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Abstract: We discuss a scheme for hierarchical matrices with adaptive cross approximation on symmetric multipro-
cessing clusters. We propose a set of parallel algorithms that are applicable to hierarchical matrices. The proposed
algorithms are implemented using the flat-MPI and hybrid MPI+OpenMP programming models. The performance of
these implementations is evaluated using an electric field analysis computed on two symmetric multiprocessing clus-
ter systems. Although the flat-MPI version gives better parallel scalability when constructing hierarchical matrices,
the speed-up reaches a limit in the hierarchical matrix-vector multiplication. We succeeded in developing a hybrid
MPI+OpenMP version to improve the parallel scalability. In numerical experiments, the hybrid version exhibits a bet-
ter parallel speed-up for the hierarchical matrix-vector multiplication up to 256 cores.
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1. Introduction

The boundary element method (BEM) is an important numeri-
cal method for solving partial differential equations. Other tech-
niques include the finite element and finite difference methods.
Although it is important to select the appropriate method accord-
ing to analyses, use of BEM tends to be avoided despite hav-
ing advantages over the other methods. A major reason is that
a naı̈ve application of BEM yields a system of linear equations
with a dense coefficient matrix. For N unknowns, this dense ma-
trix requires a memory footprint proportional to N2 and compu-
tational effort of O(N2). This prevents large scale BEM analyses.
Parallel computing offers a solution to this problem. It is also
possible to use approximation techniques for dense matrices that
reduce the computational cost from O(N2) to O(N) ∼ O(N log N).
We can use both techniques at the same time.

The dense matrices arise from the convolution integral term
in the fundamental equation of BEM. Recently, a number of ap-
proximation techniques have been proposed such as the hierarchi-
cal matrix (H-matrix) [1], [2], [3], fast multipole (FMM) [4], [5]
and tree [6] methods. All of these methods are based on a sim-
ilar idea: for remote interactions, the kernel functions of con-
volution integrals are approximated by a degenerate kernel ex-
pressed by several terms of a series expansion. In this paper, we
consider H-matrices combined with adaptive cross approximation
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(ACA) [7], [8]. The ACA is used for sub-matrices that H-matrices
detect as potential low-rank sub-matrices. The use of H-matrices
with ACA has several advantages over the above techniques.
First, only the original entries of the coefficient matrix are used
for its approximation, whereas the other techniques require a con-
crete form of the degenerate kernel. Second, H-matrices with
ACA can easily control the accuracy of approximation. Third,
H-matrices explicitly calculate all of the entries of the approxi-
mated matrix in the computer memory, whereas the FMM pre-
pares only the coefficients of the power series expansion for the
degenerate kernel. This means that we can directly apply the op-
erations with respect to an H-matrix. Therefore, as reported in
Ref. [9], H-matrices are faster than FMM in terms of the execu-
tion time on the matrix-vector product. H-matrices with ACA
have been applied to practical BEM applications, and have been
very effective [8], [10], [11], [12], [13], [14].

In this paper, we also consider the use of parallel computer
systems. In Ref. [15], two parallel algorithms that use H-matrices
with ACA were proposed for shared memory systems. These al-
gorithms describe how to assign tasks to processing cores when
constructing an H-matrix and performing an H-matrix-vector
multiplication (HMVM). In both algorithms, the arithmetic is
performed in units of sub-matrix appearing on an H-matrix. One
of the algorithms assigns sub-matrices to processing cores such
that assignments for a processing core are scattered over the
whole matrix (Fig. 1, left). This algorithm is not suitable for clus-
ter systems, because of the large amount of communication that is
necessary for gathering and scattering the sections. In the second
algorithm, the whole matrix is divided into collections of sub-
matrices of an H-matrix, which are as close to square as possible
(Fig. 1, right). These square shape collections are then assigned
to each processing core, reducing the amount of communication
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Fig. 1 Red squares represent the assignments of a worker by the algorithms
in Ref. [15]. This figure is transcribed from Ref. [15].

