
Vol. 47 No. 5 IPSJ Journal May 2006

Regular Paper

Access Control Policy Analysis Using Free Variable Tableaux

Hiroaki Kamoda,† Masaki Yamaoka,† Shigeyuki Matsuda,†

Krysia Broda†† and Morris Sloman††

The specification of access control policies for large, multi-organization applications is dif-
ficult and error-prone. Sophisticated policies are needed for fine-grained control of access to
large numbers of entities, resulting in many policies specified by different security adminis-
trators. Techniques such as role based access control (RBAC) have been proposed to group
policies and provide a framework for inheriting policies based on role hierarchies. RBAC does
not prevent inconsistencies and conflicts arising in the policy specifications, though, which
can lead to information leaks or prevent required access. This paper proposes an approach
using free variable tableaux to detect conflicts and redundant policies resulting from the com-
bination of various types of authorization and constraint policies. This approach uses static
analysis to enable complete detection of modality and static constraint policy conflicts.

1. Introduction

In many organizations, the only form of au-
thorization policy specification is very low level
access control lists in workstations and servers,
network-layer packet filtering rules in firewalls,
or possibly an access control matrix defined
simply by a combination of subjects and tar-
gets 25). These may be physically distributed
throughout the organization and are difficult to
analyze. Large-scale inter-organizational appli-
cations require more sophisticated approaches
to the specification of security policies to cater
for very large numbers of subject and target
entities. Role based access control (RBAC) 9)

is being used as a means of grouping policies
and using inheritance to simplify the specifica-
tion. An object-oriented language such as Pon-
der 8) can be used to specify both management
and authorization aspects of security policy.
XACML 21) with the RBAC profile 21) and X-
RBAC 4) have also been proposed to allow easy
transfer of policies between systems. Standard
RBAC has some limitations in that it supports
only a role hierarchical structure for subjects
and defines only positive authorization policies.
However, XACML with the RBAC profile or
Ponder has a more flexible role concept which
supports negative authorizations as well as obli-
gation policies for performing security related
actions, such as raising events or logging access.
It also permits hierarchical structuring of tar-
gets. In addition, there are formal extensions

† NTT DATA CORPORATION
†† Imperial College London

to the RBAC model; for example, Kalam, et
al. 14) defined the ORBAC model and Bertino,
et al. 3) defined the TRBAC model.

As the overall structure of the access control
model and policy description languages become
more complex, though, it is increasingly diffi-
cult for a system administrator to verify that
the policies meet the application requirements.
For instance, the RBAC concept of policy inher-
itance means that policies specified for one role
may be inherited by other roles according to
the role-hierarchy. In general, an access control
policy is defined in terms of three elements —
subject, target, and action. Naturally, the ac-
cess control model should support the propaga-
tion of policies according to the structural hier-
archy of targets and actions as well as subjects.
This simplifies policy specification but makes
the policy analysis more difficult, increasing the
risk that an administrator will mistakenly de-
fine conflicting and redundant policies. A con-
flicting policy may result in information leak-
age or prevent required access, while redundant
policies complicate policy management and re-
duce performance. To avoid these problems,
both conflicting and redundant policies should
be detected and corrected.

There are several approaches to conflict de-
tection in the literature. For example, Graham,
et al. 11) proposed a method to detect a
modality conflict by using a decision table.
Strembeck 27) presented a method to detect a
static separation of duty conflict caused by
propagation. However, these methods do not
address conflicts caused by the structure of
actions and they are very specific to a par-

1515



1516 IPSJ Journal May 2006

ticular policy model. They cannot be eas-
ily extended for a variety of policy specifica-
tion methods 6),13),22),24), nor do they give an
administrator information about the causes of
conflicts. To verify and correct the policy, both
detection and identification of the specific poli-
cies causing the conflict are needed.

In this paper, we describe a method to detect
conflicting and redundant policies by translat-
ing a policy specification notation such as Pon-
der into a formal first-order logic for analysis
using the well known free variable tableaux to
statically detect conflicting and redundant poli-
cies. We assume an access control model in
which subjects, targets, and actions all have
some structure, but the approach is general
enough to be applied to other policy notations
or access control models. Our method can stat-
ically detect modality conflicts typically arising
from explicit positive and negative authoriza-
tions referring to the same subject, target, or
action. Modality conflicts may also arise implic-
itly from policies propagating within the sub-
ject, target, or action hierarchy. In addition,
policies may conflict with overall application
constraints such as requirements for the sep-
aration of duties between roles. Using abduc-
tive inference, our method can also give us use-
ful information for correcting policy conflicts.
Moreover, redundant policies can be detected
through the same approach.

The paper is organized as follows: Section 2
introduces the various types of policy and con-
flict examples that are discussed in this paper.
Section 3 presents an outline of the conflict and
redundancy detection method using free vari-
able tableaux; in Section 4 we illustrate the
formalization of policies; in Section 5 we de-
scribe the method to detect conflicting policies
and prove the completeness of the method, and
in Section 6 we describe the method to detect
redundant policies; in Section 7 we discuss the
performance of our approach and in Section 8
we present some extensions of the approach.
Conclusions and future work are presented in
Section 9.

2. Policy Analysis Framework

Policy specification and analysis is needed
for many complex inter-organizational applica-
tions. An example is the on-demand virtual
private network (VPN) framework for health-
care 12),29). In this framework, the decision as
to whether a user can connect to a VPN be-

tween medical devices or institutions is based
on a policy which must be flexible enough to
cope with changes in the network topology and
the complex interactions between multiple or-
ganizations involved in healthcare. Moreover,
fine-grained access control is needed to distin-
guish between access to medical records, ad-
ministrative records, and applications such as
remote diagnosis. Traditional VPN-based ac-
cess control only operates at the network layer,
whereas our approach supports more sophis-
ticated application-oriented access control de-
fined in terms of subject and target role struc-
tures. Obligation policies specify management
actions to be taken with respect to security.
Policies propagate up or down the role struc-
tures as explained in Section 4.5. Policies may
be defined in terms of composite actions requir-
ing a number of sub-actions, which can also re-
sult in conflicts if separate policies are defined
for the sub-actions as explained below. More-
over, Chinese wall policies and separation of
duty policies may be needed. In this section,
examples of these policies and the types of con-
flict which may arise are briefly explained.

The most basic policies used in the framework
are authorization and obligation policies as in-
dicated below. Obligation policies are event-
condition-action rules.

r1 : Auth+(S8, T5, A7)
r2 : Auth−(S2, T5, A7)
r3 : Obli+(E1, S3, T2, A8)
r4 : Obli−(E2, S2, T2, A7)

where S2-S8, T2-T5, and A7-A8 are the subject
roles, target roles, and actions shown in Fig. 1
and Fig. 2. Policies r1 and r2 respectively state
that a subject role clinical staff is allowed to

Fig. 1 Examples of role structures.

Fig. 2 Examples of action compositions.



Vol. 47 No. 5 Access Control Policy Analysis Using Free Variable Tableaux 1517

view a target role medical record and that a sub-
ject role head physician is not permitted to view
a target role medical record. Policies r3 and
r4 respectively state that a subject role head
nurse must modify a target role personal record
if event E1 (e.g., new address notification) is re-
ceived and a subject role head physician must
not view a target role personal record if event
E2 happens (e.g., if it is Mondays because the
system will be heavily loaded). Explicit modal-
ity conflicts may occur between positive and
negative polices defined for the same subject
roles, target roles, actions, and events.

