
ソフトウェアエンジニアリングシンポジウム 2014
IPSJ/SIGSE Software Engineering Symposium (SES2014)

Categorizing Code Review Result with Social Networks
Analysis: A Case Study on Three OSS Projects

Xin Yang1,a) Norihiro Yoshida2,b) Kenji Fujiwara1,c) Yong Jin1,d) Hajimu Iida1,e)

Abstract: Due to the distributed collaborations and communication nature of Open Source Software (OSS), OSS peer

review differs from traditional industry software peer review. In this study, we investigate the relationship between

network position of OSS peer review contributors and the outcome of their review results by using social network

analysis (SNA). The results provides hints on how network position of contributors affect peer review quality, which

can help to understand how OSS developers work and communicate together.

Keywords: Open Source Software, Software Peer Review, Social Network Analysis

1. Introduction

Software peer review refers to the code inspections by de-

velopers, rather than the author himself. It can be regarded

as one of the most important activities for software develop-

ment [1], [2]. software project developers use peer review for

two main benefit: reducing the defects and saving the cost. Un-

like industry projects, most of the Open Source Software (OSS)

projects have geographically distributed development environ-

ment and there is very few chance for developers to have face-

to-face communication. Unless changing the peer review ap-

proach, the industry meeting-based peer review seems hard to

be applied into OSS projects. As a result, OSS projects hope

experienced developers could share their knowledge with new

members by review their code. Furthermore, they hope to have

a good development community to sharing those experience

and knowledge. We investigate some related studies has been

done in OSS peer review [8], [9], to the best of our knowledge,

this is the first research constructing social networks from min-

ing a peer review repository and also performing social net-

work analysis to study the OSS peer review process.

In this study, we investigate the importance of OSS contrib-

1 Nara Institute of Science and Technology
2 Nagoya University
a) kin-y@is.naist.jp
b) yoshida@ertl.jp
c) kenji-f@is.naist.jp
d) jin.yong.jq0@is.naist.jp
e) iida@itc.naist.jp

utor in peer review process from social perspective. We use

social network analysis (SNA) to perform our study bug track-

ing system. We applied this approach for peer review system to

generate peer review social networks, which named: PeRSoN

(Peer Review Social Network). Then, we analyzed the An-

droid Open Source Project (AOSP), Qt and OpenStack as case

study. Our previous results gave us hints about the relationships

among OSS peer review contributor roles, their activities, and

the network structure. In this study, we want to investigate the

relationship between network position of contributors and the

outcome of their review results.

Our main research questions can be summarized as follows:

RQ1 As authors of code patchset, is there any relationship

between their code quality and their network position?

RQ2 As reviewer of code patchset, is there any relationship

between their review quality and their network position?

In experiment phase, first we extracted data set from OSS

peer review history then generated the network - PeRSoN.

Then we applied SNA and statistical analysis to address our

research questions. We started from the most standard social

network measures as centrality metrics, which represent the

importances to measure the network position of each contrib-

utor. Then we performed experiment for contributor activities

and the outcome of their review related activities, For example,

we want to investigate that an author in an important network

position will contribute high quality code patchset or not, and

an important reviewer always give a high quality review or not.

c© 2014 Information Processing Society of Japan 200



ソフトウェアエンジニアリングシンポジウム 2014
IPSJ/SIGSE Software Engineering Symposium (SES2014)

2. Related work and background

Some study on OSS peer review has been done in recent

years. Rigby et al. examined Apache Server Project and cre-

ated some metrics similar to traditional inspection in order

to find an efficient and effective OSS review technique [8].

They also have studied the broadcast nature of OSS peer re-

view, which is different with traditional peer review method

[9]. Some study also suggested use review bot to reduce hu-

man effort and improve review quality [3]. In our study, we

analyze the review community and relationship between con-

tributors by the analysis of their social network. Social network

is a network structure which the vertices represent people or

groups of people, and the edges represent social interaction be-

tween them such as conversation or notification [7]. We seek to

investigate the potential relationship between contributors’ ac-

tivities and their importance in the social network. By applying

some standard centrality measures, we analyzed our PeRSoN

from the social aspect. Freeman defined three centrality mea-

sures: Degree, Closeness and Betweenness, which represent

the importance of vertex from different perspective [4].