between cores. The square-like collections are found by using
the nature of quad-tree inducing H-matrices, so the algorithm
does not always work for an arbitrary H-matrix. The perfor-
mance of the algorithm was evaluated on a relatively small cluster
system, built by connecting 16 single-CPU machines [16]. For
H2-matrices, which are special variants of H-matrices, a paral-
lel algorithm on distributed memory clusters was proposed in
Ref. [17]. The algorithm was implemented using flat-MPI ap-
proach, and the parallel scalability was also evaluated on a small
cluster system with 16 single-CPU machines. In both papers
above, saturation of speed-up in HMVM was observed for prob-
lems containing several tens of thousands of unknowns, though
a better parallel speed-up was obtained for larger problems. Be-
cause our interest is in BEM analyses by using many more cores,
we need to be able to efficiently exploit cores even in large-scale
problems. Moreover, considering the trend in high performance
computing on supercomputer systems, we should implement al-
gorithms that will work on symmetric multiprocessing (SMP)
cluster systems.

We propose a new parallel algorithm that uses H-matrices with
ACA. We horizontally slice the H-matrix (see Fig. 3 in Section 3).
The proposed parallel algorithm does not enforce any restrictions
on the construction of H-matrices, because it does not depend on
a specific hierarchical structure. We have developed a numer-
ical library called Hacapk, which includes two types of imple-
mentations of the proposed parallel algorithm. One is based on
the flat-MPI approach. In the other implementation, the hybrid
MPI+OpenMP programming model is used. All the programs in
the Hacapk library are written in the Fortran 95 programming lan-
guage. The performance of the Hacapk library was evaluated us-
ing a static electric field analysis, conducted on SMP cluster sys-
tems. In Section 2, we introduce the hierarchical matrices using
typical examples derived from integral equations. In Section 3,
we explain our proposed parallel H-matrix method. We discuss
the numerical experiments for the electric field analysis in Sec-
tion 4. The last section contains conclusions and future work.

2. Hierarchical Matrices

In this section, we give an overview of H-matrices to aid the
description of our parallel algorithm in the next section. The
conceptual diagram of an H-matrix appears as a collection of
blocks created by partitioning a square (see Fig. 1 in Section 1
and Fig. 2 in Section 3). The blocks do not overlap each other,
and fill up the square without gaps. We introduce a set M, whose
elements correspond to one of the blocks. Obviously, M rep-
resents the partition structure itself. Furthermore, we write the
set of H-matrices with the structure M as H(M). An H-matrix
Ã ∈ H(M) can be an efficient approximation of the specific dense

matrix A ∈ RN×N , where N ∈ N. The typical formulation of the
specific dense matrix is described in Section 2.1. If we apply the
partition structure M to the matrix A, an element m ∈ M corre-
sponds to a sub-matrix A|msm×tm on the matrix A, where the sub-
scripts sm and tm denote the subsets of the row’s and column’s
index set � := {1, · · · ,N} of the matrix A, respectively. Thus,
A|msm×tm is defined by gathering the columns and rows of the coef-
ficient matrix A whose ordinal numbers belong to sets s and t. For
all m ∈ M, Ã|m, corresponding to a conceptual block on Ã, gives
the approximation of A|msm×tm , while Ã|m is defined in the form of
the multiplication of two low-rank matrices as

Ã|m := VmWm,

Vm ∈ Rsm×rm , Wm ∈ Rrm×tm , rm ≤ min(#sm, #tm)
(1)

where rm ∈ N indicates the rank of the matrices. If rm =

min(#sm, #tm) for all m, the H-matrix Ã coincides with the dense
matrix A. Because most of the ranks in an H-matrix are generally
much smaller than the sub-matrix sizes #sm and #tm, an H-matrix
is considered a data-sparse matrix. Furthermore, the H-matrix be-
comes sparser (in terms of the amount of data) as the number of
large blocks increases. A procedure for constructing H-matrices
is described in Section 2.2.

