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A study on complex decision tree construction for getting
the rules of contig binding in DNA double assembly

Ayako Ohshiro1,a) Takeo OKAZAKI2 Morikazu NAKAMURA2

Abstract: To derive the restored sequence called contig without reference, some assembly approaches have been pro-
posed. Decision of binding sequences depends on accuracy of contigs. Decision tree learning algorithms have been
proposed for decision of classifications, and also used for contig binding. We proposed complex decision tree for
getting the rules of contig binding in DNA double assembly, by use of multiple objective variables, accuracy of binded
contigs, minimum coverage value among contigs of before binding, overlap length of binded contig. We evaluated its
performance from two points of the view that assembly quality and classification ability of rules from complex decision
tree. As evaluation indices, we used correct ratio corR, coverage ratio covR, N50, Mcorrect, Mincorrect, of output contigs,
by applying complex decision tree to double assembly and compared assembly quality to traditional assembly method.
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1. Introduction
Thanks to the development of giga sequencer platforms with

parallel processing[1][2] and cost reduction of them, the research
area of DNA assembly method such as ABySS[3], Velvet[4] and
SSAKE[5] has been actioned. And yet the same time, read error
correction from sequencer has been a challenge such as Trim-
momatic[6] and approaches by use of k-mer such as EDAR[7],
ECHO[8], BLESS[9], and Quake[10]. In addition, Bayesian
Genome Assembly[11] and [12], are proposed. Because assem-
bly result depends on assembly algorithm and k value, it is diffi-
cult to obtain assembly results robustly and hybrid assembly al-
gorithms by integrating the results of traditional assembly method
have been proposed such as IDBA[13], MAIA[14], GAA[15] and
CISA[16]. Boisvert S.el [17] proposed Ray that is a hybrid of se-
quence technology. Marcel.el[18] proposed Oases multiple k-mer
assembly method for mRNA sequence data sets. We proposed a
double assembly method merging different k-mers and applied it
to binding rules with a characteristic distribution of k-mer’s cov-
erage value for contig named DAwCC[19].

In the process of DAwCC, we used C4.5[20] to construct contig
binding rule, the research area of the decision tree algorithm con-
tinues to develop over the years. Recent years, ensemble machine
learning that integrating traditional classifier have been proposed.
Breimen proposed Bagging[21] that dividing training data to sub-
data and generating classifiers for each of them and finally deter-
mined decision by majority from multiple classifier, and proposed
Random Forest[22] that was randomly explanatory variable se-
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lected for each divided sub-data, and finally determined decision
by majority from multiple classifier as Bagging. Boosting was
proposed by updating explanatory variable by weighting on each
misclassified data. Wei-Yin Loh[23], J. R. Quinlan[24] had com-
parative performance studies about ensemble machine learning
algorithms. In this paper, we proposed complex decision tree by
use of multiple objective parameters, in order to get the contig
binding rules for DNA double assembly.

2. Possibility of multiple objective variable
In this section, we report about a pre-experiment for the pos-

sibility of multiple objective variable. Generally, the traditional
decision tree is constructed by multiple explanatory variable and
one objective variable. We applied accuracy of combined con-
tigs as objective variables named accu and distribution of k-mers
on each binded contig as explanatory variables as Table.1, on the
process of DAwCC. In order to improve the classification abil-
ity of contig binding rules, we tried to verify the possibility of
the use of multiple explanatory variable that they were related to
each other. We can expect that multiple explanatory variable can
classify test data that accu rule couldn’t classify. As the regions
with small k-mers coverage value are removed in traditional as-
sembly method, we can consider that binded contigs with small
k-mer’s coverage value are likely incorrect contigs. In tha same
way, we can consider that binded contigs with large overlap re-
gion are likely correct contigs. Firstly, We had pre-experiments
to verify them by correct contigs obtained from traditional as-
sembly methods by use of k-mer. Fig.1 shows the relation about
the accuracy of binded contigs and overlap length, named ovlp
of them. Fig.2 shows the relation about the accuracy of binded
contigs and minimum coverage value, named mincov of contigs
before binded.

