
Cache Simulation for Instruction Set Simulator
QEMU

Tran Van Dung∗, Ittetsu Taniguchi†, and Hiroyuki Tomiyama†
∗Graduate School of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525–8577 Japan.
†College of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525–8577 Japan.

E-mail: {gr0150pk@ed, i-tanigu@fc, ht@fc}.ritsumei.ac.jp

Abstract—In embedded system design, there is an increasing
demand for modeling techniques that can provide both accurate
measurements of delay and fast simulation speed. Modeling
latency effects of a cache can greatly increase accuracy of the
simulation and assist developers to optimize their software. Cur-
rent solutions have not succeeded in balancing three important
factors: speed, accuracy and usability. In this research, we created
a cache simulation module inside a well-known instruction set
simulator QEMU. Our implementation can simulate various cases
of cache configuration and obtain every memory access. In full
system simulation, speed is kept at around 73 MIPS on a personal
host computer which is close to native execution of ARM Cortex-
M3 (125 MIPS at 100 MHz). Compared to the widely used cache
simulation tool, Valgrind, our simulator is three time faster.

Index Terms—Cache simulation, memory emulation, QEMU,
dynamic binary translation.

I. INTRODUCTION

Nowadays, an important part of the computer industry
involves embedded systems. Embedded systems as they occur
in application domains such as automotive, aeronautical and
industrial automation often have to satisfy hard real-time
constraints. Timeliness of reactions is absolutely necessary and
off-line guarantees have to be derived using safe methods.

Hardware architectures used in such systems now feature
caches, deep pipelines, and many kinds of speculation to
improve average-case performance. The speed and size are
two concerns of embedded systems in the area of memory
architecture design. Real-Time embedded systems often have
a hard deadline to complete some instructions. In these cases,
the speed of memory plays an important role in system
performance.

Data within the cache are stored in cache lines. A cache line
holds the contents of a contiguous block of main memory. If
data requested by the processor are found in a cache line, it
is called a cache hit. Otherwise, a cache miss occurs. The
contents of the memory block containing the requested word
are then fetched from a lower memory layer and copied into a
cache line. For this purpose, another data item must typically
be replaced.

Cache hits usually take one or two processor cycles, while
cache misses take tens of cycles as a penalty of mishandling,
so the speed of the memory hierarchy is a key factor in
the system. Almost all embedded processors have on-chip
instructions and data caches. From the point of view of size,
it is critical for battery-operated embedded systems to reduce

the amount of power usage.
There are three approaches to cache simulation: source-level

simulation, off-line simulation, and on-line simulation. Source
code level simulation annotates instrumentation code inside
source code to trace memory accesses and simulate cache
at run-time. Off-line simulation reads a memory access log
generated by other tools, creates a cache model based on
a configuration file, and simulates cache behavior. On-line
simulation executes software via a system simulator which
has a cache model inside to analyze memory accesses and to
output cache miss/hit rate.

Our implementation follows the third approach because it
helps to balance speed, accuracy and usability. Source-level
simulation is fast but it has unavoidable problems tracing all
memory accesses. Off-line simulation has difficulty evaluating
big applications because memory access logs may be big.
It is useful for evaluating various cache configurations for
specified programs. On-line simulation, on the other hand,
is convenient for evaluating many different applications. Its
speed is slower than source-level simulation but its accuracy
can be guaranteed.

The rest of the paper is organized as follows: In section
II, we explain related works of the three approaches. Section
III describes background of this research in terms of dynamic
binary translation and helper function. In section IV, we give
a brief explanation of our methodology. Section V introduces
our experiments and results. In section VI, we conclude this
paper and give recommendation for the future.

II. RELATED WORKS

A. Source-level simulation

A source-level model is generated by annotating timing
information into application source code and allows for very
fast software simulation. Figure 1 gives an example of source
code and annotated code.