2.1 Systems of Linear Equations Derived from Integral
Equations with a Singular Kernel

We now describe the formulation of a system of linear equa-
tions, with the dense matrix approximated by H-matrices. Let
H be a Hilbert space of functions on a (d − 1)-dimensional do-
main Ω ⊂ Rd, and H′ be the dual space of H. For u ∈ H, f ∈ H′

and a kernel function of a convolution operator g: Rd × Ω → R,
we consider an integral equation
∫
Ω

g(x, y) u(y) dy = f . (2)

To numerically calculate Eq. (2), we divide the domain, Ω, into
elementsΩh = {ω j : j ∈ J}, where J is an index set. When we use
the weighted residual methods such as the Ritz-Galerkin method
and the collocation method, the function u is approximated from
a n-dimensional subspace Hh ⊂ H. Given a basis (ϕi)i∈� of Hh for
an index set � := {1, · · · ,N}, the approximant uh ∈ Hh to u can
be expressed using a coefficient vector φ = (φi)i∈� that satisfies
uh =

∑
i∈� φiϕi. Note that the supports of the basis Ωh

ϕi
:= suppϕi

are assembled from the sets ω j. Equation (2) is reduced to the
following system of linear equations.

Aφ = B (3)

In the case of the Ritz-Galerkin method, the entries of A and B
are given by

Ai j =

∫
Ω

ϕi(x)
∫
Ω

g(x, y)ϕ j(y) dy dx for all i, j ∈ � (4)

Bi =

∫
Ω

ϕi(x) f dx for all i ∈ � (5)

Suppose that the kernel functions are written in the form

g(x, y) ∈ span({|x − y|−p, p > 0}). (6)
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Moreover, permute the index set � := {1, · · · ,N}. Then there ex-
ist H-matrices that efficiently approximate the coefficient matrix
A ∈ R�×�. Such kernel functions appear in a number of scien-
tific applications, for example, electric field analyses, mechanical
analyses, and earthquake cycle simulations. It is well known that
the N-body problem, whose formulation is different from the one
above, results in a similar matrix.

We now suppose that we have two subsets (clusters) s, t ∈ �
and the corresponding domains defined by

Ωh
s :=
⋃
i∈s

suppϕi, Ω
h
t :=
⋃
i∈t

suppϕi. (7)

If the Euclid distance between Ωh
s and Ωh

t is sufficiently large
compared with their diameters, we say that the cluster pair (s, t)
is ‘admissible’. Moreover, we also call the corresponding sub-
matrix A|s×t is admissible. On the domain corresponding to the
admissible cluster pairs, the kernel function can be approximated
to a certain accuracy by a degenerate kernel such as g(x, y) �∑k
ν=1 g

ν
1(x)gν2(y), where k is a positive number. Then the corre-

sponding sub-matrix A|s×t has low-rank. Under the assumption in
Eq. (6), it is possible to find a permutation and a partition of the
index set � so that there exist many large, low-rank sub-matrices.

2.2 Procedure of Constructing H-matrices with ACA
Although an H-matrix can be an approximation of a dense ma-

trix A ∈ R�×� with entries described as in Eq. (4), we do not need
to calculate all of the entries of A to construct the H-matrix. To
construct A, we require the following information:
(i) The entries of A that ACA needs to calculate the matrices Vm

and Wm in Eq. (1).
(ii) The coordinates of the point associated with each index

i ∈ �.
In (ii), we typically select the center of the supports of the ba-
sis Ωh

ϕi
. The coordinates in (ii) are used to find the permutation

and partition, discussed in the previous subsection. These ma-
nipulations, the permutation and partition, are called ‘clustering’.
The clustering is based on the distance between clusters and the
size of the corresponding supports, so we do not need any infor-
mation about the entries of A. It is known that we can efficiently
cluster by constructing the cluster tree T� from the index set �.
Some types of tree structures (such as binary- and quad-trees)
are used for the same purpose in other approximation techniques,
such as in the FMM and tree methods. A cluster tree creates
a block cluster tree, T�×�, whose node represents a block in �×�.
Note that a binary (quad) cluster tree creates a quad (hexadeca)
block cluster tree. When we truncate branches of T�×� according
to the condition that (s, t) ∈ T�×� is an admissible cluster pair, the
leaves L(T�×�) give a partition structure on � × �. We adopt the
partition structure L(T�×�) as the M that defines the structure of
an H-matrix.