Fig.1 shows that most mincov of incorrect contigs are lower
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Table 1 Explanatory variables with p-value’s distribution of k-mer’s cover-
age

Coe f f ,l
wav Gradient of waveform

R f ,l
inc Rate of increase value

Fluctuation F f ,l
high High-frequency component of Fourier transform

S um f ,l
F Powered value of Fourier transform

F f ,l
low Low-frequency component of Fourier transform

p f ,l
null p-value with null frequency value

Distribution S um f ,l
F f req Powered value of Fourier transform for fre-

quency distribution 　
CC Correlation coefficient
CC f req Correlation coefficient of frequency distribu-
tion
CCF f req Maximum cross-correlation function for
Fourier transform of frequency distribution
MF

cc f Maximum cross-correlation function for Fourier
transform

Correlation Mcc f Maximum cross-correlation function
Dham Hamming distance of frequency distribution
M f req

cc f Maximum cross-correlation function for fre-
quency distribution
|p f ,l | Norm value of end point of former and start point
of latter

Fig. 1 Distribution of mincov for correct and incorrect binded contigs

Fig. 2 Distribution of ovlp for correct and incorrect binded contigs

than 0.1, and Fig.2 shows most ovlp of incorrect contigs are lower
than 10 bases. We can find that the larger mincov and larger ovlp,
more correct binded contigs. Secondly, we observed about the
classification distribution about multiple objective variable, by
applying mincov, ovlp, accu to same test data. Fig.3-4 shows
classification distribution by positive and negative rules correctly.

Fig.3 shows that 4 binded contigs were correctly obtained by
mincov rules, but accu and ovlp rules couldn’t obtain and 289
binded contigs were correctly obtained by accu rules but mincov
and ovlp rules couldn’t obtain. 53 binded contigs were cor-
rectly obtained by accu, mincov, ovlp rules. In a similar way,
Fig.4 shows that 180 binded contigs were eliminated as incor-
rect binded contigs, with accu, mincov, ovlp rules and 160 binded
contig were able to eliminate with mincov rules but accu and ovlp
rules couldn’t. We can find that decision tree will be improved
using multiple objective variables because they are in a comple-
mentary style each other. We considered about the addition of

Fig. 3 Classification distribution of positive rules

Fig. 4 Classification distribution of negative rules

discriminator as mincov, ovlp to traditional decision tree, accu.
As considering that each of two train data is constructed by

mincov or ovlp as objective variable and distribution of k-mer’s
coverage value as explanatory variable, we used multiple re-
gression analysis to get discriminant function. Multiple regres-
sion analysis outputs discriminant function by parameter selec-
tion with AIC, multiple correlation coefficient and determina-
tion coefficient, which represents the fitness to the discriminant
functions. Table.2 shows the selected variables for a regression
function named variables, partial regression coefficient named
Coe freg, multiple correlation coefficient named Multiplecor

coe f and
determination coefficient named Coe fdet, AIC for the discrimi-
nant function of mincov and ovlp.

Table 2 Discriminant function of variables, Coe freg, Multiplecor
coe f , Coe fdet

for mincov and ovlp

variables Coe freg Multiplecor
coe f Coe fdet AIC

mincov MF
cc f -6.230e-06 0.01161 0.008545 -1829.74

CC 5.141e-06
Intercept 1.191e+01

ovlp MF
cc f -2.144e-07

CCF f req 5.558e-08
Coe f l

wav -4.299e-03
R f

inc -3.893e-01
Rl

inc -3.242e-01 0.2143 0.2032
S um f

F 6.061e-05
S uml

F 7.211e-05
F f

high -1.409e-04
F l

high -1.700e-04
Intercept 4.461e-01

The Multiplecor
coe f and Coe fdet were closer to 1.0 and AIC is

larger, the fitness of discriminant function were higher. From Ta-
ble.2, we could find that each Multiplecor

