can avoid information loss while being more

time efficient.

SVM input. Analogously, the mean polynomial kernel given in
Section 4 is applied in this manner when SVM is the classifier.
Figure 3 gives a general illustration of the flow of computation of
the Grassmann kernels and the mean polynomial kernel, and also
highlights the difference between the two kernels.

Another comparable method is the Grassmann Distance Mu-
tual Subspace Method (GD-MSM) [25].
grates the Grassmann metrics in the Mutual Subspace Method
(MSM) [30]. Furthermore, the task of subspace classification can
be approached in two ways. The first one, which is referred to as

This technique inte-

the subject-wise dictionary, is done by assuming that one subject
or object corresponds to one principal subspace. During the train-
ing stage, the total of principal subspaces calculated is the same
as the number of subjects. These serve as the bases to which
the unlabeled principal subspaces of test subjects are compared
to, and the subspace with the minimal Grassmann distance from
the unlabeled subspace is determined. The second approach is
done by assuming one principal subspace per class. The princi-
pal subspaces, which in this case is referred to as the class-wise
dictionary, are derived from each class among the training data.
This being said, we have only two principal subspaces in the case
of binary classification, regardless of the number of subjects. In
the testing stage, unlabeled principal subspaces are classified ac-
cording to which subspace they are closer to in terms of metric.

The score function can be considered for the two aforemen-
tioned mutual subspace methods. The SVM score can serve as
a confidence level. Namely, a higher score may provide higher
certainty of assigning the data to the positive class. For the class-
wise dictionary, the difference between the distance to the sub-
space of the negative class, d_, and the distance to the subspace
of the positive class, d,, represents how confidently unknown la-
bels are classified as positive. Hence, we define the score function
as d_ — d.. For the subject-wise dictionary, we define the score
function by the difference between the minimal distance to nega-
tive class subspaces and the minimal distance to the positive class
subspaces.

4. Mean Polynomial Kernel

In this section, we discuss the details of the mean polynomial

© 2014 Information Processing Society of Japan

kernel, which can be directly applied to data in the form of vector

sets.
Consider two sets of vectors X = {x,»}f:1 and Y = {y j}‘lﬂ, where
Xy, € RY. To define a kernel for such types of data, we intro-

duce a notation of a set of vector sequences as S = {{z;}_,|n €
NandVi e N,, z; € R? }, where N is the set of natural numbers,
and N,, = {i € N|i{ < n}, such that § is the input domain for the
kernel defined as follows.

Definition 2. Letk, : S x S — R such that

1 U
— Ly,
m;;mw

where X, Y € S and g € N. We shall refer to k, as the gth order
mean polynomial kernel.

ky(X, M) =

It can be shown that this kernel is a special case of the multi-
instance kernels [4] when instances involve linear kernels or poly-
nomial kernels with constant ¢ = 0. With regards to its character-
ization, we can easily confirm that for the case ¢ = 2, the covari-
ance matrix is directly used as a feature vector. For instance, con-
sxclandY =[y,,4,, - .y, ],
for the set of vectors X and Y, respectively. Then their respective

_ ¢ T
= 5 ZL xix]

By defining a feature map ¢(X) =

sider two matrices, X = [x1, X, - -

uncentered covariance matrices are given by X

1
and X, Z/ 1yjy .
vec(X,), we flav

(9(X), p(Y)) = (vec(X,), VCC(Ey» = tr(EXEy)

=7 Zztr(xzx yy;") Z Ztr(y, xixly))

i= i=

MZZ%%~ )

Hence, the Euclidean inner product of vectorized covariance ma-
trices is precisely the second order mean polynomial. Further-
more, all information contained within the uncentered matrices
are preserved and can be exploited.

If we rewrite the definition of the kernel as

[

_ 1

k(X.Y) = oo > (xi— 2y, - B, )
i=1 j=1



IPSJ SIG Technical Report

where ¥ and 7 are the mean vectors of X and Y, respectively,
then the kernel is the inner product among centered covariance
matrices when g = 2.

More generally, we can say that the gth order mean polynomial
kernel contains all gth order moments as feature vectors. Indeed,
ifweletP, = {pe (NU {0)?|p"1 = g} and x,; be the Ath entry in
x;, enumerating all gth order moments allows us to define

¢ d
1 ’ q!
X)==-|——— | |xp”..
¢P £ Pll"'pd!;hzl h,i

By using the feature map given by ¢(X) = [¢,(X)]per,, We can

q°

derive the following equality
kg(X,Y) = ($(X), $(Y)), 3)

as given in the journal version of this paper [20]. Existence of a
feature vector ensures the positive semidefiniteness of the mean
polynomial kernel. Similarly for the centered version of the mean
polynomial kernel, the features can be explicitly expressed as a
set of all the gth order central moments [20].