An H-matrix is constructed using ACA in the following three
steps.
1. Construct a cluster tree T�.
2. Use the admissible condition to construct a partition struc-

ture, M from the block cluster tree, T�×�, with truncations.
3. Fill in the blocks of M using ACA.

In the third step, we can independently apply ACA to each
block. In this step, we can control the approximation accuracy of
the whole H-matrix by giving the necessary condition for ACA.
The ACA tries to create the matrices Vm and Wm in Eq. (1) for all
m ∈ M such that

‖A − Ã‖F
‖A‖F ≤ ε, (8)

where ε ∈ R>0 is the given error tolerance, and ‖ · ‖F denotes
the Frobenius norm. The rank, rm, of the approximated sub-
matrix Ã|msm×tm should be sufficiently small if the corresponding
sub-matrix A|msm×tm is admissible, otherwise rm = min(#sm, #tm),
i.e., Ã|m := VmWm coincides with A|msm×tm .

3. Our Proposal Parallel Algorithm of
H-matrices

In this section, we discuss the parallel computation of
H-matrices on SMP cluster systems. We assume that there are
MPI processes, and, in the case of the hybrid MPI+OpenMP pro-
gramming model, that a MPI process contains multiple threads.
We now focus on the parallelization of HMVM and the third step
of the H-matrix construction procedure, in which ACA fills in the
entries of blocks on M. The first and second steps are redun-
dantly performed by all MPI processes, i.e., all MPI processes
have same information about the set M that defines the frame of
sub-matrices by a permutation and partition on A. Furthermore,
all MPI processes share the full multiplicand vector for HMVM
using MPI communication.

3.1 Assignment of Tasks to MPI Processes
We here consider dividing the set M, among Np MPI processes.

In our algorithm, the arithmetic for filling the blocks on M, and
for the HMVM, is performed in units of a block Ã|m approximat-
ing A|msm×tm , where m ∈ M. We discuss the process of assigning
each block to an MPI processor in this subsection. The computa-
tional complexity is proportional to the total number of entries
in the approximated sub-matrices NM :=

∑
m∈M Nm(sm, tm, rm)

where Nm(sm, tm, rm) denotes the number of entries of matrices Vm

and Wm approximating sub-matrix A|msm×tm . For all m ∈ M, the
number Nm(sm, tm, rm) is written using the rank rm,

Nm(sm, tm, rm) = rm · (#sm + #tm) (9)

Now, let the index set, I := {1, · · · ,N}, be related to the ordi-
nal number of rows of the whole matrix A, and divide I into
Np subsets, Ik := {i : lk ≤ i < lk+1}, where 1 = l1 < · · · <
lk < · · · < lNp+1 = N + 1. We temporarily define the separa-
tors lk = Ceil(N/Np)(k − 1) + 1. Next, we define the function
Ru: M → I as

Ru(m) := min{i : i ∈ sm} for m ∈ M. (10)

The function Ru associates each sub-matrix A|msm×tm with a sub-
set Ik (see Fig. 2). By using the function Ru, the set, M, can
be divided into subsets Mk := {m : Ru(m) ∈ Ik}. Then the
amount of jobs associated with a subset Mk is proportional to
NMk :=

∑
m∈Mk

Nm(sm, tm, rm). If we assign a set Mk to the kth

MPI processor, the load is not generally balanced among MPI
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Fig. 2 Index set I is divided into subsets, Ik , and the block corresponding to
a sub-matrix A|msm×tm is associated with a subset Ik using Ru(m).

