
Vol. 47 No. 5 IPSJ Journal May 2006

Regular Paper

The Joinability and Related Decision Problems

for Semi-constructor TRSs

Ichiro Mitsuhashi,
†
Michio Oyamaguchi,

†
Yoshikatsu Ohta

†

and Toshiyuki Yamada
†

The word and unification problems for term rewriting systems (TRSs) are most important
ones and their decision algorithms have various useful applications in computer science. Algo-
rithms of deciding joinability for TRSs are often used to obtain algorithms that decide these
problems. In this paper, we first show that the joinability problem is undecidable for linear
semi-constructor TRSs. Here, a semi-constructor TRS is such a TRS that all defined symbols
appearing in the right-hand side of each rewrite rule occur only in its ground subterms. Next,
we show that this problem is decidable both for confluent semi-constructor TRSs and for con-
fluent semi-monadic TRSs. This result implies that the word problem is decidable for these
classes, and will be used to show that unification is decidable for confluent semi-constructor
TRSs in our forthcoming paper.

1. Introduction

The word and unification problems for term
rewriting systems (TRSs) are most important
ones and their decision algorithms have various
useful applications in computer science. The
word problem is undecidable in general even if
we restrict ourselves to right-ground TRSs 9).
This problem is equivalent to the joinability one
if TRSs are confluent (Church-Rosser). Here,
the joinability problem for TRSs is the prob-
lem of deciding, for a TRS R and two terms s
and t, whether s and t can be reduced to some
common term by applying the rules of R. The
unification problem includes the word problem
as its special case and its decision algorithm of-
ten needs an algorithm to decide joinability as
its component (e.g., for confluent right-ground
TRSs 11) and confluent simple TRSs 6)).

In this paper, we consider the joinability
problem for some subclasses of TRSs. This
problem is also undecidable in general even if
we restrict ourselves to flat TRSs 4). On the
other hand, it is decidable for some subclasses of
TRSs (e.g., right-ground TRSs 10), right-linear
semi-monadic TRSs 8), and right-linear finite
path overlapping TRSs 12)). Many of these de-
cidability results have been obtained by reduc-
ing these problems to decidable ones for tree au-
tomata, so that these decidable subclasses are
restricted to those of right-linear TRSs.

In this paper, we show that joinability is
undecidable for linear semi-constructor TRSs
(Th 3), but decidable for confluent semi-

† Faculty of Engineering, Mie University

constructor TRSs (Th 37). Here, a semi-
constructor TRS is such a TRS that all de-
fined symbols appearing in the right-hand side
of each rewrite rule occur only in its ground
subterms. This subclass is a minimal class
of non-right-linear TRSs which properly in-
cludes right-ground TRSs and simple TRSs.
Our latter result shows decidability of joinabil-
ity for possibly non-right-linear TRSs and is
striking compared with the previous decidabil-
ity results. To our knowledge, such attempts
were very few so far. As a consequence, the
word problem is decidable for confluent semi-
constructor TRSs. Using the decidability re-
sult of joinability, we will show that unifica-
tion is decidable for confluent semi-constructor
TRSs in our forthcoming paper 5). Our proof
technique used to show the decidability of join-
ability can be applied to subclasses other than
confluent semi-constructor TRSs. In fact, we
show in this paper that joinability is decidable
for confluent semi-monadic TRSs (Th 44). This
subclass is possibly non-right-linear too.

We also consider the reachability problem,
which is also fundamental. Here, the reachabil-
ity problem for TRSs is the problem of deciding,
for a TRS R and two terms s and t, whether s
can be reduced to t by applying the rules of R.
We show that reachability is undecidable both
for linear semi-constructor TRSs (Th 3) and for

This paper is an extended version of the first half of
the paper: I. Mitsuhashi, M. Oyamaguchi, Y. Ohta,
and T. Yamada, “The joinability and unification
problems for confluent semi-constructor TRSs”, in
RTA-04 Rewriting Techniques and Applications,
LNCS3091, pp.285–300, 2004.

1502

Vol. 47 No. 5 The Joinability and Related Decision Problems for Semi-constructor TRSs 1503

confluent monadic TRSs (Th 46).

2. Preliminaries

We assume that the reader is familiar with
standard definitions of rewrite systems 2),13)

and we just recall here the main notations used
in this paper.

We use ε to denote the empty string. Let |∆|
be the cardinality of a set ∆. Let X be a set
of variables, F a finite set of operation sym-
bols graded by an arity function ar: F → N(=
{0, 1, 2, · · ·}), Fn = {f ∈ F | ar(f) = n}, and T
the set of terms constructed from X and F . We
use x, y, z as variables, b, c, d as constants, f, g
as operation symbols, r, s, t as terms, and σ, θ
as substitutions. A term is ground if it has no
variable. Let G be the set of ground terms. Let
V(s) be the set of variables occurring in s. We
use |s| to denote the size of s, i.e., the number of
symbols occurring in s. The height of a term is
defined as follows: height(a) = 0 if a is a vari-
able or a constant and height(f(t1, . . . , tn)) =
1 + max{height(t1), . . . , height(tn)} if ar(f) >
0. The root symbol of a term is defined
as root(a) = a if a is a variable and
root(f(t1, . . . , tn)) = f .

A position in a term is expressed by a se-
quence of positive integers, and positions are
partially ordered by the prefix ordering ≤. We
use u|v to denote that positions u and v are
parallel. Let O(s) be the set of positions of s.
For a set of positions W , let Min(W) be the set
of its minimal positions (w.r.t. ≤).

Let s|u be the subterm of s at position u. Let
Psub(s) be the set of proper subterms of s, and
for ∆ ⊆ T , let Psub(∆) = ∪s∈∆Psub(s). We
use s[t]u to denote the term obtained from s by
replacing the subterm s|u by t. For a sequence
(u1, · · · , un) of pairwise parallel positions and
terms t1, · · · , tn, we use s[t1, · · · , tn](u1,...,un) to
denote the term obtained from s by replacing
each subterm s|ui

by ti(1 ≤ i ≤ n).
A rewrite rule α → β is a directed equation

over terms where α /∈ X and V(α) ⊇ V(β). A
TRS is a finite set of rewrite rules. A term s
reduces to t at position u by TRS R, denoted
s

u→R t, if s|u = αθ and t = s[βθ]u for some
rewrite rule α→ β and substitution θ. This re-
duction is called a u-reduction. For s

u→R t, u
and R may be omitted. We write t← s if s→ t,
s↔ t if s→ t or s← t. →∗ is a reflexive transi-
tive closure of→. Term t is reachable from s in
R if s→∗

R t. Term s and t are joinable, denoted

s ↓R t if there exists r such that s→∗
R r ←∗

R t.
Let γ: s1

u1↔ s2 · · · un−1↔ sn be a rewrite sequence.
This sequence is abbreviated to γ: s1 ↔∗ sn and
R(γ) = {u1, · · · , un−1} is the set of the redex
positions of γ. For any sequence γ and position
set W , if for every v ∈ R(γ) there exists u ∈W

such that v ≥ u, then we write γ: s1

≥W

↔∗ sn.
Let OG(s) = {u ∈ O(s) | s|u ∈ G}. For

any set Ξ ⊆ X ∪ F , let OΞ(s) = {u ∈ O(s) |
root(s|u) ∈ Ξ}. Let Ox(s) = O{x}(s). The set
DR of defined symbols for a TRS R is defined
as DR = {root(α) | α → β ∈ R}. If R is clear
from the context, we write D instead of DR. A
term s is semi-constructor if for every subterm
t of s, t is ground or root(t) is not a defined
symbol.