5. Mean Polynomial Kernel and Projection
Kernel Relationship

We aim to establish a relationship between the mean poly-
nomial kernel and the Projection kernel. In principle, Grass-
mann kernels are considered as kernel functions for principal sub-
spaces. Eigendecomposition of two symmetric matrices X, and
X, is essential for the computation of the Projection kernel value
between two vector sequences X and Y. Moreover, it can be
shown that the bases of the principal subspaces are exactly the m
major eigenvectors. To obtain the value of the Projection kernel
between two subspaces X and Y, the m eigenvectors are initially
stored in the matrices U, and U,. Let us define X/, = UXUI
and ):; = UyU_Z, the uncentered covariance matrices where the
m major eigenvalues are replaced with ones and the rest of the
eigenvalues are disregarded. Then the two kernels are related by
the equality

kproy(Uy, Uy) = (vec(Z), Vec(Z’y)). 4

Details of the derivation are given in [20].
An assessment of both equations (1) and (4)

while the second order mean polynomial kernel preserves every

suggests that

bit of information in the uncentered covariance matrices, the Pro-
jection kernel possesses the possibility to disregard and lose in-
formation of each dimension of the principal subspaces, and all
the information on their orthogonal complements. A similar case
can be said for the centered version of the mean polynomial ker-
nel (2)
variance matrices. Although the first dilemma of the Projection

versus the Projection kernel, by using the centered co-

kernel has been addressed by Hamm and Lee [6] by extending the
kernel, resulting to the scaling of information of each dimension
in linear subspaces and their preservation, data on the orthogonal
complement are still overlooked. As with all dimension reduction
techniques, there is always a risk of losing information when em-
ploying the Grassmann kernel. Though the hope is to retain the
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dimensions that are most discriminant, dimension number selec-
tion must be done with care and has become a critical stage in the
implementation process. Furthermore, implementation via eigen-
value decomposition adds to the computational cost of kproy, and
also kpc, giving the mean polynomial kernel an efficiency advan-
tage, especially when presented with very high dimensional data.

6. Experiments and Results

We evaluate the performance of the mean polynomial kernel
in binary classification tasks using data with underlying subspace
structures. Techniques using the Grassmann kernels and Grass-
mann Distance Mutual Subspace method (GD-MSM) were also
performed for comparison.

6.1 Face Membership Authentication

An important application of face recognition is face mem-
bership verification. The goal of this operation is to determine
whether a subject is a ‘member’ or not. Moreover, we can also
extend this to determining whether the given query is the autho-
rized user or owner, which are common situations in accessing
secured buildings or offices, logging on to computers, unlock-
ing mobile phones, availing of online services, and other access
control systems. The task can easily be modeled as a binary
classification problem. For this purpose, we attempt to classify
image sequences extracted from videos. The data was from the
MOBIO database [16], and contains videos data taken from 152
persons, each having 12 video sessions divided into two: 6 ses-
sions for Phase 1, and 6 sessions for Phase 2. Only data from 25
subjects and the 6 sessions from Phase 1 were used for the face
membership verification task. Each session contains 21 image
sequences of varying length. For the experiments, we set the se-
quence length to 25 images, where each image is a cropped face
image of the subject, obtained using a face detection program,
transformed to gray scale and resized to 25 X 25 pixels. Among
the 25 subjects, 10 were randomly selected and labeled as ‘mem-
ber’ (+1), and the remaining 15 as ‘nonmember’ (—1).

Two methods were employed: one using kernels with SVM
and the other one using GD-MSM. For the first method, three
types of kernel functions were utilized: the Grassmann kernels,
Projection (PROJ) and Binet-Cauchy (BC) kernels, and the mean
polynomial kernel (MP). For the GD-MSM, eight metrics were
used for comparison: average distance, Binet-Cauchy metric,
Geodesic distance, maximum correlation, minimum correlation,
Frobenius norm based Procrustes distance, 2-norm based Pro-
crustes distance, and Projection metric, as defined in [25]. For
the SVM setting, 6-fold cross-validation was employed to evalu-
ate the performance of the kernels such that one session per sub-
jectis used as test data while the remaining five sessions are used
for training. On the other hand, class-wise (GDMSM-CD) and
subject-wise (GDMSM-SD) dictionaries were implemented for
the GD-MSM, as described in Section 3.

As for the parameters of the kernel methods, the value of
q for the MP kernel was varied from 1 to 5, while the di-
mension of the subspace, m, was varied from 1 to 10. The
regularization parameter C for SVM was varied over the set
{10°, 10, 102, 10%,10*, 10°}. To optimize the tuning of the said
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Fig. 4: Average performance of all methods for the face mem-
bership authentication task. The bar plot represents the average
accuracy, average AUC, and average F-measure values computed.

parameters, we implemented a 3-fold cross-validation grid search
of the pairs (g, C) and (m, C) on the training data, for each cross-
validation set. Values of the pairs were chosen such that the
highest accuracy value is obtained. Variation and selection of
the value of m for GDMSM was also done in a similar manner.
The area under the ROC curve (AUC), accuracy, and F-measure
values were considered for evaluating the performance of each
method.