Zhonglei Wang and Jorg Henkel proposed a novel method
to tackle two problems [1]. Firstly, target data addresses cannot
be statically resolved during source code instrumentation, so
accurate data cache simulation is very difficult at source level.
Secondly, cache simulation brings large overhead in simulation
performance and therefore cancels the gain of source level
simulation. However, they still have difficulty in dealing with
pointer aliasing. If a variable is accessed with a pointer that
aliases it, manual analysis is needed to find out which variable

IPSJ SIG Technical Report

1ⓒ 2014 Information Processing Society of Japan

Vol.2014-EMB-34 No.4
2014/9/17

Fig. 1: Example of source level simulation [1]

this pointer points to.
FastVeri [2] converts software code into a virtual CPU

model in SystemC. To keep cycle accuracy, FastVeri also back-
annotates software code with delays from their instruction and
data cache emulation. Also, it is easily connected to external
SystemC models, simulators. Their approach, however, is
proprietary and not easily extensible towards standard system-
level design flows.

B. Off-line simulation

Wei Zang and Ann Gordon-Ross [4] created a novel so-
lution to find a suitable cache configuration for a specified
application to meet a predefined miss rate. Their simulator
also can simulate multi-level cache hierarchies and achieve
41X speedup compared to the most popular trace-driven cache
simulation, Dinero IV [5]. However, accuracy of this method
depends on accuracy of memory access log which is not easy
to generate and verify. Also, in case of big applications, size
of log files may be too big to handle. For example, we utilized
QEMU to record memory access during booting ARM Linux
and analyzed it by Dinero IV. The size of the log file is 2.5
Gb while analyzing time is 130 seconds.

C. On-line simulation

Valgrind [7] is in essence a virtual machine using just-in-
time (JIT) compilation techniques, including dynamic recom-
pilation. Cache evaluation is one of its helpful functionalities
to output a cache miss/hit report. However, its accuracy is not
good because it doesn’t account for cache misses arising from
TLB misses, or speculative execution. Also, kernel or process
activity is ignored so it is only desirable when considering a
single program.

Ardavan Pedram, David Craven, and Andreas Gerstlauer [3]
integrated cache simulation into a Transaction Level Modeling
(TML) simulator for ARM processor. They achieved high
accuracy of cache miss rate and reduced overhead of annotated
code. However, the TLM simulator is much slower than our
selected one, QEMU.

Fig. 2: Dynamic binary translation [9]

III. BACKGROUND

A. Dynamic binary translation

QEMU is an open-source fast instruction-level CPU em-
ulator [13]. It uses the target CPUs binary code to perform
emulation on a host machine. QEMU is extremely flexible;
owing to its portable JIT dynamic code generator, it is capable
of emulating many different types of CPU targets on many
different types of host machines.

Dynamic binary translation (DBT) is the key point to make
simulation speed fast and reduce overhead. QEMU divides
the target binary code into chunks of code called basic
blocks (BBs), using branch instructions as separators. Code
generation is performed on a BB basis: when the program
counter of the emulated system reaches a specific BB for the
first time, the entire BB is translated into equivalent block of
host code called translated block (TB). The generated TB is
stored in a translation cache (TC), from which it is repeatedly
accessed by the host CPU for execution. Figure 2 describes
this process completely.

Figure 3 explains implementation of DBT in QEMU
source code. cpu-exec() is called to execute guest instruc-
tions. First of all, it calls tb find fast() and tb find slow()
to check if guest instructions are in translation cache. If
not, gen intermediate code internal() is called to translate a
basic block to intermediate code. tcg gen code() continues
to translate intermediate code to host code or a TB. This
TB is executed by tcg qemu tb exec(). If the basic block is
translated and stored in translation cache, tcg qemu tb exec()
executes it without translating.

The use of a TC is the reason why QEMU is so fast; the TC
enables the host system to skip code generation for TBs that
are already stored in it. As a result, when switching between
BBs, QEMU needs to perform code generation about 1% of
the time, while nearly 99% of the time it accesses the TB
directly from the TC [10].

B. Memory emulation

QEMU uses a softmmu model to speed up translating guest
logical addresses to host virtual addresses [12]. Its main idea
is storing the offset of guest virtual address to host virtual
address in a TLB table. When translating the guest virtual

IPSJ SIG Technical Report

2ⓒ 2014 Information Processing Society of Japan

Vol.2014-EMB-34 No.4
2014/9/17

Fig. 3: Implementation of dynamic binary translation in
QEMU

address to host virtual address, it will search this TLB table
firstly. If there is an entry in the table, then QEMU can add this
offset to guest virtual address to get the host virtual address
directly. Otherwise, it needs to search the l1 phys map table
and then fills the corresponding entry to the TLB table. This
TLB table idea is just like the most traditional hardware TLB.