Definition 1 A rule α → β is ground
if α, β ∈ G, right-ground if β ∈ G, semi-
constructor if β is semi-constructor, and lin-
ear if |Ox(α)| ≤ 1 and |Ox(β)| ≤ 1 for every
x. A TRS R is ground, right-ground, semi-
constructor, linear if every rule in R is ground,
right-ground, semi-constructor, linear, respec-
tively. A TRS R is confluent if ↔∗

R = ↓R.
Example 2 Let Re = {nand(x, x) →

not(and(x, x)), nand(not(x), x) → true, true →
nand(false, false), false → nand(true, true)}. Re

is semi-constructor, non-terminating, and con-
fluent 3). We will use this Re in examples given
in Section 4.

3. Joinability and Reachability for
Linear Semi-constructor TRSs

First, we show that joinability and reachabil-
ity for (non-confluent) semi-constructor TRSs
are undecidable.

Theorem 3 Joinability and reachability
for linear semi-constructor TRSs are undecid-
able.
Proof [sketch] The proof is by a reduction from
the Post’s correspondence problem (PCP). Let
P = {〈ui, vi〉 ∈ Σ∗ × Σ∗ | 1 ≤ i ≤ k} be an in-
stance of the PCP. The corresponding TRS RP

is constructed as follows: Let F = F0 ∪F1 ∪F2

where F0 = {c, d, $}, F1 = Σ∪{f, h}, F2 = {g},
and RP = {c→ h(c), c→ d, d→ f(d)} ∪ {d→
g(ui($), vi($)), f(g(x, y)) → g(ui(x), vi(y)) |
1 ≤ i ≤ k} ∪ {h(g(a(x), a(y))) → g(x, y) |
a ∈ Σ}. Here, u(x) is an abbreviation for
a1(a2(· · · ai(x))) where u = a1a2 · · · ai ∈ Σ∗.
RP is linear and semi-constructor. For RP ,
c →∗ g($, $) iff there exists a sequence of in-
dexes i1 · · · im ∈ {1, · · · , k}+ such that c →n+1

1504 IPSJ Journal May 2006

hn(d) →m hn(fm−1(g(uim
($), vim

($)))) →m−1

hn(g(ui1 · · ·uim
($), vi1 · · · vim

($))) →n g($, $)
where n = |ui1 · · ·uim

| and ui1 · · ·uim
=

vi1 · · · vim
. Thus, c →∗ g($, $) iff P has a so-

lution. Since g($, $) is a normal form, c →∗
g($, $) iff c ↓ g($, $). Hence, this theorem holds.

�

4. Decidability of Joinability for Con-
fluent Semi-constructor TRSs

In this section, we show that joinability for
confluent semi-constructor TRSs is decidable,
by reducing it to the joinability for right-ground
TRSs, which is decidable 10). First, a given con-
fluent semi-constructor TRS R0 is transformed
into a standard TRS R (where the definition of
standard is given in Section 4.1). Next, we add
new ground rules called shortcut rules to R, and
obtain TRS R′ satisfying that two constants are
joinable in R iff they are joinable by only right-
ground rules in R′ (Section 4.2). Finally, we
show the decidability of joinability between ar-
bitrary terms (Section 4.3, 4.4).

4.1 Standard Semi-constructor TRSs
We use Rrg and Rnrg to denote the sets

of right-ground and non-right-ground rewrite
rules in TRS R, respectively. That is, R =
Rrg ∪Rnrg.

Definition 4 A TRS R is standard if for ev-
ery α→ β ∈ R, either α ∈ F0 and height(β) ≤ 1
or α /∈ F0 and OG(β) ⊆ OF0(β) holds.

Let R0 be a confluent semi-constructor
TRS. The corresponding standard TRS is con-
structed as follows. The construction has a loop
structure. We use k as the loop counter. First,
we choose α → β ∈ Rk(k ≥ 0) that does not
satisfy the standardness condition. If α ∈ F0

then let {u1, · · · , um} be {1, · · · , ar(root(β))} \
OF0(β). Otherwise, let {u1, · · · , um} be
Min(OG(β)) \ OF0(β). Let Rk+1 = (Rk \ {α→
β}) ∪ {α → β[d1, · · · , dm](u1,···,um)} ∪ {di →
β|ui

| 1 ≤ i ≤ m} where d1, · · · , dm are new
pairwise distinct constants which do not ap-
pear in Rk or T . This procedure is applied re-
peatedly until the TRS satisfies the condition of
standardness. Let S be this construction pro-
cedure and S(R0) be the output of S for input
R0. It is obvious that S is terminating.

Example 5 Let R0 = {f1(x)→ g(x, g(a, b)),
f2(x) → f2(g(c, d))}, then S(R0) = {f1(x) →
g(x, d1), d1 → g(a, b), f2(x) → d2, d2 →
f2(d3), d3 → g(c, d)}.

Lemma 6 Let R0 be a confluent and semi-
constructor TRS.

(1) S(R0) is confluent and semi-constructor.
(2) For any terms s, t which do not contain

new constants, s ↓R0 t iff s ↓S(R0) t.
The proof is given in Appendix A.1. Note that
all new defined symbols created in this transfor-
mation are constants. By this lemma, we can
assume that a given confluent semi-constructor
TRS is standardized. In particular, for any
right ground rule α → β ∈ S(R0)rg, α ∈ F0

and height(β) ≤ 1 or α /∈ F0 and β ∈ F0 holds.
4.2 Shortcut Rules and Quasi-standard

Semi-constructor TRSs
In this section, we add new ground rules

called shortcut rules to standard TRS R, and
obtain TRS R′ satisfying that two constants are
joinable in R iff they are joinable by only right-
ground rules of R′. Right-hand sides of added
shortcut rules may have height greater than 1.
These rules are called type C rules and defined
as follows.

Definition 7
(1) A rule α → β has type C if α ∈ F0, β /∈

F0, and OD(β) ⊆ OF0(β). Let RC be the
set of type C rules in R.

(2) A TRS R is quasi-standard if R \ RC is
standard.

Henceforth, we assume that R is confluent,
quasi-standard, and semi-constructor. To de-
scribe how to produce shortcut rules, we need
some definitions and lemmata.

Definition 8 Let Bud(RC) = F0∪Psub({β |
α→ β ∈ RC}).

The following lemma is used in the proofs of
Lemmata 11, 25, and 31.

Lemma 9 For any rewrite sequence γ :
s→∗

Rrg
t and u ∈ O(t), if there exists v ∈ R(γ)

such that v < u, then there exists s′ ∈ Bud(RC)
such that s→∗

Rrg
t[s′]u and s′ →∗

Rrg
t|u.

Proof Consider the last v-reduction in γ such
that v < u. That is, s →∗

Rrg
r

v→Rrg t′[r′]u
and r′ →∗

Rrg
t|u for some r, r′. (Note that

t′[r′]u →∗
Rrg

t[r′]u holds.) Here, r = r[αθ]v and
t′[r′]u = r[β]v hold for some right-ground rule
α → β and θ. Since v < u, β /∈ F0 holds. This
implies that α ∈ F0 holds and if α → β /∈ RC

then height(β) = 1 by quasi-standardness of R.
Let u = vw, then r′ = β|w. If α → β /∈ RC

then r′ ∈ F0 otherwise r′ ∈ Psub({β | α→ β ∈
RC}). Since r′ ∈ Bud(RC), we can choose r′ as
s′. �

Definition 10
(1) The function linearize(s) linearizes non-

linear term s as follows. For each vari-

Vol. 47 No. 5 The Joinability and Related Decision Problems for Semi-constructor TRSs 1505

able occurring more than once in s, the
first occurrence is not renamed, and the
other ones are replaced by new pair-
wise distinct variables. For example,
linearize(nand(x, x)) = nand(x, x1). If
function linearize replaces x by x1 then
we use x ≡ x1 to denote the replacement
relation.

(2) A substitution σ is joinability preserving
under relation ≡ for TRS Rrg if xσ ↓Rrg

x′σ whenever x ≡ x′.
(3) Let α → β ∈ Rnrg and α′ = linearize(α).