coe f of mincov and ovlp
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were 0.01161 and 0.2143, each Coe fdet of mincov and ovlp were
0.008545 and 0.2032, adequacy of discriminant functions for
mincov and ovlp were not high. We can consider that the rea-
son of it is high variance of objective variable, and it is difficult
to represent discriminator by linear classifier. Therefore, we need
to reconsider about the treatment of objective variables by con-
verting to qualitative variables. Decision tree requires objective
variables as qualitative variable, we convert the qualitative vari-
able to quantitative variable. We generated decision tree com-
posed of accu as objective variables, mincov, ovlp as explanatory
variable. Detail of generating process is described in section 3.
To check the fitness of rules, in similar to Multiplecor

coe f or AIC
about multiple regression analysis, we observed learning ability
for rule about decision tree from accu, mincov and ovlp. Table.3
shows discriminant result form and we defined learning ability as
formula (1). Table.4 shows the learning ability of contig binding
rule by C4.5 for training data about decision tree of accu, mincov
and ovlp.

Table 3 Discriminant result form
consistent inconsistent

correct num1 contigs judged as
correct for ”consistent”

num2 contigs judged as
correct for ”consistent”

incorrect num3 contigs judged as in-
correct for ”consistent”

num4 contigs judged as in-
correct for ”inconsistent”

Le − R = 1 − num2 + num3
num1 + num2 + num3 + num4

(1)

Table 4 Le − R of each decision tree from mincov,accu,ovlp

Le − R of decision tree for mincov
consistent inconsistent Le-R

correct 394 3 0.937
incorrect 14 236

Le − R of decision tree for accu
consistent inconsistent Le-R

correct 394 3 0.983
incorrect 8 242

Le − R of decision tree for ovlp
consistent inconsistent Le-R

correct 400 8 0.951
incorrect 24 215

We could find that each Le − R of decision trees for accu,
mincov, ovlp was larger than 0.93, so it has high fitness for train-
ing data. When considered in term of fitness, we decided to apply
of decision tree with multiple objective variable named complex
decision tree.

3. Complex Decision Tree with Multiple
objective variables for double assembly
:(CDTwM)

In this section, we discuss about construction of CDTwM
(Complex Decision Tree with Multiple objective variables in dou-
ble assembly). In order to construct complex decision tree by
C4.5, it is necessary to generate training data composed with
accu, mincov, ovlp and distribution with k-mer’s coverage value
of binded contigs. We obtained training data from binded con-
tigs with overlap region more than 5 bases, and determined accu,

mincov, ovlp of them. After getting rules from the complex de-
cision tree with train data, we applied them to target binded con-
tigs. The actual process for generating complex decision trees is
described as follows and Fig.5.
step1 Prepare the whole sequence and read dataset whose base

allocation is known.
step2 Obtain contigs from traditional assembly methods for

some k-mers.
step3 Extract all the pairs of contigs with more than 5 bases

overlap region.
step4 Distinguish binded contigs as accuracy named accu to

correct or incorrect by comparing to the original sequence
step5 Generate training data constructed explanatory variable

as Table.1, and overlap length named ovlp and minimum
coverage value named mincov among each contigs.

step6 Obtain rules of decision tree from C4.5 constructed by
accu as objective variable and mincov, ovlp as explanatory
variables, they are quantitative variables.

step7 Convert mincov, ovlp to qualitative variable accordance
with decision tree obtained at the step6.

step8 Derive contig binding rules by C4.5 with training data
that consists of explanatory variables as step4 about accu,
ovlp, and mincov.

step9 Output rules from decision tree about accu, ovlp, and
mincov as complex decision tree.

step10 Obtain binded contigs from the result of judgement by
complex decision tree.

We used E.coli data as Table.5 and generated a different short
read set with the same combination of k-value and traditional as-
sembly method as Table.6.

Table 5 Detail of reference sequence

Species Length read length number of reads
Escherichia coli 30000 50 30000

Train and test data
Combination of Method ABySS Velvet
Combination of k-mer 16,18 15,17

Table 6 Detail of experimental datasets from different short reads with the
same reference

It the process of step6, we got the decision tree constructed by
accu as objective variable and ovlp, mincov as explanatory vari-
ables, as Table.7. For example, rule1 means that when the mincov
is more than 0, binded contig is correct with a probability of 99.6
％.