Typically, positive authorizations propagate
up the subject role hierarchy and negative au-
thorizations propagate down, as specified by a
propagation policy:

pr1 : prop(Auth−,Ha, DOWN)
This policy specifies that a negative authoriza-
tion policy which applies to a high level role
of the subject role hierarchy Ha, defined in
Fig. 1, should propagate downwards to lower
level roles. The following authorization policies
can thus be derived from policy r2.

r1 1 : Auth−(S4, T5, A7)
r1 2 : Auth−(S8, T5, A7)

Clearly, policy r1 2 derived from propagation
policy pr1 has an implicit modality conflict with
policy r1, as there are both positive and nega-
tive authorizations for the same subject, target,
and action.

Action composition indicates the dependence
relationships between actions as shown in
Fig. 2, where the left side defines the action
composition policy:

ac1 : rm dgn = tv conf ∧ view record
ac2 : tv conf = isdn ∨ ip

Action composition policy ac1 states that re-
mote diagnosis rm dgn consists of two sub-
actions tv conf and view record, both of which
must be performed. Action composition policy
ac2 specifies that at least one action isdn or ip is
performed in the system when performing a TV
conference tv conf. These action composition
policies may result in conflicts. For example,
the following three authorization policies con-
flict.

r5 : Auth+(S4, T2, A1)
r6 : Auth−(S4, T2, A2)
r7 : Auth−(S4, T2, A3)

Policy r5 specifies physician is allowed to per-
form the action rm dgn, while r6 and r7 specify
that actions tv conf and view record are both

prohibited. This sort of conflict is called a con-
straint conflict caused by action composition.

Another type of constraint conflict may result
from a Chinese wall policy which constrains the
number of target roles that can be accessed si-
multaneously. For example, the policy

cw1 : CW(S8, {T2, T5}1, A7)
specifies that a subject role clinical staff is al-
lowed to view at most one of targets T2 or T5.
This policy also results in a policy conflict:

r8 : Auth+(S8, T2, A7)
r9 : Auth+(S8, T5, A7)

According to policies r8 and r9, subject role S8

can view both targets, which conflicts with cw1.
A separation of duty policy is a policy that

constrains the number of actions which can be
performed simultaneously. For example, the
policy

sod1 : SoD(S8, T2, {A7, A8, A9}2)
specifies that at most two of actions A7, A8, or
A9 can be performed, which may also result in
constraint conflicts.

As described in this section, several types of
policy are used and several kinds of conflict may
occur within the on-demand VPN framework.
Rigorous definitions of the policies and conflicts
are given in Section 4.

3. Tableaux Method

3.1 Overview
In this section we outline the use of free vari-

able tableaux (FVT) 10) to detect conflicts and
redundant policies.

Policy propagation up and down the role
hierarchies derives additional implicit policies
from a single original one. This simplifies pol-
icy specification, but it may cause an implicit
modality conflict. Action composition policies
may cause a form of constraint conflict. Using
different algorithms to detect each type of con-
flict is inefficient and the system extensibility
is reduced if a new conflict detection algorithm
must be constructed for every new type of pol-
icy constraint.

The FVT method facilitates the detection of
all types of conflict and redundant policies with
a single algorithm, and also infers the causes of
inconsistencies. The method is applied to logi-
cal sentences translated from the original policy
specification notation so only a new translator
is needed for a new policy notation.

Detection of a conflict effectively requires



1518 IPSJ Journal May 2006

that a contradiction ⊥ be derived from a con-
junction of policies Γ. To prove that C results
from Γ (i.e., Γ |= C) is equivalent to show-
ing that the set {Γ, ¬C} is inconsistent (i.e.,
{Γ,¬C} |=⊥). Using FVT, we can show not
only whether a set of policies is conflicting, but
also whether a policy can be deduced from the
given set of policies. Furthermore, in many
cases the method can determine that a set of
policies is not in conflict, or that a policy can-
not be deduced. This is further discussed in
Section 7. The FVT method is a sound and
complete theorem prover upon which can be
built simple abductive reasoning. Moreover, it
has optimized implementations. We outline the
methods to detect conflicts and redundancies
below.
Conflict Detection Two steps are needed to
detect a conflict using FVT:
i) each policy ri ∈ P, where P stands for a

set of policies, is translated into a logical
sentence ζ(ri).

ii) the FVT method is applied to sentences
{ζ(ri)} to detect any possible conflicts, by
detecting any inconsistency, and to obtain
information that shows the cause of the
conflict.

Policy Deduction The following two steps are
needed to verify that a policy r can be derived
from a given set of policies.
i) each policy ri ∈ P and the policy r that

should be verified to be derivable from the
set of policies P are translated into logical
sentences ζ(ri) and ζ(r).

ii) the FVT method is applied to the set
of sentences {{ζ(ri)},¬ζ(r)} to verify
whether policy r can be derived from other
policies ri by detecting inconsistency.

This kind of policy deduction can be used to
check whether a certain policy may be derived
from the given set of policies. These details are
explained later.

As explained above, to perform both conflict
detection and policy deduction, all we have to
do is define the following translation mapping ζ
from policies to logical sentences, such that con-
flicting policies become inconsistent sentences
in logic.

ζ : P → L

∈ ∈

r �→ ζ(r)
where P is a set of policies and L is a set
of sentences. The particular mapping chosen

uses first-order logic and predicates P , O, and
R to express, respectively, permission, obliga-
tion, and refrain. This allows both very natu-
ral translations and the use of standard and ef-
ficient first-order theorem provers; in contrast,
the use of modal logic requires more complex
theorem provers 19).

Once policies have been translated into logic,
a conflicting policy is detected and a policy de-
duction is made in the same way despite the dif-
ferences in the original policy descriptions. This
means that our approach can easily be applied
to various types of policy definition languages.

3.2 Why FVT for Policy Analysis?
Several automated theorem provers, such

as OTTER 15),20), PTTP 26), Setheo 17), and
LeanTap 2), use FVT. The advantages of FVT
are that it is easy to implement and mod-
ify. Several implementations have been pub-
lished 1),23), showing that the method is com-
parable with others through analysis using
TPTP 28), a standard library of test problems
for automated theorem proving systems. We
choose FVT because a security policy conflict
analysis system should use technology that is
flexible enough to accommodate change and
fast enough to analyze large numbers of poli-
cies.

3.3 Policy Conflict Analysis by FVT
The details of the FVT method have been

explained by Fitting, et al. 10). Here, we briefly
explain how the FVT method analyzes policies.