Then, σ : V(α′) → Psub(s) ∪ Bud(RC) is
called a bud substitution for s and α→ β
if s→∗

Rrg
α′σ and σ is joinability preserv-

ing under relation ≡ for Rrg. Note that
if s is a ground term then βσ is a ground
term. Let BudMapR(s, α→ β) be the set
of such bud substitutions.

Lemma 11 Let α→ β ∈ Rnrg.
(1) BudMapR(s, α → β) is finite and com-

putable.
(2) Let γ : s →∗

Rrg
αθ for some θ. Then,

there exists σ ∈ BudMapR(s, α → β)
such that s →∗

Rrg
α′σ →∗

Rrg
αθ and

βσ →∗
Rrg

βθ where α′ = linearize(α).
(3) For any σ ∈ BudMapR(s, α → β), s ↓R

βσ holds.
Proof
(1) Finiteness is obvious. Computability

holds since joinability and reachability
are decidable for right-ground TRSs 10).

(2) Let {u1, · · · , un} be OX(α). For u1, if
there exists v1 ∈ R(γ) such that v1 < u1,
then there exists s′1 ∈ Bud(RC) such
that s →∗

Rrg
αθ[s′1]u1 and s′1 →∗

Rrg
αθ|u1

by Lemma 9. Otherwise, s|u1 →∗
Rrg

αθ|u1 , so let s′1 be s|u1 . Thus, s →∗
Rrg

αθ[s′1]u1

≥{u1}→∗
Rrg αθ. Let γ′ : s →∗

Rrg

αθ[s′1]u1 . By similar arguments, if there
exists v2 ∈ R(γ′) such that v2 <
u2, then there exists s′2 ∈ Bud(RC)
such that s →∗

Rrg
αθ[s′1]u1 [s

′
2]u2 and

s′2 →∗
Rrg

(αθ[s′1]u1)|u2
by Lemma 9.

Otherwise, let s′2 be s|u2 . By
u1|u2, αθ[s′1]u1 [s

′
2]u2 = αθ[s′1, s

′
2](u1,u2)

and (αθ[s′1]u1)|u2
= αθ|u2 . Thus,

s →∗
Rrg

αθ[s′1, s′2](u1,u2)

≥{u1,u2}
→∗

Rrg
αθ.

By repeating similar arguments to the
above, there exists {s′1, · · · , s′n} ⊆
Psub(s) ∪ Bud(RC) such that s →∗

Rrg

αθ[s′1, · · · , s′n](u1,···,un)

≥OX(α)

→∗
Rrg

αθ since
u1, · · · , un are pairwise parallel. Hence,
s →∗

Rrg
α′σ →∗

Rrg
αθ and βσ →∗

Rrg
βθ

where σ = {α′
|ui
→ s′i | 1 ≤ i ≤ n}.

σ : V(α′) → Psub(s) ∪ Bud(RC) and for
any x ∈ V(α) and x′ ∈ V(α′), if x′ ≡ x
then xσ →∗

Rrg
xθ and x′σ →∗

Rrg
xθ, so

that σ is a bud substitution.
(3) By the definition of BudMap, s→∗

Rrg
α′σ

and σ is joinability preserving under re-
lation ≡ for Rrg, where α′ = linearize(α).
So, there exists a substitution θ such that
α′σ →∗

Rrg
αθ, and βσ →∗

Rrg
βθ. Since

αθ →R βθ, s ↓R βσ holds. �

By Lemma 11(2), for any constant d and
rewrite sequence d →∗

Rrg
αθ →Rnrg βθ, there

exists α′σ such that d →∗
Rrg

α′σ →∗
Rrg

αθ and
βσ →∗

Rrg
βθ where α′ = linearize(α). So, we

have d →∗
R′ βθ for R′ = Rrg ∪ {d → βσ}.

Thus, by adding shortcut rules such as d→ βσ,
we can remove applications of the non-right-
ground rule α → β. Note that confluence and
joinability properties are preserved even if we
add d → βσ since d ↓R βσ. However, short-
cut rules may be added infinitely in this proce-
dure. To avoid this, we will apply a procedure
which bounds the number of shortcut rules. To
describe this procedure, we need some prelimi-
naries.

Definition 12 For a ground term s, let
#(s) = (height(s), τ (s)) where τ : G → N is
an injective mapping, and we assume that the
ordering derived by this function is closed un-
der context, i.e., for any r, s, t and any posi-
tion u ∈ O(r), if τ (s) < τ (t) then τ (r[s]u) <
τ (r[t]u). There exists such a function τ which
is effectively computable (see Appendix A.2).
In order to compare #(s) and #(t), we use lex-
icographic order <lex. Note that <lex is a total
order. A term s0 is minimum in a set ∆ iff
#(s0) is minimum in {#(s) | s ∈ ∆}.

Definition 13
(1) For a term α, let Rhs(α, R) = {β | α →

β ∈ R}.
(2) For ∆ ⊆ G, let Cut(∆) = {(u, d) |

u ∈ Min(∪s∈∆OF0(s)), and d is
the minimum constant in {s|u ∈
F0 | s ∈ ∆}}. For exam-
ple, Cut({not(not(true)), not(false)}) =
{(1, false)}.

The following lemma is used in the proof of
Lemma 16.

1506 IPSJ Journal May 2006

Lemma 14 Let Cut(Rhs(d, RC)) =
{(u1, d1), · · · , (un, dn)}.
(1) For every j ∈ {1, · · · , n}, uj �= ε holds.
(2) For every s ∈ Rhs(d, RC), O(s) ⊇

{u1, · · · , un} holds.
(3) For every s, t ∈ Rhs(d, RC), s|uj

↓
t|uj

for every j ∈ {1, · · · , n}, and
s[d1, · · · , dn](u1,···,un) =
t[d1, · · · , dn](u1,···,un).

Proof
(1) By height(s) > 0 for any s ∈ Rhs(d, RC).
(2) We assume to the contrary that there

exist s ∈ Rhs(d, RC) and i ∈
{1, · · · , n} such that ui /∈ O(s). Since
(ui, di) ∈ Cut(Rhs(d, RC)), there exists
t ∈ Rhs(d, RC) such that ui ∈ OF0(t).
By confluence of R, s ↓R t holds. Thus,
there exists v ∈ OF\F0(s) ∩ OF\F0(t)
such that v < ui and s|v ↓R t|v.
But, for such a maximal occurrence v,
root(s|v) and root(t|v) must be differ-
ent constructors(non-defined symbols), a
contradiction.

(3) Since R is confluent, s ↓R t. By the
definition of the type C rule, OD(s) ⊆
OF0(s) and OD(t) ⊆ OF0(t). By (2),
{u1, · · · , un} ⊆ O(s) ∩ O(t). Thus, (3)
holds. �

Definition 15 Let
Rhs(d, RC) = {s1, · · · , sm} and
Cut(Rhs(d, RC)) = {(u1, d1), · · · , (un, dn)}.
Then we define Normalize(d, RC) = {d →
s1[d1, · · · , dn](u1,···,un)} ∪ {dj → si|uj

| 1 ≤
i ≤ m, 1 ≤ j ≤ n, dj �= si|uj

}. For example,
Normalize(true, {true → not(not(true)), true →
not(false)}) = {true → not(false), false →
not(true)}.

We use {· · ·}m to denote a multiset. Let �
be the multiset extension of relation <lex. We
use � to denote multiset union.