Algorithm 3.1: Divide M into Mk

processors. Our algorithm attempts to balance the load by adjust-
ing the position of the separators, lk. To determine the best load
balancing, we need knowledge of NMk . Unfortunately, it is quite
difficult to determine the size of NMk before ACA fills up all en-
tries of approximated sub-matrices. This is because the rank of an
approximated sub-matrix, rm, depends on the required accuracy,
and the rank of each sub-matrix can be different. Therefore, we
calculate NMk using an estimation of rm. We calculate this value
by counting the entries under the assumption that rm ≡ constant.
In the calculations shown in Section 4, we have used this simple
estimation method, where rm = 10. The Algorithm 3.1 outlines
the method for dividing M into Mk using load balancing. Finally,
the subset Mk is assigned to the kth MPI processor.

3.2 Filling in the Blocks on M
When the kth MPI processor has the assignment Mk ⊂ M, we

can fill in the blocks on M without any MPI communication. In
the case of the flat MPI model, each MPI processor independently
performs Algorithm 3.2, which is the same as the serial algorithm.
When using the hybrid MPI+OpenMP programming model, we
redivide Mk and assign jobs to the OpenMP threads. We propose
that Algorithm 3.1 is also used for this redivision for multiple
threads. In the hybrid parallel processing case, each OpenMP

Algorithm 3.2: Filling in blocks on M

Fig. 3 Set M, which defines the frame of blocks or sub-matrices, is divided
into subsets, Mk using Algorithm 3.1. The different colors represent
the blocks assigned to different MPI-processors. The shape of the
block of sub-matrices, Mk is like a bar or a ‘key’.

thread independently executes Algorithm 3.2.

3.3 H-matrix-vector Multiplication (HMVM)
We here consider the algorithm for calculating a vector y ∈ RN

as the result of an HMVM

y := Ãx (11)

for a given vector x ∈ RN , and the H-matrix Ã ∈ H(M) whose
sub-matrices set M is divided into subsets Mk, as shown in Sec-
tion 3.1. In the actual applications, HMVM is carried out mul-
tiple times, more than ten thousand times in some cases. Under
our assumption, the kth MPI processor has part of the H-matrix
ÃMk := {Ã|msm×tm : m ∈ Mk}, and the entire vector x. Because the
result of an HMVM, yk, is generally a part of the entire vector y,
MPI communication is required before the next HMVM. The
range of yk on the entire vector y is determined using R: M → I,
where

R(Mk) := {i: i ∈ sm for all m ∈ Mk}, for Mk ⊂ M. (12)

as in Fig. 3. The HMVM algorithm for the kth MPI process is de-
scribed in Algorithm 3.3. Each MPI process only communicates
with its neighbor. When using the hybrid MPI+OpenMP pro-
gramming model, the first step in Algorithm 3.3 is carried out by
OpenMP threads in each MPI process. Although we have to redi-
vide Mk for multithreading, the situation is slightly different from
that in the division of M for MPI processes. The redivision of Mk

can be performed after all entries of blocks on the H-matrix have
been calculated. Therefore, we can use exact information about
the rank of the approximated sub-matrices. Finally, we propose
that the set Mk is redivided into subsets Mkl using Algorithm 3.1
with the estimation value rest changed to the correct value of the
rank for each approximated sub-matrix, where the subscript l de-
notes the number of the OpenMP thread. The first step of Algo-
rithm 3.3 is modified to Algorithm 3.4 for the OpenMP paradigm.
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Algorithm 3.3: HMVM on the kth MPI processor

Algorithm 3.4: The first step of Algorithm 3.3 modified for OpenMP
paradigm (execution in lth thread).

4. Evaluation of Performance

We will now discuss the performance of the proposed parallel
algorithm for H-matrices. To test the methods, we have selected
an electrostatic field problem. We have assumed that a perfect
conductor, which has the shape of a sphere, is set in a space such
that the distance between the center of the sphere and the surface
of the ground with zero electric potential is 0.5 m. The radius
of the sphere conductor is 0.25 m, and the conductor is charged
such that its electric potential becomes 1 V. We used the surface
charge method to calculate the electrical charge on the surface of
the conductor. The surface charge was distributed as shown in
Fig. 4. When applying BEM to the above electrostatic field anal-
yses, we have used the formulation described in Section 2.2, with
the kernel function given by

g(x, y) =
1

4πε
|x − y|−1. (13)

Here, ε denotes the electric permittivity. We selected the

Fig. 4 The calculated surface charge density.