We use the [Type III] example from Fig. 5
and show that three sentences (r17, r18, and
Ax1) become conflicting. A tableau is devel-
oped as a tree, such that every piece of data is
analyzed in every branch of the tree, unless a
branch has already become conflicting. In a free
variable tableau, if conflicting sentences can be
made to appear on the same path the path is
closed (indicated by a horizontal line in Fig. 5).
If all paths are closed, then the given sentences
are conflicting. The analysis starts from the
premise that the data are not conflicting and
shows that all possibilities resulting from the
assumption lead to contradiction. A datum is
analyzed by considering the possible truth val-
ues of its constituents. For example, a sentence
of the form A → B is true if either ¬A is true or
B is true. This leads to two possibilities, rep-
resented in the tableau by two branches. Basic
rules to build a tableau are shown in Fig. 3. A
sentence ∀x(Ex → B) is true for each instance
of variable x. In the FVT method, a free vari-



Vol. 47 No. 5 Access Control Policy Analysis Using Free Variable Tableaux 1519

[∧] [∨] [→] [↔] [¬]

A ∧ B

A
B

A ∨ B

A B

A → B

¬A B

A ↔ B

A
B

¬A
¬B

¬¬A

A

[¬∧] [¬∨] [¬ →] [¬ ↔] [close]

¬(A ∧ B)

¬A ¬B

¬(A ∨ B)

¬A
¬B

¬(A → B)

A
¬B

¬(A ↔ B)

A
¬B

¬A
B

A
¬A
——

close

Fig. 3 Tableaux rules.

able is substituted for x, say x1, to give the free
variable instance Ex1 → B, which is analyzed
as above. That is, it is true if either ¬Ex1 is true
or B is true. In the first branch of Fig. 5, we
can see that if EC is true the branch will close.
Abduction allows us to assume the occurrence
of event EC , which is then available as an as-
sumption in the other branches. In particular,
it allows for the second branch to be closed if
x1 is bound to C. In general, when bindings are
made to variables they are propagated through-
out the tableau. In the figures, results of this
propagation are shown in brackets below the
appropriate formulas. The third branch closes
through the use of Ax1. The final outcome of
the analysis is that if atom EC becomes true,
then there can be a conflict.

4. Policy Formalization

In this section we describe how policies can
be formalized using the concepts introduced in
Section 2.

4.1 Roles
A standard RBAC model has been pro-

posed 9), and access control policies are often
specified using roles. A role is a named collec-
tion of privileges. In the RBAC model, a role
hierarchy related to subjects is defined and an
obvious extension is to include target role struc-
tures. A partial order relation is defined among
these roles and the graph representation of the
relation is called a role hierarchy. Individual
subjects and targets take on assigned roles. In
particular, the role hierarchy corresponding to
subjects is called a subject role hierarchy (SRH)
and that corresponding to targets is called a
target role hierarchy (TRH). Examples of these
role structures are shown in Fig. 1. In addi-
tion to the policies, a role hierarchy must also
be translated into logic for the purposes of the

analysis. A role hierarchy is translated as indi-
cated in Fig. 4 (1), where H is a role hierarchy
and i ≥H j means i is greater than j in the par-
tial order of H. For example, the role hierarchy
represented in Fig. 1 (Hs) is translated as

ζ(Hs) := { HHs
(S1, S2), HHs

(S1, S3),
HHs

(S2, S4), HHs
(S3, S5)

HHs
(S3, S6), HHs

(S5, S7)
HHs

(S6, S7), HHs
(S4, S8)

HHs
(S7, S8)}

where HH(i, j) means that i is a direct senior
role of j in role structure H.

4.2 Authorization Policy
A positive authorization policy (Auth+) de-

fines the action A1 that a subject role S1 is per-
mitted to perform on a target role T1. A neg-
ative authorization policy (Auth-) defines the
action A1 that a subject role S1 is forbidden to
perform on a target role T1. For example, in
XACML and Ponder, both authorization poli-
cies are defined as follows.

XACML:
<Rule RuleId="1"
Effect="Permit|Deny">
<Subject> S1 </Subject>
<Resource> T1 </Resource>
<Action> A1 </Action>

</Rule>

Ponder:
type auth+|- RuleID_1
(subject S1, target T1) {
action A1;
}
Some details are omitted from the XACML

for simplification and the following notation is
used to describe an authorization policy in this
paper.

Auth±(S1, T1, A1).



1520 IPSJ Journal May 2006

(1) ζ(H) := {HH(i, j) : i ≥H j}
(2) ζ(Auth+(S1, T1, A1)) := ∀x(Ex → P (S1, T1, A1))
(3) ζ(Auth−(S1, T1, A1)) := ∀x(Ex → ¬P (S1, T1, A1))
(4) ζ(Obli+(E1, S1, T1, A1)) := E1 → O(S1, T1, A1)
(5) ζ(Obli−(E1, S1, T1, A1)) := E1 → R(S1, T1, A1)
(6) Ax1 : ∀s, t, a(O(s, t, a) → P (s, t, a))
(7) Ax2 : ∀s, t, a(¬(O(s, t, a) ∧ R(s, t, a)))
(8) ζ(prop1) = ζ(prop2) := ∀x, y, z, a(P (x, y, a) ∧ HH(z, x) → P (z, y, a))
(9) ζ(prop3) = ζ(prop4) := ∀x, y, z, a(P (x, y, a) ∧ HH(x, z) → P (z, y, a))
(10) ζ(prop5) = ζ(prop6) := ∀x, y, z, a(P (x, y, a) ∧ HH(y, z) → P (x, z, a))
(11) ζ(prop7) = ζ(prop8) := ∀x, y, z, a(P (x, y, a) ∧ HH(z, y) → P (x, z, a))
(12) ζ(A1 = Γ(A2, · · · , An)) := ∀x, y(P (x, y, A1)↔Γ(P (x, y, A2), · · · , P (x, y, An)))

(13) ζ(cw) := ∀x, y
(∨n!/(m!(n−m)!)

i=1

(∧n

j=1
Pij(x, Tj , y)

))

(14) ζ(sod) := ∀x, y
(∨n!/(m!(n−m)!)

i=1

(∧n

j=1
Pij(x, y, Aj)

))

(13′) ζ(cw1) := (¬P (S, T1, A) ∧ P (S, T2, A))
∨ (P (S, T1, A) ∧ ¬P (S, T2, A))

(14′) ζ(sod1) := (¬P (S, T,A1) ∧ ¬P (S, T,A2) ∧ P (S, T, A3))
∨ (¬P (S, T,A1) ∧ P (S, T, A2) ∧ ¬P (S, T, A3))
∨ (P (S, T, A1) ∧ ¬P (S, T, A2) ∧ ¬P (S, T, A3))

Fig. 4 Definitions of mapping ζ.

event �→ EC

r13 �→ ∀x(Ex → P (SC , TC , AC))
r14 �→ ∀x(Ex → ¬P (SC , TC , AC))

¬Ex1
———
x1 = C

P (SC , TC , AC)

¬Ex1
———

¬P (SC , TC , AC)
————

[Type I](Auth+/Auth−)

Ax2 → ∀s, t, a(¬(O(s, t, a) ∧ R(s, t, a)))
r15 �→ EC → O(SC , TC , AC))
r16 �→ EC → R(SC , TC , AC))

¬O(s1, t1, a1)

¬EC

———
closed

if EC occurs

O(SC , TC , AC)
————
s1 = SC

t1 = TC

a1 = AC

¬R(s1, t1, a1)
[¬R(SC , TC , AC)]

¬EC

———
R(SC , TC , AC)

————

[Type II](Obli+/Obli−)

r17 �→ EC → O(SC , TC , AC)
r18 �→ ∀x(Ex → ¬P (SC , TC , AC))
Ax1 → ∀s, t, a(O(s, t, a) → P (s, t, a))

¬EC

———
closed

if EC occurs

O(SC , TC , AC)

¬Ex1
———
x1 = C

¬P (SC , TC , AC)

¬O(s1, t1, a1)
——–

s1 = SC

t1 = TC

a1 = AC

P (s1, t1, a1)
[P (SC , TC , AC)]

————

[Type III](Obli+/Auth−)

Fig. 5 Explicit modality conflict detection.