Lemma 16 Let |Rhs(d, RC)| > 1 and Q =
Normalize(d, RC).
(1) {#(s) | s ∈ Rhs(d, RC)}m � {#(β) |

α→ β ∈ Q}m.
(2) For any s ∈ Rhs(d, RC), d→+

Q s holds.
(3) →Q⊆↓R.
(4) Q′ = (R \ {d→ s | s ∈ Rhs(d, RC)}) ∪Q

is confluent.
Proof Let Rhs(d, RC) = {s1, · · · , sm}
where m > 1, and Cut(Rhs(d, RC)) =
{(u1, d1), · · · , (un, dn)}.
(1) The proposition is expressed as

{#(si) | 1 ≤ i ≤ m}m �

{#(s1[d1, · · · , dn](u1,···,un))}m�{#(si|uj
) |

1 ≤ i ≤ m, 1 ≤ j ≤ n}m. By
Lemma 14(1) and (2), for any i ∈
{1, · · · , m} and j ∈ {1, · · · , n}, uj ∈
O(si) and #(si) > #(si|uj

) hold, and
#(s1) ≥ #(s1[d1, · · · , dn](u1,···,un)), since
di is minimum and the ordering de-
rived by # is closed under context. If
#(s1) > #(s1[d1, · · · , dn](u1,···,un)) then
the proposition obviously holds. If
#(s1) = #(s1[d1, · · · , dn](u1,···,un)) then
s1 = s1[d1, · · · , dn](u1,···,un) must hold
by the injectivity of #. Since #(si) >
#(si|uj

) for any i ∈ {2, · · · , m} and j ∈
{1, · · · , n}, the proposition holds.

(2) For any i ∈ {1, · · · , m}, we have d →+
Q

s1[si|u1 , · · · , si|un
](u1,···,un) by the defini-

tion of Normalize, and
s1[si|u1 , · · · , si|un

](u1,···,un) = si by
Lemma 14(3).

(3) It is sufficient to show that d ↓R
s1[d1, · · · , dn](u1,···,un) and dj ↓R si|uj

for any i ∈ {1, · · · , m} and j ∈
{1, · · · , n} where dj → si|uj

∈ Q. By
Lemma 14(3), dj ↓R si|uj

holds. Thus,
s1[d1, · · · , dn](u1,···,un) ↓R si holds, so
that d ↓R s1[d1, · · · , dn](u1,···,un) holds by
d→ si ∈ R.

(4) Let s←∗
Q′ r →∗

Q′ t. Since R is confluent,
R∪Q is confluent by (3). Hence, s ↓R∪Q t
holds. By (2), s ↓Q′ t holds. �

Each of the following functions takes as
input a quasi-standard confluent and semi-
constructor TRS R. Note that if R′ =
Determinize(R) then |Rhs(d, R′

C)| ≤ 1 for any
d by the termination condition of Determinize.
Henceforth, we use (A ◦ B)(x) to denote
A(B(x)) for functions A, B.

function M(R)
R′ := (Determinize◦AddShortcut)(R);
if R = R′

then return R
else return M(R′)

function AddShortcut(R)
R′ := R;
for each d ∈ F0, α→ β ∈ Rnrg do

R′ := R′ ∪
{d→ βσ | σ ∈ BudMapR(d, α→ β)};

return R′

function Determinize(R)
if ∃d ∈ F0. |Rhs(d, RC)| > 1

Vol. 47 No. 5 The Joinability and Related Decision Problems for Semi-constructor TRSs 1507

then return
Determinize(

(R\{d→ s | s ∈ Rhs(d, RC)})
∪ Normalize(d, RC))

else return R
Example 17 For TRS Re of Example 2,

M(Re) is computed as follows. AddShortcut(Re)
is first called and a new shortcut rule true →
not(and(false, false)) is added to Re since true→
nand(false, false), nand(x, x)→ not(and(x, x)) ∈
Re. By false → nand(true, true) ∈ Re,
false → not(and(true, true)) is also added.
Thus, AddShortcut(Re) = R′ where R′ =
Re ∪ {true → not(and(false, false)), false →
not(and(true, true))}. Next, Determinize(R′)
is called and returns the same R′ as out-
put. Since R′ �= Re, (Determinize ◦
AddShortcut)(R′) is computed. Note that
R′

C = {true → not(and(false, false)), false →
not(and(true, true))}. AddShortcut(R′) re-
turns the same R′ and so Determinize(R′).
Thus, this algorithm halts. M(Re) re-
turns R′ as output. That is, M(Re) =
Re ∪ {true → not(and(false, false)), false →
not(and(true, true))}.

Note that M(R) =
(Determinize ◦AddShortcut)l(R) for some l ≥ 1,
Rnrg = M(R)nrg, and M(M(R)) = M(R). In
the produced TRS M(R), the heights of some
right-hand side terms of type C rules may be-
come greater than 1.

First, we show that M(R) is confluent, quasi-
standard, and semi-constructor. Next, we show
that M is terminating. Finally, we show that
two constants are joinable in R iff they are join-
able in M(R)rg. For these purpose, we need
some lemmata.

Definition 18 A rule α→ β has type F2
0 if

α, β ∈ F0. Let RF2
0

be the set of type F2
0 rules

in R.
Lemma 19 Let Q = AddShortcut(R) and

R′ = Determinize(Q).
(1) Both Q and R′ are quasi-standard and

semi-constructor.
(2) For any constant d, if Rhs(d, RC) �= ∅

then Rhs(d, R′
C) �= ∅.

Proof
(1) For any d, α → β ∈ Rnrg, and σ ∈

BudMapR(d, α → β), d → βσ has type
F2

0 or C, since xσ ∈ Bud(RC) for any
x ∈ V(β). Thus, Q is quasi-standard and
semi-constructor. By the definition of
Normalize, all rules produced in functions

Determinize have type F2
0 or C. Thus, R′

is quasi-standard and semi-constructor.
(2) Since no rule is deleted in AddShortcut,

Rhs(d, QC) �= ∅. By the definition of
Normalize, Rhs(d, R′

C) �= ∅. �

Lemma 20 Let Q = AddShortcut(R) and
R′ = Determinize(Q).
(1) →Qrg⊆→+

R′
rg

.
(2) ↔Q⊆↓R.
(3) →R′⊆↓Q.
(4) Q and R′ are confluent.
Proof
(1) If |Rhs(d, QC)| ≤ 1 for every d then (1)

obviously holds since R′ = Q. If there
exists d such that |Rhs(d, QC)| > 1 then
(1) holds by Lemma 16 (2).

(2) Assume that d → βσ is added as a
new rule by AddShortcut where σ ∈
BudMapR(d, α → β). By Lemma 11 (3),
d ↓R βσ holds.

(3) If |Rhs(d, QC)| ≤ 1 for every d then this
lemma holds since R′ = Q. If there ex-
ists d such that |Rhs(d, QC)| > 1 then (3)
holds by Lemma 16 (3).

(4) Q is confluent by (2) and Q ⊇ R. R′ is
also confluent by Lemma 16 (4). �

By Lemmata 19 (1) and 20 (4), every TRS
produced by M is confluent, quasi-standard,
and semi-constructor if so is an input TRS.

Corollary 21 M(R) is confluent.
Now, we show that M is terminating. For

this purpose, we need the following definition
and lemma.

Definition 22 We define @(R) as
(@1(R), @2(R)), where

@1(R) = (|F0|2 − |RF2
0
|) + (|F0| − |RC|),

@2(R) = {#(β) | α→ β ∈ RC}m
Note that if |Rhs(d, RC)| ≤ 1 for each d then
@1(R) ≥ 0. In order to compare @(R) and
@(R′), we use lexicographic order <lex.

Lemma 23
(1) AddShortcut is terminating.
(2) Determinize is terminating.
Proof
(1) By Lemma 11 (1).
(2) If there exists d such that |Rhs(d, RC)| >

1, then by Lemma 16 (1), the size
@2 strictly decreases in each call of
Determinize: @2(R) � @2(Q) where
Q = (R \ {d → s | s ∈ Rhs(d, RC)}) ∪
Normalize(d, RC). �

Lemma 24 M is terminating.