Table 1 Number of elements included in the meshes used for numerical
experiments.

Table 2 Computer systems used for the numerical experiments.

collocation method from the various types of weighted residual
methods. We divided the surface of the conductor into triangular
elements (see Fig. 4), and used step functions as the base function
of BEM. Four types of meshes were calculated for the numerical
experiments, shown in Table 1. We applied H-matrices to the co-
efficient matrices of the systems of linear equations derived from
the above formulation.

We evaluated the performance of our Hacapk library and the
proposed algorithm on two SMP cluster systems and a personal
computer (Table 2).

4.1 Serial Computing
Before we evaluated the parallel scalability of the Hacapk li-

brary, its basic performance was examined using serial comput-
ing. We compared the execution time of the Hacapk library with
HLib. HLib is a well-known library for H-matrices developed
by the Max Planck Institute [18], and has been shown to be very
effective when applied to practical applications [10], [13], [14].
We used only one core of the Desktop PC, and meshes 1 and 2
for the comparison. We used an Intel C++ Composer XE 2011
with the -O3 optimization option to compile Hlib, and an Intel
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Table 3 Execution times of Hacapk and HLib when constructing
H-matrices.

Table 4 Execution time of Hacapk and Hlib when performing an HMVM.

Fig. 5 Parallel scalability when constructing H-matrices.

Fortran Composer XE 2011 with -O3 optimization option to com-
pile Hacapk. First, we investigated the execution times of Hacapk
and HLib when constructing H-matrices. Then, we varied the
error tolerance that controls the approximation accuracy of the
H-matrices by letting ε = 10−3, 10−4, 10−5. In all cases shown in
Table 3, Hacapk is slightly faster than HLib. Next, we examined
the execution time of one HMVM step. The results are shown
in Table 4, where the values are averages over 50 executions of
HMVM. In all cases, Hacapk was executed in approximately half
the time of HLib. We have confirmed that our Hacapk library
outperforms the existing H-matrices software using serial com-
puting. This is because of the differences in the programming
languages and data structures of Hacapk and HLib. HLib is writ-
ten in C++ and expresses H-matrices using the tree structure of
pointers, whereas Hacapk is written in Fortran 95 and expresses
H-matrices using a simple structure of arrays.

4.2 Flat-MPI Programming Model
We investigated the parallel scalability of the version imple-

mented using a flat-MPI parallel programming model in the
Hacapk library. Strong scaling experiments were carried out for
meshes 1, 2, and 3. We used a Fujitsu FX10 for the test analy-
sis. The error tolerance of the remainder of our experiments was
ε = 1.0e-4. Figure 5 shows the speed-up versus the execution
time of the serial computing in the H-matrix construction step us-
ing Hacapk, while Fig. 6 shows the result for one HMVM step.
They have been plotted as a function of the number of processes.
The larger the data size becomes, the better parallel scalability

Fig. 6 Parallel scalability when performing an HMVM.

Hacapk attains in both the H-matrix construction and HMVM
steps.

In the H-matrix construction, a more than 50-fold speed-up is
obtained by using 64 cores for the largest model (N = 101,250).
This is because MPI communication is not necessary in the
H-matrix construction algorithm. Moreover, because the calcu-
lation of the kernel function for the construction step is computa-
tionally intensive, the parallel speed-up ratio is not overly affected
by the memory bandwidth. We consider the difference between
the ideal and obtained speed-ups to be due to the load-imbalance
among the MPI processes.

Conversely, we observed limits in the speed-up ratios for
HMVM. Although the attained maximum speed-up ratio be-
comes higher as the data size becomes larger, the speed-up ratio
seems to have reached its limit when 64 MPI-processors are used,
even for the largest data. For HMVM, we pay the cost of paral-
lelization through the MPI communication and waiting costs. We
believe that the ceiling is caused by the MPI communication costs
because the load-imbalance does not significantly deteriorate the
parallel speed-up ratio when constructing H-matrices.