Figure 4 illustrates the average accuracy, AUC, and F-measure
values of each method for all 6 cross-validation sets. From the
graph, it is evident that the MP kernel outperforms the other meth-
ods on all three benchmarks (with accuracy, AUC and F-measure
values of 81.5%, 0.866, and 0.783, respectively). Meanwhile,
PROJ, BC, and GDMSM-CD obtained the second best accuracy
(79.9%), AUC (0.845), and F-measure (0.776), respectively. The
values presented here for the two GDMSM’s are the highest ob-
tained among all eight metrics used, which, interestingly, is the
maximum correlation. We can therefore conclude that the method
employing the MP kernel plus SVM is better than the GD-MSM
regardless of the selected metric.

6.2 EEG Signal Task Classification

We also compared the performances of MP, PROJ, BC,
GDMSM-CD and GDMSM-SD on the BCI competition III-IVa
dataset [1]. The data contains recorded measurements of five sub-
jects (aa, al, av, aw, and ay) during motor imagery tasks (right
hand and right foot movement) using 118 channels of electrodes.
The EEG signals were recorded for 3.5 seconds with 1000 Hz
sampling rate for each trial. However, we used the available
downsampled version (at 100 Hz) of the data, and utilized the 0.5
to 3.5-second interval from the visual cues for each trial, resulting
to a time range of 3.0 sec per trial. For data preprocessing, fre-
quency band selection was done, and data was filtered between
frequencies of 10 to 35 Hz. For each subject, 140 trials were
conducted for each task, for a total of 280 trials per subject. Set-
tings similar to the previous application were applied to the ex-
periments using BCI data, including the approach on parameter
selection.

The average values of the performance evaluators for all sub-
jects over the 5 cross-validation sets are given in Figure 5. As
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Fig. 5: Average performance of all methods for the EEG signal
task classification. The bar plot represents the average accuracy,
average AUC, and average F-measure values computed.

expected, the MP kernel bests the other approaches, with accu-
racy, AUC, and F-measure values of 84.0%, 0.896, and 0.876,
respectively. This is followed by the PROJ method, with val-
ues 82.2%, 0.881, and 0.863, respectively. The GD-MSM results
are also of the best performing metric, which in this case is also
the maximum correlation. Hence, in a parallel logic to the pre-
vious experiments, we also conclude that the proposed method
surpasses the GD-MSM approach for this task, irrespective of the
metric used.

6.3 Efficiency Comparison

We investigate the time complexity of the MP kernel, and com-
pare it with the Grassmann kernels. Suppose we are given ny,
number of training samples, and ng, number of support vectors.
For simplicity, we will assume that every (feature) vector se-
quence has length £, and that each vector has length d. More-
over, we denote the dimension of the principal subspace as m for
the Grassmann Kernels, and let k = min(¢,d). In Table 1, we
give the computation time for each step in the calculation of the
kernels. From this table, we conclude that the MP kernel is not
only better in terms of performance, but it is also more efficient
in terms of computational cost compared to the Grassmann ker-
nels. This was confirmed empirically, as the average CPU time
recorded for the MP kernel, for any value of ¢, is around 383
seconds for the MOBIO data, and 58 sec for the EEG data. On
the other hand, computation of both Grassmann kernel matrices
is around 1.21x10* sec when m = 5, and 1.24x 10* sec for PROJ,
and 1.25 x 10* sec for BC when m = 10, using the MOBIO data.
On the EEG data, CPU time of PROJ is about 1.20 x 10° for any
m, while the BC takes 1.22 x 103 and 1.23 x 10> when m = 5
and m = 10, respectively. It is also worth mentioning that should
the number of features d increase, the computational time for the
Grassmann kernels will drastically increase, whereas the increase
with the MP kernel is only linear.

7. Conclusion

We have examined mean polynomial kernel as a kernel for bi-
nary classification of data modeled as vector sets or sequences.
Analogy and connection to related methods, Grassmann Projec-
tion kernel in particular, have also been drawn. The effectiveness
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Table 1: Time complexity comparison of the kernels.

Training Stage Testing Stage
(For kernel (For prediction
matrix computation) | of a single sequence)
MP O(ng,*dlog, q) O(ny, *dlog, q)
For covariance matrix computation
O(d*tnyy) | od*t)
Eigendecomposition
PROI OWng) | o)
Kernel value computation
O(dm®n2,) [ O(d*mngy)
For covariance matrix computation
O(d*tnyy) \ o(d*0)
BC Eigendecomposition
OKne) | o)
Kernel value computation
O(mnZ, | O(d*mngy)

of the MP kernel was empirically supported using data of face

image sequences, and motor imagery EEG recordings. Further-

more, we present a comparison of computational costs between

methods, and some interesting extensions of the MP kernel by

considering the probabilistic distribution of the data. In brief, the

mean polynomial kernel excels known methods from literature,

both in performance and efficiency. In addition to the performed

experiments, application to data vector sets in a multi classifica-

tion problem setting may prove to be an interesting direction.
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