The mapping ζ of authorization policies is de-
fined in translations (2) and (3) of Fig. 4. Pred-
icate P can be read as “subject role S1 is per-
mitted to carry out action A1 on target role
T1”. Atom Ex says that event x occurs. Then,
for example, the second translation can be read
as “for any event Ex, S1 is not permitted to

carry out A1 on T1”.
4.3 Obligation Policy
In XACML, only positive obligation is men-

tioned, while the syntax of obligation policy is
not strictly defined. In Ponder, obligation poli-
cies are event-condition-action rules and both
positive and negative obligation policies are de-



Vol. 47 No. 5 Access Control Policy Analysis Using Free Variable Tableaux 1521

fined. A positive obligation policy (Obli+) de-
fines action A1 that subject role S1 must per-
form on target role T1 when event E1 occurs.
A negative obligation policy (Obli-) defines ac-
tion A1 that subject role S1 must not perform
on target role T1 when event E1 occurs. In Pon-
der a negative obligation policy is called a re-
frain policy. Examples of positive and negative
obligation policies in Ponder are

Ponder:
type oblig RuleID_2
(subject S1, target T1) {
on E1;
do A1;
}
type refrain RuleID_3
(subject S1, target T1) {
on E1;
do A1;
}

These obligation policies are represented in this
paper as

Obli±(E1, S1, T1, A1).
The translation mapping ζ of obligation poli-

cies is defined in (4) and (5) of Fig. 4. In these
translations, the predicate O can be read as
“subject role S1 must carry out action A1 on
target role T1” and R can be read as “subject
role S1 must not carry out action A1 on target
role T1”. Then, for example, the first transla-
tion can be read as “if event E1 occurs then S1

must carry out action A1 on target role T1”.
4.4 Axiom
In addition to the transformation of autho-

rization and obligation policies, there is a need
for two axioms that relate P , O, and R; i.e.,
an obligation policy requires an authorization
policy to permit the action and it contradicts
a negative obligation policy. These axioms are
described in (6) and (7) of Fig. 4. Ax1 is used
to detect conflicts involving both authoriza-
tion and obligation policies and Ax2 is used to
detect conflicts between positive and negative
obligation policies.

4.5 Propagation Policy
As shown in Section 4.2, an authorization

policy is defined by using a role that has a par-
tial order relation and a propagation policy de-
fines how an authorization policy propagates in
accordance with the partial order. In standard
RBAC and Ponder, the direction of the propa-
gation is always fixed, but we define an explicit
propagation policy for each role structure which

is more flexible than the implicit propagation
in standard role hierarchies. This propagation
policy is defined as

prop(Auth+|−, SRH|TRH, Up|Down)
SRH and TRH respectively indicate the subject
and target role structures to which the prop-
agation policy is applied. Up and Down indi-
cate the direction of the propagation, where
Up means that the policy propagates upward
through the partial order from the lowest ele-
ment (most junior role) and Down means that
the policy propagates downward from the high-
est element (most senior role).

The syntax of the propagation policy allows
eight types of propagation policies to be de-
fined:

prop1 : prop(Auth+,H ∈ SRH, UP)
prop2 : prop(Auth−,H ∈ SRH, Down)
prop3 : prop(Auth+,H ∈ SRH, Down)
prop4 : prop(Auth−,H ∈ SRH, UP)
prop5 : prop(Auth+,H ∈ TRH, UP)
prop6 : prop(Auth−,H ∈ TRH, Down)
prop7 : prop(Auth+,H ∈ TRH, Down)
prop8 : prop(Auth−,H ∈ TRH, UP)

More than one propagation policy or no propa-
gation policy can be defined as required. These
eight propagation policies are translated into
the four sentences defined as (8) to (11) in
Fig. 4. From the fact that (A ∧ B) → C is
equivalent to (¬C ∧ B) → ¬A, we can easily
prove that, for example, the prop1 and prop2
policies are translated into the same sentence,
as we likewise can for the other cases above.

4.6 Action Composition Policy
It is natural to regard actions, like roles, as

having a structure similar to a role hierarchy;
we call this an action composition policy. This
simplifies policy definition as only the compos-
ite action needs to be specified. For example,
three actions — A1, A2, and A3 — may have
an action composition policy defined as

A1 = A2 ∧ A3

This means that performing an action A1 is
equivalent to performing actions A2 and A3.
Thus, defining an authorization policy,

r10 : Auth+(S1, T1, A1)
is equivalent to defining the two authorization
policies

r11 : Auth+(S1, T1, A2)
r12 : Auth+(S1, T1, A3)

The syntax of the action composition policy
is defined by n actions A1, · · ·, An:

A1 = Γ(A2, · · · , An)



1522 IPSJ Journal May 2006

where Γ is a Boolean combination using ∧, ∨,
and ¬ of A2, · · ·, An. The mapping ζ for the
action composition policy is defined as (12) in
Fig. 4.

4.7 Chinese Wall and the Separation
of Duty Policies

A Chinese wall policy 5) and a separation of
duty policy 7) respectively define the constraints
for target roles and actions. A Chinese wall pol-
icy defines a constraint on the maximum size of
a subset of target roles on which a subject role
can perform an action. A separation of duty
policy defines the maximum size of a subset of
actions (usually one) that a subject role can
perform on a target role. In this paper we dis-
cuss only static separation of duty and its con-
flicts, and do not consider dynamic separation
of duty. The syntax of these policies is

cw : CW(all, {T1, · · · , Tn}m, all)
sod : SoD(all, all, {A1, · · · , An}m),

where m (0 < m < n) is a cardinality for tar-
gets and actions. That is, the policy cw defines
that any subject role can perform any action
on up to m target roles of {T1, · · · , Tn}m, and
the policy sod defines that any subject role can
perform up to m actions of {A1, · · · , An}m on
any target role. The Chinese wall and separa-
tion of duty policies are formalized in (13) and
(14) of Fig. 4, where Pij(·) = P (·) or ¬P (·), and
P (·) and ¬P (·) must be carefully selected such
that m “P (·)”s and n − m “¬P (·)”s appear in
the formalization without omission and with-
out redundancy. If a Chinese wall policy must
be defined for a specific subject role or action
in place of an arbitrary role, one can replace
the arbitrary values x or y in the formalization
of (13) in Fig. 4 with a specific subject role or
action such as S1 or A1. To give an intuitive un-
derstanding of this principle, the formalizations
of policies cw1 and sod1, as shown in Section
2, are respectively given in (13′) and (14′) of
Fig. 4 .

5. Conflict Detection

Here, we show that the FVT can detect sev-
eral types of policy conflict. First we define
three types of conflict which may occur in our
policy model — explicit modality conflict, im-
plicit modality conflict, and constraint conflict.
Then we argue for the completeness of our
method by describing how FVT works. This
means we prove that all kinds of conflict can be
detected by using FVT.