1508 IPSJ Journal May 2006

Proof By Lemma 23, AddShortcut and
Determinize are terminating. Let Q =
(Determinize ◦ AddShortcut)(R). Then, for
each d, |Rhs(d, QC)| ≤ 1 holds. If R = Q
then M is obviously terminating. So, con-
sider the case of R �= Q. Let R′ =
(Determinize ◦AddShortcut)(Q). Then, for each
d, |Rhs(d, R′

C)| ≤ 1 also holds. If Q = R′ then
M is obviously terminating. In the case of Q �=
R′, it is sufficient to show that @(Q) > @(R′).
Since every rule in QF2

0
is never deleted by

functions AddShortcut and Determinize, |F0|2 −
|QF2

0
| ≥ |F0|2 − |R′

F2
0
| holds. Moreover, |F0| −

|QC| ≥ |F0| − |R′
C| by Lemma 19 (2). Thus,

@1(Q) ≥ @1(R′) ≥ 0 holds. If @1(Q) = @1(R′)
then QF2

0
= R′

F2
0

and |QC| = |R′
C|, so that

|Rhs(d, QC)| = |Rhs(d, R′
C)| ≤ 1 for every d. By

Q �= R′, there exists d such that Rhs(d, QC) �=
Rhs(d, R′

C). Let Rhs(d, QC) = {d → t} and
Rhs(d, R′

C) = {d → t′} for some t, t′ where t �=
t′. This implies that Determinize deletes d → t
and produces d→ t′, so that #(t) > #(t′) holds
as we described in the proof of Lemma 16 (1).
Thus, @2(Q)� @2(R′), so that @(Q) > @(R′),
as claimed. �

Now, we show that two constants are joinable
in R iff they are joinable in M(R)rg. For this
purpose, we need the following lemma.

Lemma 25
(1) →Rrg⊆→+

M(R)rg
.

(2) For any d, α → β ∈ M(R)nrg, and σ ∈
BudMapM(R)(d, α → β), d →+

M(R)rg
βσ

holds.
(3) For any d and s, if d →∗

R s then
d→∗

M(R)rg
s.

(4) →M(R) ⊆ ↓R.
Proof
(1) For any confluent, quasi-standard, and

semi-constructor TRS R′, let Q =
AddShortcut(R′) and R′′=Determinize(Q).
Since R′′ is confluent, quasi-standard,
and semi-constructor by Lemmata 19 (1)
and 20 (4), it is sufficient to show that
→R′

rg
⊆→+

R′′
rg

. Obviously, →R′
rg
⊆→Qrg .

By Lemma 20 (1), →R′
rg
⊆→+

R′′
rg

holds, as
claimed.

(2) Since M is terminating, there exists Q
such that Q = AddShortcut(M(R)) and
M(R) = Determinize(Q). By the defini-
tion of AddShortcut, d →Qrg βσ holds.
By Lemma 20 (1), d→+

M(R)rg
βσ holds.

(3) Let γ : d→∗
R s. We show by induction on

the number of applications of non-right-
ground rules in γ. Basis: If d →∗

Rrg
s

then d→∗
M(R)rg

s by (1). Induction step:
Let γ : d →∗

R t[αθ]p → t[βθ]p →∗
Rrg

s
where p ∈ O(t), α → β ∈ Rnrg. By the
induction hypothesis and (1), d →∗

M(R)rg
t[αθ]p → t[βθ]p →∗

M(R)rg
s.

Case(a) If p = ε then d →∗
M(R)rg

αθ → βθ. By Lemma 11 (2), there ex-
ists σ ∈ BudMapM(R)(d, α → β) such
that d →∗

M(R)rg
α′σ →∗

M(R)rg
αθ and

βσ →∗
M(R)rg

βθ. By (2), d →∗
M(R)rg

βσ.
Thus d→∗

M(R)rg
βθ.

Case (b) If p �= ε then there exists s′ ∈
Bud(M(R)C) such that d →∗

M(R)rg
t[s′]p

and s′ →∗
M(R)rg

αθ by Lemma 9. Since
root(s′) ∈ D, s′ must be a constant, so
that we can use the same proof as that
of case (a) to show s′ →∗

M(R)rg
βθ. Thus,

d →∗
M(R)rg

t[s′]p →∗
M(R)rg

t[βθ]p →∗
M(R)rg

s.
(4) For any confluent, quasi-standard, and

semi-constructor TRS R′, let Q =
AddShortcut(R′) and R′′=Determinize(Q).
Since R′′ is confluent, quasi-standard,
and semi-constructor by Lemmata 19 (1)
and 20 (4), it is sufficient to show that
→R′′⊆↓R′ . By Lemma 20 (2), (3),
→R′′⊆↔∗

R′ holds. By confluence of R′,
→R′′⊆↓R′ holds, as claimed. �

By Lemma 25 (3), (4), we have the following
corollary.

Corollary 26 c ↓R d iff c ↓M(R)rg d.
4.3 Auxiliary terms
We have shown that all rewrite sequences

from every constant in R (i.e., d →∗
R s) can

be simulated using only right-ground rules (i.e.,
d →∗

M(R)rg
s). Now, we want to show that this

property still holds for rewrite sequences from
an arbitrary term. For this purpose, we need
the notion of auxiliary terms. The following al-
gorithm Aux produces the set of auxiliary terms
of s. We use Aux(s) to denote the set.

function Aux(s)
∆ := {s};
for each p ∈ OD\F0(s),

α→ β ∈ M(R)nrg,
σ ∈ BudMapM(R)(s|p, α→ β) do
∆ := ∆ ∪ Aux(s[βσ]p);

return ∆
Example 27 For TRS M(Re) of Exam-

ple 17, Aux(not(nand(true, true))) =

Vol. 47 No. 5 The Joinability and Related Decision Problems for Semi-constructor TRSs 1509

{not(nand(true, true)), not(not(and(true, true)))}.
Definition 28

heightD(s) =

wf + max{heightD(si) | 1 ≤ i ≤ n}
(if s = f(s1, · · · , sn), n > 0)
0 (if s ∈ X ∪ F0)

Here, wf = 1 + 2max{height(β) | α → β ∈
M(R)} if f is a defined symbol, otherwise
wf = 1. We define HD(s) = {heightD(s|u) |
u ∈ O(s)}m, which is the multiset of the
heightD-values of all the subterms of s. For
TRS M(Re) of Example 17, wnand = 5 and
HD(nand(not(x), x)) = {0, 0, 1, 6}m.
Let � be the multiset extension of the usual
relation < on N and� be� ∪ =. The relation
� is closed under context.

Lemma 29 For any s, t, the following
propositions hold.
(1) If heightD(s) < heightD(t) then HD(s)�

HD(t).
(2) If HD(s) � HD(t) then heightD(s) ≤

heightD(t).
(3) For any r and position u ∈ O(r),

if HD(s) � HD(t) then HD(r[s]u) �
HD(r[t]u).

Proof
(1) For any subterm s′ of s, heightD(s′) ≤

heightD(s). By heightD(s) < heightD(t),
HD(s)� HD(t) holds.

(2) To the contrary, we assume that
heightD(s) > heightD(t). By (1),
HD(s)� HD(t), a contradiction.

(3) Let ŝ = f(r1, · · · , ri−1, s, ri+1, · · · , rn)
and t̂ = f(r1, · · · , ri−1, t, ri+1, · · · , rn)
where f ∈ Fn and i ∈ {1, · · · , n}. It
suffices to show that {heightD(ŝ)}m �
HD(s)� {heightD(t̂)}m � HD(t). By (2),
heightD(s) ≤ heightD(t), so heightD(ŝ) ≤
heightD(t̂) holds. If heightD(ŝ) <
heightD(t̂) then HD(ŝ) � HD(t̂) holds
by (1). If heightD(ŝ) = heightD(t̂) then
HD(ŝ)� HD(t̂) holds by HD(s)� HD(t).