Moreover, besides helping speed up the process of trans-
lating guest virtual address to host virtual address, this
softmmu model can speed up the process of dispatching
I/O emulation functions according to guest virtual address
too. In this case, the idex of I/O emulation functions in
io mem write/io mem read is stored in iotlb.

The softmmu emulation uses C macro to emulate template
system. There are several template head files which are in-
cluded in other files multiple times to generate functions that
work for different sized memory and functions to access guest
memory with different privileges.

C. Helper function

Helper functions are functions in QEMU which can be
called from the translation cache (TC). QEMU uses helper
functions to implement uncommon but complex guest instruc-
tions, so that they do not have to be implemented entirely as
large and complex blocks of code that are compiled at run-
time [8]. From these helper functions, callbacks that have been
registered by the user’s program are called. An example is
shown in Figure 4.

For each helper function f to be defined, the first thing to
do is to use the macro:

DEF HELPER n (f , t r , t1 , . . . , t n) ;

n is the number of operands which are t1, ..., tn; f is name
of the function; and tr is return value. This macro generates
three pieces of code: (1) the prototype of the helper function
helper f , (2) the op helper function gen helper f to be called
by DBT to generate the host code to call the helper function,

Fig. 4: An example of helper functions in QEMU [11]

and (3) the code to register the helper function at run-time for
the purpose of debugging. For instance, the macro:

DEF HELPER 2 (neon add u16 , void , i32 , i 3 2) ;

will generate the following code:

void h e l p e r n eo n a dd u 16 (u i n t 3 2 t ,
u i n t 3 2 t) ;

s t a t i c i n l i n e void
gen he lpe r neon add u16 (TCGv i32 arg1 ,
TCGv i32 a rg2)

{
TCGArg a r g s [2] ;
i n t s i z e m a s k ;
s i z e m a s k = 0 ;
a r g s [1 − 1] = GET TCGV I32 (a rg1) ;
s i z e m a s k |= 0 << 1 ;
a r g s [2 − 1] = GET TCGV I32 (a rg2) ;
s i z e m a s k |= 0 << 2 ;
t c g g e n h e l p e r N (he lpe r neon add u16 , 0 ,

s izemask ,TCG CALL DUMMY ARG, 2 , a r g s) ;
}

t c g r e g i s t e r h e l p e r (h e l p e r f e t c h i n s n , ”
neon add u16 ”) ;

The helper function, helper neon add u16, is defined
as unit32 t HELPER(neon add u16)(unit32 t a, unit32 t
b) in Figure 4. The op helper function is defined by
gen helper neon add u16. The code to register the helper
function for the purpose of debugging is invoked by
tcg register helper. The helper function will get called by
the host code generated by the op helper function defined
above and executed together with the host code of each target
instruction.

IV. METHODOLOGY

A. Instruction cache simulation

To simulate instruction cache, at first, every instruction
address must be obtained. Because QEMU loads guest in-
structions to translate them into intermediate code, instruction
address should be traced in this part. In detail, disas xxx insn()

IPSJ SIG Technical Report

3ⓒ 2014 Information Processing Society of Japan

Vol.2014-EMB-34 No.4
2014/9/17

(xxx is the guest architecture) generates the same thing
for each instruction of a basic block. Therefore, we added
code here to record instruction addresses to cache simula-
tion function. However, if an instruction is translated, stored
in translation cache, and re-executed again, the function
disas xxx insn() will not be called. To tackle this problem,
we called a helper function from disas xxx insn() to transfer
an instruction address as below:

s t a t i c vo id d i s a s a r m i n s n (CPUARMState ∗
env , D i s a s C o n t e x t ∗ s)

{
unsigned i n t cond , in sn , va l , op1 , i ,

s h i f t , rm , r s , rn , rd , sh ;
TCGv tmp ;
TCGv tmp2 ;
TCGv tmp3 ;
TCGv addr ;
TCGv i64 tmp64 ;

/ / Cache s i m u l a t i o n : c a l l i c a c h e
s i m u l a t i o n

w a p p e r c a l l i c a c h e (s−>pc) ;
/ / Cache s i m u l a t i o n : end
i n s n = a r m l d l c o d e (env , s−>pc , s−>

bswap code) ;
s−>pc += 4 ;
. . .