5.1 Explicit Modality Conflict
Lupu, et al. 18) pointed out that a modality

conflict may result from certain combinations
of authorization and obligation policies when
they refer to the same subject, target, and ac-
tion; these combinations are {Auth+/Auth−},
{Obli+/Obli−}, and {Obli+/Auth−}. In this pa-
per we classify modality conflicts into two types
— explicit and implicit. An explicit modality
conflict occurs between two explicitly defined
authorization or obligation policies. An implicit
modality conflict occurs as a result of the im-
plicit derivation of one or more policies from a
propagation policy.
Definition 1 (Explicit modality conflict).
For an arbitrary constant C, three pairs of poli-
cies are defined as explicit modality conflicts:

[Type I] (Auth+/Auth− Conflict)
r13 : Auth+(SC , TC , AC)
r14 : Auth−(SC , TC , AC)

[Type II] (Obli+/Obli− Conflict)
r15 : Obli+(EC , SC , TC , AC)
r16 : Obli−(EC , SC , TC , AC)

[Type III] (Obli+/Auth− Conflict)
r17 : Obli+(EC , SC , TC , AC)
r18 : Auth−(SC , TC , AC)

For these explicit modality conflicts, the fol-
lowing theorem holds.
Theorem 1 (Completeness of the explicit
modality conflict detection). All explicit
modality conflicts can be detected by the FVT
method.

Proof. To prove Theorem 1, we apply the FVT
method for each kind of conflicting pair defined
in Definition 1. The policies need to be first
translated into logic, using the mapping ζ de-
fined in Fig. 4, and then the FVT method is
applied. In Fig. 5 we show the translation and
the result of analyzing these pairs by the FVT.
Note that, strictly speaking, since the complete-
ness of the FVT method itself has already been
proved, it is enough to prove only the valid-
ity of the definition of mapping ζ as shown in
Fig. 4. As shown in Section 3.3, it is proved that
[Type III] results in closed tableaux. Since both
[Type I] and [Type II] pairs also result in closed
tableaux, as shown in Fig. 5, the completeness
of the FVT method is proved for [Type I] and
[Type II]. That is, the completeness of the FVT
method for explicit modality conflicts has been
proved. Note that in [Type I] a conflict only
happens if an event occurs, so we assume an



Vol. 47 No. 5 Access Control Policy Analysis Using Free Variable Tableaux 1523

event �→ E1
role structure H �→ HH(S2, S3), HH(S3, S5), · · ·
r1 �→ ∀x(Ex → P (S5, T2, A1))
r2 �→ ∀x(Ex → ¬P (S2, T2, A1))
pr1 �→ ∀x, y, z, a(P (x, y, a) ∧ HH(z, x) → P (z, y, a))

¬P (x1, y1, a1) ∨ ¬HH(z1, x1)
————————

x1 = S5
y1 = T2
z1 = S3
a1 = A1

P (z1, y1, a1)
[P (S3, T2, A1)]

|
|

¬P (x2, y2, a2) ∨ ¬HH(z2, x2)
———————

x2 = S3
y2 = T2
z2 = S2
a2 = A1

P (z2, y2, a2)
[P (S2, T2, A1)]

————

Fig. 6 Implicit modality conflict detection.

arbitrary event EC occurs.

5.2 Implicit Modality Conflict
Here, we describe the implicit modality con-

flicts caused by propagation policies. First, we
show some examples of implicit modality con-
flicts and then prove that the FVT method can
detect all implicit modality conflicts.
Definition 2 (Implicit modality conflict).
For two arbitrary authorization policies,

Auth+(S+
C , T+

C , A+
C),

Auth−(S−
C , T−

C , A−
C),

let
Ω+ = {Auth+(S+

Ci
, T+

Ci
, A+

C)}
Ω− = {Auth−(S−

Ci
, T−

Ci
, A−

C)}
be the respective sets of authorization policies
derived by propagation policies. The modality
conflict that occurs between the policies in the
set Ω+ ∪ Ω−, or between a policy in Ω+ ∪ Ω−
and another explicitly defined authorization or
obligation policy is an implicit modality con-
flict. For this definition, the following theorem
holds.
Theorem 2 (Completeness of the implicit
modality conflict detection). All implicit
modality conflicts can be detected by FVT.

Before proving this theorem, we show that
FVT can detect an implicit modality conflict
between r1, r2, and pr1 as described in Sec-
tion 2. The result of analyzing these policies
using FVT is shown in Fig. 6. Since a con-
flict only happens if an event occurs, we as-
sume an arbitrary event E1 occurs. To sim-
plify the diagram, we omitted some details. For

example, in the first branch of Fig. 6, if vari-
ables {x1, y1, z1, a1} are given the values
{S2, T2, S3, A1}, then the branch contradicts
assumption PR(S2, S3) and Policy r2. From the
tableau, we deduce that these policies conflict
with each other and that the conflict is due to
the propagation {S2, S3, S5}.

Proof. We give an outline of the proof here. We
have already proved that every explicit modal-
ity conflict can be detected. This means that
to prove Theorem 2 we need to show that every
authorization policy involved in the set Ω+∪Ω−
in Definition 2 can be derived by the definition
of mapping ζ defined in (1) and from (8) to (11)
of Fig. 4. However, this is clear from the for-
malization. A strict proof of this would be pro-
vided by mathematical induction on the vari-
ables over the depth of the role hierarchies.

5.3 Constraint Conflict
Here, we define the constraint conflicts

caused by an action composition policy, the
Chinese wall policy, and the separation of duty
policy. We then prove that the FVT method
can detect all kinds of constraint conflict.

5.3.1 Conflict Caused by Action Com-
position Policies

A conflict caused by an action composition
policy is defined as follows.
Definition 3 (Constraint conflict caused
by an action composition policy). Three
types of conflict are caused by action compo-
sition policies. They are defined as follows,
where, for example, Type IV defines that four



1524 IPSJ Journal May 2006

event �→ E1
ac1 �→ ∀x, y(P (x, y, A1)

↔ P (x, y, A2) ∨ P (x, y, A3))
r19 �→ ∀x(Ex → P (S, T, A1))
r20 �→ ∀x(Ex → ¬P (S, T, A2))
r21 �→ ∀x(Ex → ¬P (S, T, A3))

¬P (x1, y1, A1)

¬Ex2
—-

x2 = 1

P (S, T, A1)
———
x1 = S
y1 = T

P (x1, y1, A2) ∨ P (x1, y1, A3)
[P (S, T, A2) ∨ P (S, T, A3)]

¬P (S, T, A2)
¬P (S, T, A3)

————

[Type IV](A1 = A2 ∨ A3)

event �→ E1
ac2 �→ ∀x, y(P (x, y, A1)

↔ P (x, y, A2) ∧ P (x, y, A3))
r22 �→ ∀x(Ex → P (S, T, A1))
r23 �→ ∀x(Ex → ¬P (S, T, A2))

P (x1, y1, A2)
P (x1, y1, A3)

¬Ex2
——

x2 = 1

¬P (S, T, A2)
———
x1 = S
y1 = T

¬P (x1, y1, A1)
[¬P (S, T, A1)]

¬Ex3
——

x3 = 1

P (S, T, A1)
————

[Type V](A1 = A2 ∧ A3)

event �→ E1
ac3 �→ ∀x, y(P (x, y, A1) ↔ ¬P (x, y, A2))
r24 �→ ∀x(Ex → P (S, T, A1))
r25 �→ ∀x(Ex → P (S, T, A2))

¬P (x1, y1, A1)

¬Ex2
———
x2 = 1

P (S, T, A1)
——–
x1 = S
y1 = T

¬P (x1, y1, A2)
[¬P (S, T, A2)]

¬Ex3
———
x3 = 1

P (S, T, A2)
————

[Type VI](A1 = ¬A2)

event �→ E1
r8 �→ ∀x(Ex → P (S, T1, A))
r9 �→ ∀x(Ex → P (S, T2, A))
cw1 �→ ∀x, y¬(P (x, T1, y) ∧ P (x, T2, y))

¬Ex1
———
x1 = 1

P (S, T1, A)

¬Ex2
———
x2 = 1

P (S, T2, A)

¬P (x3, T1, y3)
——–
x3 = S
y3 = A

¬P (x3, T2, y3)
[¬P (S, T2, A)]

————

[Chinese Wall]

Fig. 7 Constraint conflict detection.

policies — ac1, r19, r20, and r21 — result in a
conflict.