4.3 Hybrid MPI+OpenMP Programming Model
One way of improving the parallel scalability of the flat-MPI

version in HMVM is to reduce the cost of MPI communica-
tion. The cost for one MPI collective communication generally
depends on the number of MPI processes involved. Although
only one-to-one communication is used in our implementation,
we have observed a similar property. This is because each pro-
cess calls SEND and RECV Np-1 times. When we conducted
our analysis on an SMP cluster, we reduced the number of MPI
processes to introduce a hybrid MPI+OpenMP parallel program-
ming model. In this case, OpenMP threads were used inside
each SMP node, instead of MPI processes. We then have to
consider how many MPI processors were replaced with OpenMP
threads. Although increasing the number of OpenMP threads re-
duces the MPI communication, the conflict in writing data be-
tween OpenMP threads also increases (in Algorithm 3.4). There-
fore, it is not obvious how many OpenMP threads should be used.
Furthermore, this depends on the architecture of an SMP cluster
system.

We investigated the effect of using a hybrid MPI+OpenMP
programming model for Hacapk performing HMVM. Numeri-
cal experiments were carried out on two SMP cluster systems:
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Fig. 7 Parallel scalability when performing an HMVM on FX10.

Fig. 8 Parallel scalability when performing an HMVM on GreenBlade
8000.

Fujitsu FX10 and Appro GreenBlade 8000. We examined the
speed-up versus the execution time when the Flat-MPI version
performed a HMVM on a single computational node, i.e., 16
cores. We used data set 4, which involves more than 1 million
DOFs. The results of using the Flat-MPI version are plotted
as circles in Fig. 7 and Fig. 8. For both systems, the speed-up
reached its ceiling at around 100 cores. We regarded the results
of the Flat-MPI version as the standard. We then executed the hy-
brid MPI+OpenMP version for the same situations, varying the
number of OpenMP threads to be 2, 4, 8, and 16. In both sys-
tems, the parallel scalability improved as the number of threads
increased from 1 (Flat-MPI) to 8. It is expected that the speed-
up ratio will continue to grow, even when using over 256 cores,
when 8 threads are working on each SMP node. In these numeri-
cal experiments, we could not get the best results when replacing
all MPI-processes in a node by OpenMP threads, although we
did attain nearly linear scalability in FX10. In GreenBlade8000,
which has two processors (sockets) in each node, it is not typi-
cally beneficial to use more threads than cores in a processor. This
is because an overhead is required for the data cache coherency
between sockets. In FX10, which consists of single socket nodes,
it is not easy to give a simple explanation for the advantage of
8 threads over 16. The result might be due to the trade-off be-
tween the MPI communication cost and the effect of the atomic
operation in multithreading. Moreover, we expect from Fig. 7 that
the use of 16 threads might be advantageous, when more than 256
cores are used. In the future, we will examine this by running the
numerical experiments using more cores.

Table 5 Execution times and percentages in electric field simulations by
using serial computing on FX10.

Fig. 9 Parallel scalability of the electric field simulation when applying the
proposed parallel algorithms on FX10.

4.4 Parallel Scalability of Total Simulation
We here discuss how much of total simulation time is acceler-

ated by the proposed parallel algorithms for the construction of
H-matrices and HMVM.

The simulation for electric field problems with BEM, described
at the top of this section, can be divided into three components.
One is the construction of the system of linear equations, an-
other is the solution of the system, and the other is the remained
processing needed for performing the simulation. In terms of
calculation time, the construction of an H-matrix for the coeffi-
cient matrix occupies almost of the construction of the system
of linear equations. In order to solve the system, we adopt the
BiCGSTAB method, which is an iterative method. The algorithm
of BiCGSTAB consists of scalar operations, inner products for
vectors and the matrix-vector multiplications which appear twice
an iteration. In our simulation, the matrix-vector multiplication is
performed as HMVM.