}

void w a p p e r c a l l i c a c h e (u i n t 3 2 t pc)
{

TCGv tmp = tcg temp new i32 () ;
t cg gen mov i i32 (tmp , pc) ;
g e n h e l p e r c a l l i c a c h e (tmp) ;
t c g t e m p f r e e i 3 2 (tmp) ;

}

This helper function is called every time the mentioned
instruction is executed by tcg qemu tb exec(). Therefore, our
implementation can trace all addresses of executed guest
instructions.

The process of instruction cache simulation is illustrated in
Figure 5. At the beginning of main loop in vl.c, we modified
QEMU to call cache initialization function to initialize cache
model in term of size, way, size of line, replacement policy.
Our implementation allows users to set these parameters by
themselves in order to find the best cache configuration.
Options for cache size, way, size of line are not limited
while options for replacement policy are round-robin and
random. When a memory access occurs, the helper function
passes memory accesses to the I-cache simulation function to
simulate cache behavior. When users stop QEMU, it outputs
a report of cache miss rate.

Fig. 5: Implementation of I-cache simulation

B. Data cache simulation

Function ldb mmu/ ldl mmu/ ldw mmu is used to
translating the guest virtual address to host virtual address or
dispatching guest virtual address to I/O emulation functions.
For example, when fetching code from guest memory, the
whole code path is as flowing:

cpu exec −> t b f i n d f a s t −> t b f i n d s l o w
−> g e t p h y s a d d r c o d e
−> (i f t l b n o t match) ldub code (

sof tmmu header . h)
−> ldl mmu (so f tmmu templa t e . h)
−> t l b f i l l −> cpu mips handle mmu faul t
−> t l b s e t p a g e −> t l b s e t p a g e e x e c

We modified these functions to send every memory access to
the D-cache simulation function. The description is illustrated
in the Figure 6. The implementation of D-cache initialization
and D-cache simulation is the same as I-caches ones.

V. EXPERIMENTS

We measured the speed of our simulator by comparing
it to the original QEMU. We booted ARM Linux on both
simulators and recorded the booting time and BogoMIPS.
BogoMips is an unscientific measurement of CPU speed made
by the Linux kernel when it boots to calibrate an internal
busy-loop. It is obtained by the command: $cat/proc/cpuinfo
as in Figure 7. Based on BogoMIPS, our simulator’s speed is
decreased fivefold. The booting time shows that our simulator
is three times slower than the original QEMU. Despite this
speed decrease, users will not experience any inconvenience.
On a personal computer, the BogoMIPS of our simulator is
around 73 MIPS which is close to native execution of ARM
Cortex-M3 (125 MIPS at 100 MHz). The time of booting
ARM Linux on the Versatile Express simulation is around 7
seconds.

IPSJ SIG Technical Report

4ⓒ 2014 Information Processing Society of Japan

Vol.2014-EMB-34 No.4
2014/9/17

Fig. 6: Implementation of D-cache simulation

Fig. 7: Screen shoot of booting ARM Linux on our simulator

We also compared the speed of our simulator with the
widely used Cachegrind which is one of the Valgrind tools.
We ported Cachegrind to the ARM platform and ran it on the
original QEMU. We measured the cache miss rate of applica-
tions including matrix multiply and Jpeg encoder/decoder by
both Cachegrind and our simulator. The results obtained show
that our simulator is three times faster than Cachegrind.

We evaluated the impact of different cache parameters
such as cache size, cache block size, and association on
performance. In general, the larger cache capacity, the lower
miss-rate, and the better performance [14]. We measured the
cache miss rate of booting ARM Linux in many cases of cache
size, from 8 Kb to 512 Kb. Our results are shown in Figure
8. Because cache miss rate of I-cache is small, we scaled it
20 times in Figure 8, 9, 10.

Size of cache block has the same impact as cache capacity
does. However, bigger block size should reduce the number of
blocks which leads to increase the miss rate when reading or
writing the content used rarely [14]. In this case, if block size
increases over a certain degree, miss rate will rise too. I-cache

Fig. 8: Cache miss rate when cache size is changed

may have this character because it is used only for reading, not
writing. In our experiments, we measured miss rate of booting
ARM Linux in many cases of cache block size. Our results
are shown in Figure 9. When cache block size increase above
512 Byte, cache miss rate rises too.