[Type IV]
ac1 : A1 = A2 ∨ A3

r19 : Auth+(SC , TC , A1)
r20 : Auth−(SC , TC , A2)
r21 : Auth−(SC , TC , A3)

[Type V]
ac2 : A1 = A2 ∧ A3

r22 : Auth+(SC , TC , A1)
r23 : Auth−(SC , TC , A2) or

Auth−(SC , TC , A3)
[Type VI]

ac3 : A1 = ¬A2

r24 : Auth+(SC , TC , A1)
r25 : Auth+(SC , TC , A2)

where C is an arbitrary constant value and the
Auth+/- policies may be explicit or implicit,
meaning they can be given explicitly or derived
by propagation. The conflicts caused by other
types of action composition policies are defined
inductively from these three definitions.
Theorem 3 (Completeness of the con-
straint conflict detection). All constraint
conflicts caused by action composition policies

can be detected by the FVT method.

Proof. We give an outline of the proof here. As
all kinds of constraint conflict caused by action
composition policies can be inductively defined
from the three types — [Type IV], [Type V],
and [Type VI] — all we have to do is prove
that these three types become a conflict.

The result of analyzing these three types of
policy using the FVT method is shown in [Type
IV] to [Type VI] of Fig. 7. To simplify the dia-
gram, we omitted some details. We can recog-
nize that every type results in a conflict since
all branches are closed. This means that Theo-
rem 3 is true.

5.3.2 Conflict Caused by Chinese Wall
Policies

Here, we show that the FVT method can also
detect a constraint conflict caused by a Chinese
wall policy. In Fig. 7, [Chinese Wall] shows the
result of applying the FVT to policies cw1, r8,
and r9 described as examples in Section 2.

In general, the constraint conflict caused by
a Chinese wall policy is defined as follows.



Vol. 47 No. 5 Access Control Policy Analysis Using Free Variable Tableaux 1525

Definition 4 (Constraint conflict caused
by a Chinese wall policy). The follow-
ing policies Ω indicate the constraint conflict
caused by a Chinese wall policy, where 1 ≤ m ≤
n, 1 ≤ ki ≤ n, and ki �= kj (i �= j), and C is an
arbitrary constant.

cw : CW(all, {T1, T2, · · · , Tn}m, all)
Ω = {Auth+(SC , Tki

, AC)}m+1
i=1

where the Auth+/- policies may be explicit or
implicit, meaning they can be given explicitly
or derived by propagation.

That is, if more than m positive authoriza-
tion policies are defined, this becomes a conflict.
The following theorem holds for this definition.
Theorem 4 (Completeness of the con-
straint conflict detection). All constraint
conflicts caused by Chinese wall policies can be
detected by the FVT method.

Proof. From the premise of Definition 4, more
than m positive authorization policies are de-
fined for different Tki

. By using the map-
ping ζ of (2) in Fig. 4, we get sentences includ-
ing more than m positive literals of the form
P (SC , Tki

, AC). According to (13) in Fig. 4,
from policy cw we get the sentence

n!/(m!(n−m)!)∨
i=1

(Pi1(x, T1, y) ∧ · · · ∧ Pin(x, Tn, y)) .

This sentence involves m negative literals
¬P (x, Tki

, y) with at least one in each branch,
thus causing all branches of the tableaux to be
closed. Hence, when the mapping ζ is used,
the set of rules defined in Definition 4 always
conflict.

Note that constraint conflicts caused by the
separation of duty policy can also be defined in
a similar way and all of them can be detected
by the FVT method.

6. Policy Deduction

As described in Section 3, the FVT method
is also applied to verify that a policy can be de-
duced from a given set of polices, and hence to
detect a redundant policy. For example, given
the policies

r26 : prop(Auth+,H ∈ SRH, UP)
r27 : Auth+(S1, T, A)
r28 : Auth+(S2, T, A)

we see that policy r27 is redundant since it can
be derived from policies r26 and r28. While a
redundant policy may not cause a serious prob-

lem, it could complicate policy administration
and reduce performance so it should be elimi-
nated.

To detect that policy r27 is redundant, the
FVT method should be applied to the set
{ζ(H), ζ(r26), ζ(r28),¬ζ(r27)}. If this set re-
sults in a closed tableau, it shows that pol-
icy r27 is redundant since the result indi-
cates that ζ(r27) can be derived from the set
{ζ(H), ζ(r26), ζ(r28)}.

In general, to verify that a certain policy
ri (1 ≤ i ≤ n) is redundant for a given policy set
{r1, · · ·, rn}, the FVT method can be applied
for the set {ζ(r1), · · · ,¬ζ(ri), · · · , ζ(rn)}.

The same technique can be used to verify that
a particular policy r not defined in the given
policy set {r1, · · · , rn} can be derived from the
policy set. The FVT method in this case is
applied to the set {ζ(r1), · · · , ζ(rn),¬ζ(r)}.

In this way, the FVT method can be used to
detect a conflict as well as to detect a redundant
policy using the same algorithm.

7. Computational Time

In this section, we discuss the computa-
tional time needed to analyze a set of policies.
We have experimentally estimated the compu-
tational time by using leanCoP 23), which is
an FVT implementation in Prolog based on
model elimination tableaux 16). Although the
abduction function was not implemented, ap-
proximately estimating the computational time
needed by our method was still useful.

In general, the computational time depends
on the number of rules, the order in which the
sentences are analyzed by tableaux, and the
complexity of the sentences, especially for ac-
tion composition. We estimated the computa-
tional time for the following cases.
Case I: (i) A set of policies containing an

explicit modality conflict — {Auth+ /
Auth−} (r13 and r14 described in Sec-
tion 5.1) or {Obli+/Auth−} (r17 and r18
described in Section 5.1) — and other non-
conflicting policies. (ii) A set of non-
conflicting policies containing only autho-
rization and obligation policies.

Case II: (i) A set of policies containing an
implicit modality conflict — {Auth+ /
Auth−} (r1, r2, pr1, and subject role struc-
ture Hs described in Section 2) — and
other non-conflicting policies. (ii) A set of
non-conflicting policies containing only au-
thorization and propagation policies.



1526 IPSJ Journal May 2006

Table 1 Computer specifications.

CPU Pentium 4, 3.20GHz
Memory 1,024MB
OS Windows XP SP2
Prolog SWI-Prolog Version 5.4.7

Case III: (i) A set of policies containing a con-
straint conflict caused by an action com-
position policy (ac1, r19, r20, and r21 de-
scribed in Section 5.3.1) or by a Chinese
wall policy (cw1, r8, and r9 described in
Section 2), and other non-conflicting poli-
cies. (ii) A set of non-conflicting policies
containing only authorization, action com-
position, and Chinese wall policies.