For mesh data 2, 3, and 4, we investigated the execution times
of components mentioned above and the percentages against the
total simulation time. The results are shown in Table 5. All the
calculations are carried out by using serial computing on FX10.
The convergence criterion of BiCGSTAB is that the relative resid-
ual with 2-norm becomes less than 1.0e-6. Then, the numbers
of iterations of BiCGSTAB were around 10, which means that
HMVM was carried out only around 20 times. The execution
time for the construction of the system of linear equations occu-
pied more than 95 percent of total simulation time.

Figure 9 shows the speed-up of total simulation and each com-
ponent versus the execution times on the serial computing when
using the proposed parallel algorithms. For the calculations, we
used mesh data 4 and the hybrid MPI+OpenMP version with
8 threads on FX10, which showed the best result of experiments
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in previous subsections. We gained a fairly good parallel scala-
bility for total simulation. About 150-fold speed-up was obtained
by using 256 cores. If we could also improve the parallel scalabil-
ity of arithmetic in BiCGSTAB except for HMVM and the other
processing, we can attain still better parallel scalability.

In the case of the simulation, the parallel scalability strongly
depends on the performance of the H-matrix construction. The
performance of HMVM becomes significant when we deal with
the simulation such that the HMVM is performed hundreds of
thousands of times, e.g. the earthquake cycle simulation [10].

5. Conclusions and Future Work

In this paper, we discuss schemes for H-matrices with ACA on
SMP cluster systems. We propose a set of parallel algorithms for
H-matrices with ACA, which consist of algorithms that construct
H-matrices and perform HMVM. The proposed algorithms can
be applied to arbitrary H-matrices without any restriction on the
structures of H-matrices.

The proposed algorithms were implemented by using MPI and
OpenMP. The Hacapk library includes implementations that use
the flat-MPI and the hybrid MPI+OpenMP programming mod-
els. We examine the performance of Hacapk using an electric
static field analysis, based on the surface charge method. In serial
computing, the Hacapk library performed better than the exist-
ing H-matrices software, HLib. We developed the Hacapk library
from scratch and so far have not utilized any existing libraries for
linear algebra computations. In order to attain further speed-up,
we have a plan to utilize other libraries, for example, BLAS for
arithmetic in HMVM.

On an SMP cluster system, the flat-MPI version suffered from
a saturation of speed-up in HMVM, though it showed a rather
good parallel scalability when constructing the H-matrix. Be-
cause the saturation was believed to be caused by the MPI com-
munication cost, we decided to develop an H-matrix library based
on the hybrid MPI+OpenMP parallel programming model. The
distributed parallel HMVM requires collective communication
among processes, and the reduced number of processes results
in a decrease in the MPI communication cost. In the hybrid par-
allel version, the number of processes is reduced by introduc-
ing multi-thread parallelization in each SMP node. We investi-
gated the effect of using the hybrid MPI+OpenMP programming
model for HMVM on two SMP cluster systems: Fujitsu FX10 at
The University of Tokyo, and Appro GreenBlade 8000 at Kyoto
University. On both systems, the parallel scalability is signif-
icantly improved from the flat-MPI version by using a hybrid
MPI+OpenMP version. The best result is observed when eight
OpenMP threads are used in each SMP node. In these cases, the
parallel performance increased up to 256 cores, which was the
maximum used in our experiments.

If we used many more cores in the analyses, even Hacapk
based on the hybrid MPI+OpenMP programming model would
reach a speed-up ceiling. To overcome this problem, we be-
lieve it would be necessary to introduce other parallel process-
ing techniques to further reduce the communication cost. The
overlap of the computation and communication can be consid-
ered to hide the communication latency. Moreover, it may be

possible to improve the algorithm for HMVM in an SMP node
by using information about the cluster tree that constructs the
H-matrices. Another key issue is avoiding conflicts in writing
the result of HMVM to OpenMP threads. In the future, we will
enhance Hacapk to tackle these problems.
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