Table 7 Decision tree composed of ovlp and mincov as explanatory vari-
able, and accu as objective variable

rule1 mincov > 0
-> class correct [0.996]

rule2 ovlp > 14
-> class correct [0.933]

rule3 ovlp <= 14 and mincov <= 0
-> class incorrect [0.728]

We converted mincov larger than 0 and ovlp larger than 14 to
the positive rule as correct, and mincov lower than 0 and ovlp
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Flow
f ,l

Coefwav
f ,l

SumF

f ,l
D
ham
pnull
f ,laccu   ovlp   mincov　

correct 13　  0.3　 273.51681  34080.0  -18  -13  3  1.0  0.6 0.894

correct  13　  0.3　 273.681   34080.0  -13     -13   2  1.0 0.7  0.94

incorrect    20　  0　 235.18     34080.0  -17  -13   7   1.0    0.9  0.84

correct   35　  0.12　 403.51681  34080.0   -12 -13 9 1.0 0.9 0.4

incorrect  10　  0.1  234.61  73080.0  -11  -13 3 1.0 0.9 0.94

incorrect   8　  0.2　 23.51681  34080.0  -16  -13 3 1.0 0.9 0.84

:

…….

Flow
f ,lCoefwav

f ,l
SumF

f ,l
D
ham

pnull
f ,laccu  

correct　　273.51681  34080.0  -18  -13  3  1.0  0.6  0.894

correct　　273.68  34080.0  -13  -13  2  1.0  0.7  0.94

incorrect　　235.18  34080.0  -17  -13  7  1.0  0.9  0.84

correct　　403.51681  34080.0  -12  -13  9  1.0  0.9  0.4

incorrect　　234.61  73080.0  -11  -13  3  1.0  0.9  0.94

incorrect　　23.51681  34080.0  -16  -13  3  1.0  0.9  0.84

:

…….

C4.5

Coefwl
av ≤ -10 and CC ≤ 2.91 

-> class correct [0.900]

Fl > -0.1017377

-> class incorrect [0.955]

Dham ≤8and CC > 0.96 

CC≤ 2.91 and Fl ≤ 1488.1

Flow
f ,lCoefwav

f ,l
SumF

f ,l
D
ham

pnull
f ,lovlp  

correct　　273.51681  34080.0  -18  -13  3  1.0  0.6  0.894

correct　　273.68  34080.0  -13  -13  2  1.0  0.7  0.94

incorrect　　235.18  34080.0  -17  -13  7  1.0  0.9  0.84
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incorrect　　234.61  73080.0  -11  -13  3  1.0  0.9  0.94

incorrect　　23.51681  34080.0  -16  -13  3  1.0  0.9  0.84

:

…….

Flow
f ,lCoefwav

f ,l
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f ,l
D
ham
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f ,lmincov  
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correct　　273.68  34080.0  -13  -13  2  1.0  0.7  0.94

incorrect　　235.18  34080.0  -17  -13  7  1.0  0.9  0.84

correct　　403.51681  34080.0  -12  -13  9  1.0  0.9  0.4

incorrect　　234.61  73080.0  -11  -13  3  1.0  0.9  0.94

incorrect　　23.51681  34080.0  -16  -13  3  1.0  0.9  0.84

:

…….

C4.5

C4.5

Complex decision tree

accu   ovlp   mincov　
correct　  13　  0.3　 

correct　  13　  0.3　 

incorrect　  20　  0　 

correct　  35　  0  

incorrect　  10　  0.1  

incorrect　  8　  0.2　 

:

C4.5

mincov > 0

-> class correct [0.996]

ovlp > 14

-> class correct [0.933]

ovlp   mincov　

correct　correct

correct　correct

correct　incorrect

correct　incorrect

correct　incorrect

incorrect　 correct

:

convert

to qualitative variable

Coefwl
av ≤ 0 and pl

null ≤ 0.2

CC ≤ 10.5 and S umF
f > 4.499102 

-> class correct [0.992]

Coefwl
av ≤ 0.2 and pl

null ≤ 0.28

CC ≤ 15.5 and SumF
f > 4.12 

-> class incorrect [0.982]

.