Case IV: (i) A set of mixed policies containing
an implicit modality and constraint con-
flict caused by both subject and target
propagation policies (prop1 and prop6 de-
scribed in Section 4.5), authorization poli-
cies containing subjects and targets as de-
scribed in Fig. 1, a Chinese wall policy
(cw1 described in Section 2), and other
non-conflicting policies. (ii) A set of non-
conflicting policies containing authoriza-
tion policies, propagation policies, and Chi-
nese wall policies.

We measured the computational time for the
above four cases with respect to the number
of policies (2, 4, 8, 16, 32, 64, 128, 256, 512,
760, 1,024, 1,500, or 2,048). For each case, we
prepared three policy sets in which the policies
were differently ordered, and then we measured
the average time until the analysis was com-
pleted. We also investigated the listing of con-
flicting policies to keep them separated by as far
as possible so that we could measure the time
for the situation that would be expected to take
the longest time to analyze by tableau. Ta-
ble 1 shows the specifications of the computer
used for the estimation. The results from both
experiments were similar (Fig. 8 to Fig. 10).
In the graphs, the vertical axis shows the time
needed to detect a conflict, described by a solid
line, and the horizontal axis shows the number
of policies simultaneously analyzed by the FVT
method.

As Fig. 8 shows, an explicit modality conflict
could be detected in a comparatively short time
— about 25 to 40 seconds for 2,048 policies.
This was because these types of conflict can
be detected by simply comparing a set of poli-
cies. On the other hand, it took much longer
to detect implicit modality conflicts (Fig. 9)

Fig. 8 Time needed to detect an explicit modality
conflict.

Fig. 9 Time needed to detect an implicit modality
conflict.

Fig. 10 Time needed to detect a constraint conflict.

because a propagation policy is applied to a
role structure and has to be reapplied multiple
times in the FVT method to detect a conflict.
This becomes increasingly complex as the role
structure becomes more complex. As shown in
Fig. 10, analyzing the action composition and
Chinese wall policies is not as complex as ana-
lyzing propagation policies because they do not
require recursive analysis.

Finally, Fig. 11 shows that it took longer to
detect a mixed conflict caused by both sub-
ject and target propagation policies (indicated
as “prop-prop” in Fig. 11) or both propagation
and Chinese wall policies (indicated as “prop-
CW” in Fig. 11) than to detect a single type of
conflict.



Vol. 47 No. 5 Access Control Policy Analysis Using Free Variable Tableaux 1527

Fig. 11 Time needed to detect a mixed conflict.

The results show that our method completes
the analysis even when a set of policies has no
conflicts. In most cases, a set of up to about
1,000 policies can be analyzed within about 100
seconds, which is not excessive. Our method
should be used statically to detect conflicts be-
fore the system starts operating. Therefore, we
think these results show that the FVT method
is practical since 1,000 policies are enough to
manage large systems. On the other hand, the
results show that a fairly long time is needed to
analysis over 1000 policies when various kinds
of policies are included. We think it will be
possible to reduce the computational time by
specializing the theorem prover for the policy
analysis. This will be done as part of our fu-
ture work.

In general, it cannot be decided whether a
first-order logic formula is provable; i.e., that
a tableau is terminated in all cases. However,
in our application of policy translation we use
no function symbols and the counter-models to
policy conflicts are therefore finite. By suitably
restricting substitutions to variables, we believe
our method can be implemented in a way that
enables decidability.

8. Extensions

Here, we briefly explain the extensibility of
our method. Once policies are translated into
first-order logic, all kinds of conflicting policies
and redundant policies can be detected using
the same algorithm. This means our method
can be applied for any type of policy which can
be translated into first-order logic. For exam-
ple, as described in Sections 4.2 and 4.3, an au-
thorization policy and an obligation policy are
translated involving an event. Some of these
may be composite events – e.g., E1 = E2 ∧ E3

– which result in conflicts as indicated in the
following.

r29 : Obli+(E1, S1, T1, A1)
r30 : Obli−(E2, S1, T1, A1)
r31 : Obli−(E3, S1, T1, A1)

To detect this conflict by FVT, we should just
add the mapping relating the events, ζ(E1 =
E2 ∧ E3) = E1 ↔ E2 ∧ E3. We do not need
any further changes to detect the conflict. This
shows our method can be flexibly extended to
cope with changes to the access control policy
model. Strictly speaking, our proposed method
can be applied to any policy that can be trans-
lated into first-order logic; for example, those
including time constraints.

9. Conclusion and Future Work

We have proposed a conflict and redundant
policy detection method based on free variable
tableaux. This method not only detects con-
flicts but also provides information helpful for
correcting policies. It can also be used to detect
redundant rules. We proved that this method
can detect conflicts completely by defining sev-
eral types of conflict such as a constraint con-
flict caused by action composition. Moreover,
we showed that our method can be easily ex-
tended to deal with various kinds of policy
model.

In the future, we will specialize the theorem
prover for the particular kinds of sentence oc-
curring as a result of the translations and will
compare the computational time with that of
similar approaches. We will also investigate ex-
tensions to cope with policy models which have
more complex constraints, such as delegation
policies, time constraint policies, etc. In partic-
ular, our preliminary analysis of dealing with
time constraints has shown that incorporating
abduction into the method will prove useful.

Acknowledgments We thank Syuichiro
Yamamoto for his many helpful comments and
suggestions.

References

1) Beckert, B. and Goré, R.: Free variable
tableaux for propositional modal logics, Proc.
International Conference on Theorem Proving
with Analytic Tableaux and Related Methods
(1997).

2) Beckert, B. and Posegga, J.: leanTAP : Lean
Tableau-based Deduction, Journal of Auto-
mated Reasoning, Vol.15, No.3, pp.339–358
(1995). http://i12www.ira.uka.de/leantap/

3) Bertino, E., Bonatti, P.A. and Ferrari, E.:
TRBAC: A temporal role-based access con-



1528 IPSJ Journal May 2006

trol model, ACM Transactions on Information
and System Security (TISSEC ), Vol.4, No.3,
pp.191–233 (Aug. 2001).

4) Bhatti, R., Joshi, J.B.D., Bertino, E. and
Ghafoor, A.: Access Control in Dynamic
XML-based Web-Services with X-RBAC, Proc.
International Conference on Web Services,
CWS ’03, June 23–26, 2003, Las Vegas,
Nevada, USA, pp.243–249 (June 2003).

5) Brewer, D.F.C. and Nash, M.J.: The Chinese
Wall Security Policy, Proc. IEEE Symposium
on Security and Privacy, May 1–3, 1989, Oak-
land, California, USA, pp.206–214 (May 1989).

6) Cholvy, L. and Cuppens, F.: Analyzing Con-
sistency of Security Policies, SP ’97: Proc. 1997
IEEE Symposium on Security and Privacy,
pp.103–112 (1997).

7) Clark, D.D. and Wilson, D.R.: A Comparison
of Commercial and Military Computer Secu-
rity Policies, Proc. IEEE Symposium on Secu-
rity and Privacy, April 27–29, 1987, Oakland,
California, USA, pp.184–194 (Apr. 1987).