�

Lemma 30 For any s ∈ G, p ∈
OD\F0(s), α → β ∈ M(R)nrg, and σ ∈
BudMapM(R)(s|p, α → β), the following condi-
tions hold.
(1) s[βσ]p is a ground term.
(2) HD(s[βσ]p)� HD(s).
(3) s[βσ]p ↓M(R) s.
Proof
(1) Since s is a ground term, βσ is a ground

term by the definition of BudMap.

(2) By Lemma 29 (1), (3), it suffices to show
that heightD(βσ) < heightD(s|p). Let
f(s1, · · · , sn) be s|p where f ∈ D, then

heightD(βσ)
≤ height(β) +

max{heightD(xσ) | x ∈ V(β)}
≤ height(β) +

max({heightD(si) | 1 ≤ i ≤ n}
∪{height(β) | α→ β ∈ M(R)C})

< 1 +
2max{height(β) | α→ β ∈ M(R)}
+max{heightD(si) | 1 ≤ i ≤ n}

= heightD(f(s1, · · · , sn)).
(3) By Lemma 11 (3). �

Lemma 31 For any s, r ∈ G, p ∈
OD\F0(s), α → β ∈ Rnrg, and θ, if s →∗

Rrg

r[αθ]p →Rnrg r[βθ]p then there exists s′ ∈
Aux(s) such that s′ →∗

M(R)rg
r[βθ]p.

Proof If s ∈ F0 then we choose s′ as s by
Lemma 25 (3). So, we consider the case of s /∈
F0.
(a) Case of p = ε: By Lemmata 11 (2) and
25 (1), there exists σ ∈ BudMapM(R)(s, α → β)
such that α′σ →∗

M(R)rg
αθ and βσ →∗

M(R)rg
βθ.

Hence, we choose βσ as s′.
(b) Case of p �= ε: if there exists v ∈ R(γ) such
that v < p, then there exists s0 ∈ Bud(RC)
such that s →∗

Rrg
r[s0]p and s0 →∗

Rrg
αθ by

Lemma 9. Since root(s0) ∈ D, s0 must be a
constant and s0 →∗

R βθ, so that s0 →∗
M(R)rg

βθ

by Lemma 25 (3). By Lemma 25 (1), s→∗
M(R)rg

r[s0]p holds. Thus, we choose s as s′. If there
does not exist v ∈ R(γ) such that v < p
then if s|p ∈ F0 then we choose s. Other-
wise, by Lemmata 11 (2) and 25 (1), there ex-
ists σ ∈ BudMapM(R)(s|p, α → β) such that
α′σ →∗

M(R)rg
αθ and βσ →∗

M(R)rg
βθ. Hence,

we choose s[βσ]p as s′. �

Lemma 32 Aux is terminating.
Proof By Lemmata 11 (1) and 30 (2). �

Lemma 33 For any s ∈ Aux(t), Aux(s) ⊆
Aux(t).
Proof We prove by induction on HD(t). Basis:
The proof is obvious by Aux(t) = {t}, since t is a
constant or a variable. Induction step: If s = t
then obvious. Otherwise, s ∈ Aux(t[βσ]p) ⊆
Aux(t) for some p ∈ OD\F0(t), α → β ∈
M(R)nrg, and σ ∈ BudMapM(R)(t|p, α → β) by
the definition of Aux. By Lemma 30 (2) and
the induction hypothesis, Aux(s) ⊆ Aux(t[βσ]p)
holds. Thus, this lemma holds. �

Corollary 34 For any ground term s,

1510 IPSJ Journal May 2006

(1) For any s′ ∈ Aux(s), s′ is a ground term,
HD(s′)�HD(s), and s′ ↓M(R) s.

(2) If s →∗
R t then there exists s′ ∈ Aux(s)

such that s′ →∗
M(R)rg

t.
Proof
(1) We show by induction on HD(s). Ba-

sis: The proof is obvious by Aux(s) =
{s}, since s is a constant. Induction
step: If s = s′ then obvious. Other-
wise, s′ ∈ Aux(s[βσ]p) ⊆ Aux(s) for some
p ∈ OD\F0(s), α → β ∈ M(R)nrg, and
σ ∈ BudMapM(R)(s|p, α→ β) by the def-
inition of Aux. By Lemma 30, s[βσ]p
is ground, HD(s[βσ]p) � HD(s), and
s[βσ]p ↓M(R) s. By the induction hypoth-
esis, s′ is ground, HD(s′)�HD(s[βσ]p),
and s′ ↓M(R) s[βσ]p. Since M(R) is con-
fluent by Corollary 21, s′ ↓M(R) s.

(2) Let γ : s→∗
R t. We show by induction on

the number of applications of non-right-
ground rules in γ. Basis: If s→∗

Rrg
t then

s →∗
M(R)rg

t by Lemma 25(1). Induction
step: Let γ : s→∗

R r[αθ]p → r[βθ]p →∗
Rrg

t where p ∈ O(r), α→ β ∈ Rnrg. By the
induction hypothesis and Lemma 25 (1),
there exists s′′ ∈ Aux(s) such that
s′′ →∗

M(R)rg
r[αθ]p → r[βθ]p →∗

M(R)rg
t.

By Lemma 31 and M(M(R)) = M(R),
there exists s′′′ ∈ Aux(s′′) such that
s′′′ →∗

M(R)rg
r[βθ]p →∗

M(R)rg
t. By

Lemma 33, s′′′ ∈ Aux(s). Thus, we can
choose s′′′ as s′. �

We call s′ in Corollary 34 (2) an auxiliary
term of (s, t). This term will be used to
transform non-right-ground rewrite sequences
to right-ground rewrite sequences.

Example 35 For the rewrite sequence
not(nand(true, true))→∗

rg

not(nand(not(false), not(false)))→
not(not(and(not(false), not(false)))), we can
choose not(not(and(true, true))) ∈
Aux(not(nand(true, true))) and
not(not(and(true, true)))→rg

not(not(and(not(false), not(false)))).
4.4 Joinability for Confluent Semi-

constructor TRSs
Lemma 36 For any ground terms s and t,

s ↓R t iff there exists s′ ∈ Aux(s), t′ ∈ Aux(t)
such that s′ ↓M(R)rg t′.
Proof The only-if-part holds by Corol-
lary 34 (2). Proof of the if-part. By Corol-
lary 34 (1), s↔∗

M(R) t holds. By Lemma 25 (4),
s ↔∗

R t holds. By confluence of R, s ↓R t

holds. �

By Lemma 32, 36 and decidablity of
s′ ↓M(R)rg t′ 10), s ↓R t is decidable for ground
terms s and t. If s or t is non-ground, s ↓R t is
equivalent to sσ ↓R tσ where σ : V(s) ∪ V(t)→
F ′

0 is a bijection and F ′
0 is a set of constants

which do not appear in R. Thus, we have the
following theorem.

Theorem 37 Joinability for confluent semi-
constructor TRSs is decidable.

By confluence, we have the following corol-
lary too.

Corollary 38 The word problem for con-
fluent semi-constructor TRSs is decidable.

5. Decidability of Joinability for Con-
fluent Semi-monadic TRSs

Definition 39 A rewrite rule α → β is
monadic if height(β) ≤ 1, semi-monadic if for
every proper subterm β′ of β, β′ is ground or a
variable.

We show that joinability for confluent semi-
monadic TRSs is decidable. Semi-monadic
TRSs can be transformed to monadic and stan-
dard TRSs using the technique described in
Section 4.1. This transformation preserves con-
fluence and joinability. Henceforth, we assume
that TRS R is confluent, monadic, and stan-
dard.