.

.
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.

.

accu rule1

accu rule2

ovlp rule1

mincov rule2

.

.

.

step5
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step9

Fig. 5 Flow of generating complex decision tree after obtaining of training data

lower than 14 as a negative rule as incorrect from Table.5. In this
experiment, we got 37 positive rules from 9 accu rules, 10 ovlp
rules and 18 mincov rules and 29 negative rules from 14 accu
rules, 6 mincov rules and 9 ovlp rules and Table.8 shows some of
rules from a complex decision tree with accu, ovlp and mincov.
We defined accu, ovlp, and ovlp correct rules as positive rules. In
a similar way, we defined accu, ovlp, and ovlp incorrect rules as
negative rules.

Table 8 Some of rules from complex decision tree with ovlp and mincov,
and accu

ovlp rule1 Coe f l
wav ≤ -10 and CC ≤ 2.91
-> class correct [0.900]

Positive mincov rule1 Coe f l
wav ≤ 0 and pl

null ≤ 0.2
CC ≤ 10.5 and S um f

F > 4.499102
-> class correct [0.992]

accu rule1 |p f ,l | ≤ 0.1 and F f
high >708.6

-> class correct [0.976]
ovlp rule2 Dham ≤ 8 and CC > 0.96

Negative CC≤ 2.91 and F l
high ≤ 1488.1

F l
low > -0.1017377

-> class incorrect [0.955]
mincov rule1 Coe f l

wav >0 and S uml
F ≤4.658966

-> class incorrect [0.989]
accu rule2 p f ,l

null > 0.1 and CCF f req > 6787.5
CC > 2.91 and CC ≤ 182.32

Rl
inc ≤ 0.2365952

-> class incorrect [0.986]

Next, in order to evaluate the suitability of complex decision

trees to double assembly, we had a comparative experiment about
the performance of double assembly method with rules by tra-
ditional decision tree, and without rules. We defined double as-
sembly method without rules as DA, applying traditional rules
as DADT

cor and DADT
incor, complex decision tree rules as DACDT

positive,
DACDT

negative.
We defined 5 indices to evaluate the performance of double

assembly. corR means the rate of correct binded contigs for the
output binded contigs and covR means the ratio of mapped binded
contigs to the reference. When all output binded contigs are cor-
rect, corR become 1.0 and output contigs mapped entire of refer-
ence, covR become 1.0. In addition, large correct binded contigs
are most ideal output, and large incorrect binded contigs are not
most ideal. Mcor and Mincor means the longest correct or incor-
rect binded contigs among output. Table.9 shows the comparative
result of double assembly methods.

Table 9 Comparative result of DA without rules, DA with rules by tradi-
tional C4.5, DA with rules by complex decision tree

Method DA DADT
cor DADT

incor DACDT
positive DACDT

negative
Output 671(c412) 338(c234) 444(c315) 512(c350) 20
corR 0.614 0.69 0.71 0.68 1.0
N50 7849 7849 7906 7356
covR 0.99 0.96 0.99 0.96 0.62
Mincor 15767 15767 15767 15767
Mcor 15767 15767 15767 15767
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From Table.9, we can find the effect of the discriminator for
double assembly method with contig binding rules. For double
assembly method with negative rules, especially DACDT

negative, the
output is all correct binding contigs. However, 392 correct binded
contigs are removed by comparing DA and covR was decreased
by 0.37 points. On the other hand, for double assembly method
with positive discriminator, corR of DACDT

positive was improved by
comparing to DA but worse to DADT

cor .
Because the complex decision tree is constructed from multi-

ple positive and negative rules as Table.8、we can expect that the
combination of each of positive and negative rules will improve
them. Furthermore, incorrect large contigs represented as Mincor

are treated as maximum noisy data in the assembly process, it is
necessary to apply negative rules that can remove such as Mincor.