8) Damianou, N., Dulay, N., Lupu, E. and
Sloman, M.: The Ponder Policy Specifica-
tion Language, Proc. Policy 2001: Work-
shop on Policies for Distributed Systems and
Networks, Bristol, U.K., pp.18–39, Springer-
Verlag, LNCS 1995 (Jan. 2001).

9) Ferraiolo, D.F., Sandhu, R., Gavrila, S.,
Kuhn, D.R. and Chandramouli, R.: Proposed
NIST standard for role-based access control,
ACM Transactions on Information and System
Security, Vol.4, No.3, pp.224–274 (Aug. 2001).

10) Fitting, M.: First Order Logic and Automated
Theorem Proving, second edition, Springer
(1996).

11) Graham, A., Radhakrishnan, T. and Grossner,
C.: Incremental Validation of Policy-Based Sys-
tems, Proc. 5th IEEE International Workshop
on Policies for Distributed Systems and Net-
works (POLICY ’04 ), June 7–9, 2004, York-
town Heights, New York, pp.240–249 (June
2004).

12) Hayakawa, A., Hoshikawa, T., Takahashi, S.
and Kamanaka, H.: A proposal of On-demand
VPN architecture, Proc.67th National Conven-
tion of IPSJ, Vol.3, pp.329–330 (Mar. 2005).

13) Jajodia, S., Samarati, P. and Subrahmanian,
V.S.: A Logical Language for Expressing Au-
thorizations, Proc. 1997 IEEE Symposium on
Security and Privacy, May 4–7, 1997, Oakland,
California, USA, pp.31–42 (1997).

14) Kalam, A.A.El, Benferhat, S., Miége, A.,
Baida, R.El, Cuppens, F., Saurel, C., Balbiani,
P., Deswarte, Y. and Trouessin, G.: Organiza-
tion based access control, Proc.IEEE 4th Inter-
national Workshop on Policies for Distributed

Systems and Networks, June 4–6, 2003, Lake
Como, Italy, pp.120–131 (June 2003).

15) Kalman, J.A. and Wos, L.: Automated Rea-
soning with Otter, Rinton Press (2001).

16) Letz, R. and Stenz, G.: Model elimination
and connection tableau procedures, Handbook
of automated reasoning, pp.2015–2112 (2001).

17) Letz, R. and Stenz, G.: Model elimination and
connection tableau procedures, pp.2015–2112
(2001). http://www4.informatik.tu-muenchen.
de/˜letz/setheo/

18) Lupu, E.C. and Sloman, M.: Conflicts in
Policy-Based Distributed Systems Manage-
ment, IEEE Transactions on Software Engi-
neering, Vol.25, No.6, pp.852–869 (Nov. 1999).

19) Massacci, F.: Reasoning about Security: A
Logic and a Decision Method for Role-
Based Access Control, Proc.International Joint
Conference on Qualitative and Quantitative
Practical Reasoning (ECSQARU/FAPR ’97),
Vol.1244, pp.421–435 (1997).

20) McCune, W.: OTTER 3.3 Reference Manual
and Guide, Argonne National Laboratory, Illi-
nois (2003). http://www-unix.mcs.anl.gov/
AR/

21) OASIS: eXtensible Access Control Markup
Language (XACML) Version 2.0, OASIS Stan-
dard (Feb. 2005). http://www.oasis-open.org/

22) Ong, K. and Lee, R.M.: A decision support
system for bureaucratic policy administration:
An abductive logic programming approach,
Decision Support Systems, Vol.16, No.1, pp.21–
38 (Jan. 1996).

23) Otten, J. and Bibel, W.: leanCoP: Lean
Connection-Based Theorem Proving, Journal
of Symbolic Computation, Vol.36, pp.139–161
(2003).

24) Ribeiro, C., Zúquete, A., Ferreira, P. and
Guedes, P.: Security Policy Consistency, Tech-
nical Report, INESC (June 2000).

25) Sandhu, R.S.: The Typed Access Matrix
Model, SP ’92: Proc.1992 IEEE Symposium on
Security and Privacy, pp.122–136 (1992).

26) Stickel, M.E.: A prolog technology theorem
prover: A new exposition and implementation
in prolog, Technical Note 464, Artificial Intel-
ligence Center, SRI International, Menlo Park,
California (1989).

27) Strembeck, M.: Conflict Checking of Sepa-
ration of Duty Constraints in RBAC — Im-
plementation Experiences, Proc. Conference
on Software Engineering (SE2004 ), Innsbruck,
Austria, pp.224–229 (Feb. 2004).

28) Sutcliffe, G. and Suttner, C.: The TPTP
Problem Library for Automated Theorem
Proving. http://www.cs.miami.edu/˜tptp/

29) Takeuchi, Y., Hayakawa, A. and Takahashi,



Vol. 47 No. 5 Access Control Policy Analysis Using Free Variable Tableaux 1529

S.: A study of Policy control on On-demand
VPN, Proc. 67th National Convention of IPSJ,
Vol.3, pp.331–332 (Mar. 2005).

(Received May 16, 2005)
(Accepted February 1, 2006)

(Online version of this article can be found in
the IPSJ Digital Courier, Vol.2, pp.207–221.)

Hiroaki Kamoda received
his M.S. degree from Chiba Uni-
versity in 2000. He has been
working in NTT DATA Corp.
since 2000. From 2003 to 2004
he was a visiting researcher at
FOKUS, Germany, and from

2004 to 2005 he was a visiting researcher at Im-
perial College London, U.K. He has been en-
gaged in research in the areas of network secu-
rity and software engineering. He is a member
of IPSJ.

Masaki Yamaoka received
his M.E. and Ph.D. degrees from
Osaka University in 1991 and
2000, respectively. He was a vis-
iting scientist at MIT from 1992
to 1993 and a visiting researcher
in the Department of Comput-

ing, Imperial College London from 2004 to
2005. His research interests include pattern un-
derstanding and network security. He is a mem-
ber of IPSJ and IEEE.

ShigeyukiMatsuda received
his M.S. degree from the Univer-
sity of Electro-Communications
in 1981. He worked in the NTT
Laboratory from 1981 to 1988
and then at NTT Data from
1988 to 2005. Since 2005, he has

been with ERNST & YOUNG SHINNIHON.
He is a member of PMI.

Krysia Broda is a Senior
Lecturer and member of the
Computational Logic section in
the Department of Computing,
Imperial College London. Her
research interests include auto-
mated reasoning in classical and

non-classical logic, logical agents, and various
applications of logic programming including In-
ductive Logic Programming. She is co-author
of several books and has publications in all her
areas of interest. She has been a member of
various TABLEAUX program committees. See
http://www.doc.ic.ac.uk/˜kb for more details
and selected papers.

Morris Sloman is Director
of Research and Deputy Head of
Department in the Department
of Computing, Imperial College
London. His research interests
include management of networks
and distributed systems, adap-

tive security management, trust and security
for pervasive systems, and autonomic manage-
ment for pervasive systems. He has many jour-
nal and conference publications and is editor of
a reference book on the management of network
and distributed systems (published by Addison
Wesley). He is a member of the editorial boards
of the Journal of Network and Systems Man-
agement and the IEEE eTNSM Journal. He is
on the steering committees for the conferences
on Policies for Distributed Systems and Net-
works, Integrated Management (IM), and Net-
work Operations and Management (NOMS).
See http://www.doc.ic.ac.uk/˜mss for more de-
tails and selected papers.