Lemma 40 For any γ : s →∗
Rrg

t and u ∈
O(t), if there exists v ∈ R(γ) such that v < u,
then there exists d such that s →∗

Rrg
t[d]u and

d→∗
Rrg

t|u.
Proof The proof is similar to that of Lemma 9.
Consider the last v-reduction in γ such that
v < u. That is, γ : s →∗

Rrg
r

v→Rrg t[r′]u and
r′ →∗

Rrg
t|u for some r, r′. Here, r = r[αθ]v and

t[r′]u = r[β]v hold for some right-ground rule
α→ β and θ. Since v < u, β /∈ F0 holds. Since
R is monadic, height(β) = 1 holds. Let u = vw,
then r′ = β|w ∈ F0. Thus, we can choose r′ as
d. �

Definition 41 Let α → β ∈ Rnrg and
α′ = linearize(α). Then, σ : V(α′) → Psub(s) ∪
F0 is called a constant substitution for s and
α → β if s →∗

Rrg
α′σ and σ is joinabil-

ity preserving under relation ≡ for Rrg. Let
ConstantMapR(s, α→ β) be the set of such con-
stant substitutions.

Lemma 42 Let α → β ∈ Rnrg and
s →∗

Rrg
αθ. Then, there exists σ ∈

ConstantMapR(s, α → β) such that α′σ →∗
Rrg

αθ, and βσ →∗
Rrg

βθ.

Vol. 47 No. 5 The Joinability and Related Decision Problems for Semi-constructor TRSs 1511

Proof This proof is similar to that of
Lemma 11 (2). Let γ: s →∗

Rrg
αθ. For any

u ∈ OX(α), if there exists v ∈ R(γ) such that
v < u, then there exists d ∈ F0 such that
s →∗

Rrg
αθ[d]u and d →∗

Rrg
αθ|u by Lemma 40.

Otherwise, s|u →∗
Rrg

αθ|u. Hence, there ex-
ists σ : V(α′) → Psub(s) ∪ F0 such that
s →∗

Rrg
α′σ →∗

Rrg
αθ and βσ →∗

Rrg
βθ. For

any x ∈ V(α) and x′ ∈ V(α′), if x′ ≡ x then
xσ →∗

Rrg
xθ and x′σ →∗

Rrg
xθ, so that σ is a

constant substitution. �

We can define a function similar to
AddShortcut in the algorithm M to produce
new rewrite rules of form d → βσ where σ ∈
ConstantMapR(d, α → β). For every shortcut
rule d→ βσ produced by this new AddShortcut,
the height of βσ is at most 1 by the definition
of ConstantMapR. So, the number of shortcut
rules is finite. Thus, we do not need to apply
Determinize in the case of monadic TRSs. Let
R′ = AddShortcut(R). Then, we have the fol-
lowing lemma.

Lemma 43 c ↓R d iff c ↓R′
rg

d.
The proof is similar to that of Section 4.2, so
omitted. By this lemma, joinability of two
constants for confluent monadic and standard
TRSs reduces to that of confluent right-ground
TRSs which is decidable 10). In Section 4.3, we
have described how to extend the joinability
checking algorithm for two constants to that for
arbitrary two terms. The same technique can
be applied to this case. There is an alterna-
tive method for this lifting. That is, joinability
checking for two ground terms s and t is re-
ducible to that for two new constants c and d
by simply adding new ground rules c → s and
d→ t, which are semi-monadic. Thus, we have
the following theorem.

Theorem 44 Joinability for confluent semi-
monadic TRSs is decidable.

By confluence, we have the following corol-
lary too.

Corollary 45 The word problem for con-
fluent semi-monadic TRSs is decidable.

Note that joinability is undecidable for flat
TRSs which are included in the class of monadic
TRSs 4). Thus, the confluence condition in this
theorem can not be removed.

6. Undecidability of Reachability for
Confluent Monadic TRSs

In this section, we show that reachability for
confluent monadic TRSs is undecidable whereas

the joinability is decidable.
Theorem 46 Reachability for confluent

monadic TRSs are undecidable.
Proof [sketch] The proof is by a reduction
from the PCP. Let P = {〈ui, vi〉 ∈ Σ∗ × Σ∗ |
1 ≤ i ≤ k} be an instance of the PCP. The
corresponding TRS RP is constructed as fol-
lows: Let F = F0 ∪ F1 ∪ F2 where F0 =
{b, c, d, $}, F1 = Σ, F2 = {f, g}, and RP =
{e → a(e), e → a($) | e ∈ {c, d}, a ∈
Σ} ∪ {f(x, x) → g(x, x)} ∪ {g(ui(x), vi(y)) →
g(x, y) | 1 ≤ i ≤ k} ∪ {h(x1, · · · , xn) → b | h ∈
F, x1, · · · , xn are pairwise distinct variables
and n = ar(h)}. Here, u(x) is an abbreviation
for a1(a2(· · · ak(x))) where u = a1a2 · · · ak ∈
Σ∗. By the last rules, RP is confluent since
every non-variable term can reach b and ev-
ery right-hand side in RP is not a vari-
able. For RP , f(c, d) →∗ g($, $) iff there
exists a sequence a1 · · · an ∈ Σ+ such that
f(c, d) →2n+2 f(a1 · · · an($), a1 · · · an($)) →
g(a1 · · · an($), a1 · · · an($)) →+ g($, $) where
a1 · · · an = ui1 · · ·uim

= vi1 · · · vim
for some se-

quence of indexes i1 · · · im ∈ {1, · · · , k}+. Thus,
f(c, d) →∗ g($, $) iff P has a solution. Hence,
this theorem holds. �

7. Concluding Remarks

In this paper, we have shown that joinabil-
ity is undecidable for linear semi-constructor
TRSs, but it is decidable both for confluent
semi-constructor TRSs and for confluent semi-
monadic TRSs. The latter result shows the de-
cidability of joinability for possibly non-right-
linear TRSs. To our knowledge, such attempts
were very few so far. Moreover, we have shown
that reachability is undecidable for confluent
monadic TRSs. Quite recently, we obtained the
undecidability result of reachability for conflu-
ent semi-constructor TRSs 7). Borders between
decidable and undecidable classes of joinability,
reachability, and the word problems are shown
in Fig. 1, Fig. 2 and Fig. 3, respectively. Us-
ing the decidability result of joinability for con-
fluent semi-constructor TRSs, our forthcoming
paper shows that this unification problem is de-
cidable 5). However, unification for confluent
monadic TRSs has been shown to be undecid-
able 6).

Quite recently, we found that confluence is
undecidable for semi-constructor TRSs 7), but
some sufficient conditions to ensure conflu-
ence of semi-constructor TRSs are known: the
class of semi-constructor TRSs is a subclass

1512 IPSJ Journal May 2006

Fig. 1 Border between decidable and undecidable
classes of joinability.

Fig. 2 Border between decidable and undecidable
classes of reachability.

Fig. 3 Border between decidable and undecidable
classes of the word problem.

of strongly weight-preserving TRSs, for which
some sufficient conditions to ensure confluence
are given in Ref. 3).

Acknowledgments We would like to thank
the anonymous referees of this paper for their
helpful comments. This work was supported
in part by Grant-in-Aid for Scientific Research
15500009 from Japan Society for the Promotion
of Science.

References

1) Aho, A.V. Sethi, R. and Ullman, J.D.:
Compilers Principles, Techniques, and Tools,
Addison-Wesley (1986).

2) Baader, F. and Nipkow, T.: Term Rewrit-
ing and All That, Cambridge University Press
(1998).

3) Gomi, H. Oyamaguchi, M. and Ohta, Y.:

On the Church-Rosser property of root-
E-overlapping and strongly depth-preserving
term rewriting systems, Trans. IPS. Japan,
Vol.39, No.4, pp.992–1005 (1998).