4. Complex Decision Tree by positive and neg-
ative Rules with Heuristic for double assem-
bly :(CDTwRH)

In this section, we discuss about the possibility of a complex
decision tree with the combination of each of positive and nega-
tive rules, in order to improve assembly evaluation value. Firstly,
in order to confirm the effect about each of negative rule, we ap-
plied them to the result of DACDT

positive as Fig.6 and evaluated per-
formance of them.

Fig. 6 Flow of generating complex decision tree after obtaining of training
data

Table.10 shows the effect of each of the negative rule by com-
plex decision tree.

Table 10 Results of complex decision tree with combination of positive
rules and negative rules

Method Outout cor corR N50 covR Minco Mcor

DACDT
negative 20 20 1.0 0.62 10854

DACDT
N−ovlp5 236 194 0.82 7891 0.96 10860 10855

DACDT
N−ovlp7 498 350 0.70 5658 0.96 15767 18729

DACDT
N−ovlp8 478 330 0.69 6585 0.96 15767 18729

DACDT
N−cov2 494 350 0.708 7357 0.96 15767 18729

DACDT
N−cov6 59 50 0.847 7899 0.81 10860 10855

We could find that corR for CDTwRH decreased by comparing
to DACDT

negative, but covR of that improved as 0.81 to 0.96 by Ta-
ble.10. About Minco of CDTwRH, DACDT

N−ovlp5 and DACDT
N−cov6 were

improved but Mcor. And corR of DACDT
N−cov6 was higher, but it re-

moved too much correct binded contigs, so the suitability of dou-
ble assembly is not high. Therefore, as high corR and high covR,
the result of DACDT

N−ovlp5 has high performance better than that of
DACDT

negative.
Secondly, we extracted negative rules these could remove large

incorrect binded contigs, treated as maximum noise in the as-
sembly. By considering the length of the reference length as
30000base, we extracted rules that could remove more than
10000 bases incorrect binded contigs as Table.11.

Table 11 The list of rules that could remove large incorrect binding contigs

Length of removed in-
correct contigs

Negative rules

15767 ovlp5,ovlp9,cov6
15767 ovlp4,ovlp5,ovlp6,ovlp7,ovlp9,cov6
12695 ovlp4,ovlp5,ovlp6,ovlp7,ovlp8,ovlp9,cov6
10872 ovlp2,ovlp4,ovlp5,ovlp7,ovlp9,cov6
10860 ovlp2,ovlp7,ovlp9,cov1
10859 ovlp9,cov1

We considered the rules that could remove multiple large incor-
rect binded contigs as high usability. From Table.11, we decided
to apply ovlp5, ovlp9 and mincov.1 rule, to DACDT

positive. According
to the experimental result, we defined the combination of nega-
tive rules for complex decision tree as DACDT

N−ovlp5,2, DACDT
N−ovlp5,9,

and DACDT
N−ovlp5,cov1.

Furthermore, because getting of large correct binded contigs is
ideal output, and most binded contig’s length of double assembly
is more than 1500 as Fig.7.

Fig. 7 Length distribution of binded contigs with double assembly

From Fig.7, we added evaluation indices in order to evaluate
corR and covR in the large binded contig group. We considered
the binded contigs with more than 1500 bases as a large binded
contig group and defined their corR and covR as corR1500 and
covR1500.

5. Comparative study
To confirm the effect of proposed method, we carried out com-

parative experiments of double assembly method with traditional
C4.5, double assembly with a complex decision tree with multiple
objective variables in section 3(CDTwM), double assembly with
complex decision tree by positive and negative rules with heuris-
tic in section4 (CDTwRH), traditional assembly method Velvet,
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ABySS and CISA. From the comparative experiment, we defined
the combination of negative rules for complex decision tree as
DACDT

N−ovlp5,2, DACDT
N−ovlp5,9, and DACDT

N−ovlp5,cov1.
From Table.12, we could find that corR of DA, DA with

C4.5 and complex decision tree were decreased, but Mcor are
improved by comparison to traditional assembly method. corR
of CDTwRH was increased by comparing to DA or DA with
traditional C4.5 and we could verify that contig binding rules
from complex decision trees removed incorrect binded contigs
that traditional C4.5 couldn’t. Because N50 and corR1500 of
DACDT