Fig. 9: Cache miss rate when cache block size is changed

Association is the number of memory blocks mirrors to
cache. Raise association means that every memory block has
more blocks being able to mirror. For example, if association
is 2, it means that every memory block has 2 cache blocks to
choose to load. In general, raising association could decrease
the miss-rate [14]. In our experiments, we measured miss rate
of booting ARM Linux when the association is 1, 2, and 4 .
Our results are shown in Figure 10.

VI. CONCLUSION

In this research, we presented the integration of cache
simulation into the fast and flexible instruction set simulator,
QEMU. Because our methodology can get all instruction
addresses of executed instructions and all memory accesses,
its accuracy can be guaranteed. We implemented this
methodology for ARM architecture and evaluated cache miss
rate of several applications. The speed of our simulator is

IPSJ SIG Technical Report

5ⓒ 2014 Information Processing Society of Japan

Vol.2014-EMB-34 No.4
2014/9/17

Fig. 10: Cache miss rate when number of association is
changed

proven to be practical for users. For future work, we will
make QEMU become cycle accurate by integrating a pipeline
model with cache simulator. Also, we will extend this
research to multi-core architectures to evaluate performance
of caches on different cores.

REFERENCES

[1] Wang Zhonglei and Henkel Jorg, Fast and Accurate Cache Modeling
in Source-Level. Design, Automation & Test in Europe Conference &
Exhibition (DATE’13), 2013.

[2] Araki, D., Ito, N., Shinsha, T., Mori, Y. High speed hardware/software
coverification with cpu model generator from software code. Technical
report, InterDesign Technologies Inc (2006)

[3] Ardavan Pedram, David Craven and Andreas Gerstlauer, Modeling Cache
Effects at the Transaction. Analysis, Architectures and Modelling of
Embedded Systems, Springer Berlin Heidelberg, pp. 89-101.

[4] Wei Zang and Gordon-Ross, A single-pass Cache Simulation Methodol-
ogy. 2012 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS).

[5] Dinero IV Trace-Driven Uniprocessor Cache Simulator, http://pages.cs.
wisc.edu/∼markhill/DineroIV .

[6] Hui Kang, Jennifer L. Wong, vCSIMx86: a Cache Simulation Framework
for x86 Virtualization Hosts. Stony Brook University

[7] Valgrind User Manual, http://valgrind.org/docs/manual/cg-manual.html.
[8] Tse-Chen Yeh, Zin-Yuan Lin and Ming-Chao Chiang, A Novel Technique

for Making QEMU an Instruction Set Simulator for Co-simulation with
SystemC. Proceedings of the International MultiConference of Engineers
and Computer Scientists 2011.

[9] Marius Gligor, Nicolas Fournel and Frdric Ptrot, Using Binary Translation
in Event Driven Simulation for Fast and Flexible MPSoC Simulation.
Proceeding CODES+ISSS ’09 Proceedings of the 7th IEEE/ACM inter-
national conference on Hardware/software codesign and system synthesis,
pp. 71-80.

[10] David Thach, Yutaka Tamiya, Shinya Kuwamura and Atsushi Ike, Fast
Cycle Estimation Methodology for Instruction-Level Emulator. Design,
Automation & Test in Europe Conference & Exhibition (DATE’12), 2012.

[11] Luc Michel, Nicolas Fournel and Frdric Ptrot, QEmu TCG Enhance-
ments for Speeding-up the Emulation of SIMD instructions. http:
//adt.cs.upb.de/quf/quf11/quf2011 12.pdf

[12] QEMU Internal, http://vm-kernel.org/blog.
[13] Fabrice Bellard, QEMU, a Fast and Portable Dynamic Translator.

Proceedings of USENIX Annual Technical Conference, June 2005.
[14] MA Hai-feng, YAO Nian-min, FAN Hong-bo, Cache Performance

Simulation and Analysis under SimpleScalar Platform. International
Conference on New Trends in Information and Service Science, 2009.

IPSJ SIG Technical Report

6ⓒ 2014 Information Processing Society of Japan

Vol.2014-EMB-34 No.4
2014/9/17