4) Jacquemard, F.: Reachability and confluence
are undecidable for flat term rewriting systems,
Inf. Process. Lett., Vol.87, pp.265–270 (2003).

5) Mitsuhashi, I. Oyamaguchi, M. Ohta, Y. and
Yamada, T.: The unification problem for con-
fluent semi-constructor TRSs (In preparation).

6) Mitsuhashi, I. Oyamaguchi, M. Ohta, Y.
and Yamada, T.: On the unification problem
for confluent monadic term rewriting systems,
IPSJ Transactions on Programming, Vol.44,
SIG 4 (PRO 17), pp.54–66 (2003).

7) Mitsuhashi, I. Oyamaguchi, M. and Yamada,
T.: The reachability and related decision prob-
lems for monadic and semi-constructor TRSs,
To appear in Inf. Process. Lett.

8) Nagaya, T. and Toyama, Y.: Decidability
for left-linear growing term rewriting sys-
tems. Narendran, P. and Rusinowitch, M.
(Eds.), Proc. 10th RTA, pp.256–270, LNCS
1631 (1999).

9) Oyamaguchi, M.: On the word problem for
right-ground term-rewriting systems, Trans.
IEICE, E73, No.5, pp.718–723 (1990).

10) Oyamaguchi, M.: The reachability and join-
ability problems for right-ground term-rewriting
systems, J. Inf. Process., Vol.13, No.3, pp.347–
354 (1990).

11) Oyamaguchi, M. and Ohta, Y.: The unifica-
tion problem for confluent right-ground term
rewriting systems, Information and Computa-
tion, Vol.183, No.2, pp.187–211 (2003).

12) Takai, T. Kaji, Y. and Seki, H.: Right-linear
finite path overlapping term rewriting systems
effectively preserve recognizability, Bachmair,
L. (Ed.), Proc. 11th RTA, pp.246–260, LNCS
1833 (2000).

13) Terese, Term Rewriting Systems, Cambridge
University Press (2003).

Appendix

A.1 Proof of Lemma 6
To show Lemma 6, we need the following def-

inition and lemma.
Definition 47 Let s[ti/d1, · · · , tm/dm] be

the term obtained from s by replacing all oc-
currences of di by ti where i ∈ {1, · · · , m}.

Lemma 48 Let Rk+1 = (Rk \ {α → β}) ∪
{α → β[d1, · · · , dm](u1,···,um)} ∪ {di → β|ui

|
1 ≤ i ≤ m} where d1, · · · , dm are new pairwise
distinct constants which do not appear in Rk

or T , and {u1, · · · , un} ⊆ OG(β). Then, the
following propositions hold.

Vol. 47 No. 5 The Joinability and Related Decision Problems for Semi-constructor TRSs 1513

(1) →Rk
⊆ →+

Rk+1
.

(2) Let Θ = [β|u1/d1, · · · , β|um
/dm]. If

s→∗
Rk+1

t then sΘ→∗
Rk

tΘ.
(3) If Rk is confluent and semi-constructor

then Rk+1 is confluent and semi-
constructor.

Proof
(1) It suffices to show that α →+

Rk+1
β.

The proof is obvious by α →Rk+1

β[d1, · · · , dm](u1,···,um) →m
Rk+1

β.
(2) It suffices to show that if s

u→Rk+1 t then
sΘ →Rk

tΘ or sΘ = tΘ. If s →Rk
t

then sΘ →Rk
tΘ holds obviously. We

assume s|u = ασ for some σ or s|u =
di for some i ∈ {1, · · · , m}. If s|u =
ασ and t|u = β[d1, · · · , dm](u1,···,um)σ
then sΘ →Rk

tΘ, since ασ →Rk+1

β[d1, · · · , dm](u1,···,um)σ implies that
ασΘ →Rk

β[d1, · · · , dm](u1,···,um)σΘ(=
βσΘ). If s|u = di and t|u = β|ui

then
sΘ = tΘ, since diΘ = β|ui

Θ = β|ui
.

Thus, (2) holds.
(3) Obviously, Rk+1 is semi-constructor. As-

sume r →∗
Rk+1

s and r →∗
Rk+1

t. By (2),
rΘ →∗

Rk
sΘ and rΘ →∗

Rk
tΘ hold, so

that sΘ ↓Rk
tΘ holds by confluence of

Rk. Hence, sΘ ↓Rk+1 tΘ by (1). Since
s →∗

Rk+1
sΘ and t →∗

Rk+1
tΘ, we have

s ↓Rk+1 t. �

Now, we show Lemma 6.
Proof (Lemma 6)

By the definition of S, S(R0) = Rk for some
k ≥ 0. By Lemma 48 (3), proposition (1) holds.
By Lemma 48 (1), Only-If-Part of Proposition
(2) holds. By Lemma 48 (2), If-Part of Propo-
sition (2) holds, since s, t do not contain new
constants. �

A.2 Existence of function τ
Definition 49 Let m be |F |. Using an in-

jection function φ : F → {1, · · · , m}, we de-
fine function τ : G → {1, · · · , m}+, as follows:
τ (f(s1, · · · , sn)) = τ (s1) · · · τ (sn)φ(f). Here,
we assume that τ (t) is a base m + 1 number.
In order to compare τ (s) and τ (t), we use the
usual relation < on N.

Lemma 50
(1) The function τ is injective.
(2) For any r, s, t and position u ∈ O(r), if

τ (s) < τ (t) then τ (r[s]u) < τ (r[t]u).
Proof
(1) Terms can be considered as trees.

The postorder of a term is defined
as follows: postorder(f(s1, · · · , sn)) =

postorder(s1) · · ·postorder(sn)f [1),
pp.561–562]. It is known that postorder
is injective. Since φ is injective, so is τ .

(2) Let ŝ = f(r1, · · · , ri−1, s, ri+1, · · · , rn)
and t̂ = f(r1, · · · , ri−1, t, ri+1, · · · , rn)
where f ∈ Fn and i ∈ {1, · · · , n}. It
suffices to show that τ (ŝ) < τ (t̂), that is,
τ (r1) · · · τ (ri−1)τ (s)τ (ri+1) · · · τ (rn)φ(f)
< τ (r1) · · · τ (ri−1)τ (t)τ (ri+1) · · · τ (rn)
φ(f). If |s| < |t| then τ (ŝ) < τ (t̂) holds
by |ŝ| < |t̂|. If |s| = |t| then |ŝ| = |t̂|.
Thus, τ (ŝ) < τ (t̂) holds by τ (s) < τ (t).

�

(Received June 27, 2005)
(Accepted February 1, 2006)

(Online version of this article can be found in
the IPSJ Digital Courier, Vol.2, pp.222–234.)

Ichiro Mitsuhashi was born
in 1978. He received the Ms.
Eng. degree from Mie University
in 2003. He is now a student
of the Graduate School of En-
gineering of Mie University. His
current research interest is term

rewriting systems.

Michio Oyamaguchi was
born in 1947. He received the
Dr. Eng. degree from Tohoku
University in 1977. He is now a
Professor of the Department of
Information Engineering of Mie
University. His current research

interests are theoretical computer science and
software. During 1985–1986, he worked at Pas-
sau University, F.R.G. as a research fellow of
the AvH Foundation.

Yoshikatsu Ohta was born
in 1953. He received the Dr.
Eng. degree from Nagoya Uni-
versity in 1988. He is now a
Professor of the Department of
Information Engineering of Mie
University. His current research

interests are term rewriting systems, program-
ming language processors, and computer net-
works.

1514 IPSJ Journal May 2006

Toshiyuki Yamada was born
in 1972. He received the Dr.
Eng. degree from University of
Tsukuba in 1999. He is now a
Lecturer of the Department of
Information Engineering of Mie
University. His current research

interests are term rewriting systems, equational
logic, functional programming, and automated
reasoning.