N−ovlp5,cov1 was increased by comparison to traditional assem-
bly method that were Velvet, ABySS and CISA. DACDT

N−ovlp5,cov1
outputs many large correct binded contigs. covR of traditional as-
sembly method depends on specific k value, but assembly method
with hybrid or double, those were CISA, DA and DAincor were
improved. corR1500 of DACDT

negative, DACDT
N−ovlp5,9, DACDT

N−ovlp5,cov1 were
1.0, that means they output large correct binded contigs and Mcor

of them are improved by comparison to traditional double assem-
bly methods. Furthermore, covR1500 of DADT

incor were the highest
and DADT

cor , DACDT
positive were improved by comparison to traditional

assembly method, that means double assembly method with com-
plex decision tree output correct binded contigs.

6. Conclusion
In order to improve accuracy of double assembly by use of con-

tig binding rules, we proposed complex discriminator with mul-
tiple objective variables. At the pre-experiment, we confirmed
the possibility of using multiple objective variable by addition
of ovlp, mincov to traditional objective variable accu by applying
same data. We used multiple regression analysis and decision tree
to obtain complex discriminator with multiple objective variable
for applying candidate to double assembly. From comparative ex-
periment result, we found that decision tree’s leaning ability was
higher than multiple regression analysis and proposed complex
decision tree. In order to generate training data to apply decision
tree, we converted ovlp, mincov those were quantitative variables
to qualitative variables. In this way, we constructed complex
decision tree with multiple objective variables named CDTwM.
From experimental results, corR was improved, but covR was de-
creased. Therefore, because we can obtain positive rules and neg-
ative rules from each of decision trees of ovlp, mincov, accu, we
constructed complex decision tree by a combination of positive
and negative rules, named CDTwRH. Furthermore, we extracted
rules that could longest incorrect binded contigs, that is treated
large noise contig in the assembly process. From comparative ex-
periments, we could obtain larger correct binded contigs Mcor and
covR were improved than traditional assembly method, ABySS,
Velvet, and CISA but corR were decreased. We confirmed the
possibility of improvement of contig binding rules from decision
tree by use of complex decision tree. And we found the possibil-
ity of improvement of accuracy of double assembly by a combi-
nation of positive and negative rules with heuristic approach.
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Table 12 Comparative performance of proposal and traditional methods

Method Output cor corR N50 covR Minc Mcor corR1500 covR1500

Traditional assembly with spec-
ified k value

Velvet:k=15 20 19 0.95 2963 0.98 4815 1.0 0.81

Velvet:k=17 12 12 1.0 7889 0.98 10850 1.0 0.90
ABySS:k=16 54 54 1.0 3048 0.87 4817 1.0 0.72
ABySS:k=18 40 40 1.0 7891 0.77 10852 1.0 0.72

Traditional hybrid assembly CISA 38 38 1.0 4044 0.98 10852 1.0 0.90
Traditional double assembly
with multiple k value

DA 671 412 0.614 7849 0.99 15767 18729 0.4648 0.9393

Double assembly with tradi-
tional C4.5

DADT
cor 338 234 0.69 7849 0.96 15767 18729 0.57 0.938

DADT
incor 444 315 0.71 7906 0.99 15767 18729 0.61 0.94

Double assembly with CDTwM DACDT
positive 512 350 0.68 7356 0.96 15767 18729 0.57 0.938

DACDT
negative 20 20 1.0 7894 0.62 10854 1.0

Double assembly with
CDTwRH

DACDT
N−ovlp5,2 231 191 0.827 5631 0.96 10859 10854 0.89 0.9076

DACDT
N−ovlp5,9 43 33 0.767 10854 0.628 63 10855 1.0 0.618

DACDT
N−ovlp5,cov1 180 147 0.8167 3148 0.603 1122 7892 1.0 0.55
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