3. Approach

The traditional research on software engineering is always

focus on source code metrics and development history, but we

applied a novel approach from social perspective to study peer

review which is an important phase in software development.

Our dataset come from AOSP, Qt and OpenStack. All these

projects use Git to manage the source code and Gerrit to man-

age peer review. The main approach consisted of 3 main steps:

1) Preparation before experiment. Before the experiment,

we extracted the raw review dataset from the Gerrit servers of

each project. The detail of mining review repository approach

can be found from the study of Hamasaki et al. [5]. Our raw

data set is available to download *1. Because we focus on social

aspect of OSS peer review, the main dataset that we extracted is

the contributors information and their activities history. In or-

der to investigate the common of contributors, we grouped the

contributors into several role groups by their different review

activities.

2) PeRSoN Generation. After we have the contributors infor-

mation and their review history, we started to generate the peer

review social network. We applied an approach which is used

for generating bug report network [6]. Unlike their approach,

our networks were unweighted and we reduced networks by

vertices degree. Based on the broadcasting nature of OSS peer

review, we assumed that the contributors who appeared in the

*1 http://sdlab.naist.jp/reviewmining/

same review report must have communication with each other.

Thus, we connected all the contributors who participating in

the same report. Because we are interested in those contribu-

tors who performed more activities in peer review, we reduced

the network by removing the vertices which have very few de-

gree.

3) Analysis. We performed social network analysis (cen-

trality measure) for each contributors and analyzed the rela-

tionship between contributors centrality measures and their re-

view outcome. We applied several standard centrality measures

to measure the importance of contributors from three different

perspective. We separated contributors into different groups as

authors and reviewers because they have different definitions

on the high quality contributions.

参考文献
[1] Ackerman, A. F., Fowler, P. J. and Ebenau, R. G.: Software

inspections and the industrial production of software, in Pro-
ceedings of a symposium on Software validation: inspection-
testing-verification-alternatives, pp. 13–40 (1984).

[2] Ackerman, A., Buchwald, L. and Lewski, F.: Software inspec-

tions: an effective verification process, IEEE Software, Vol. 6,

No. 3, pp. 31–36 (1989).

[3] Balachandran, V.: Reducing human effort and improving qual-

ity in peer code reviews using automatic static analysis and

reviewer recommendation, in Proceedings of the 2013 Inter-
national Conference on Software Engineering, ICSE ’13, pp.

931–940 (2013).

[4] Freeman, L. C.: Centrality in social networks conceptual clar-

ification, Social Networks, Vol. 1, No. 3, pp. 215–239 (1978-

1979).

[5] Hamasaki, K., Kula, R. G., Yoshida, N., Cruz, A., Fujiwara, K.

and Iida, H.: Who does what during a code review? datasets of

OSS peer review repositories, in Proceedings of the Tenth In-
ternational Workshop on Mining Software Repositories, IEEE

Press, pp. 49–52 (2013).

[6] Hong, Q., Kim, S., Cheung, S. and Bird, C.: Understanding

a developer social network and its evolution, in Proceedings
of the 2011 27th IEEE International Conference on Software
Maintenance, IEEE Computer Society, pp. 323–332 (2011).

[7] Newman, M.: Networks: An Introduction, Oxford University

Press, Inc. (2010).

[8] Rigby, P. C., German, D. M. and Storey, M.-A.: Open source

software peer review practices: a case study of the apache

server, in Proceedings of the 30th international conference on
Software engineering, pp. 541–550 (2008).

[9] Rigby, P. C. and Storey, M.-A.: Understanding broadcast based

peer review on open source software projects, in Proceedings
of the 33rd International Conference on Software Engineering,

pp. 541–550 (2011).

c© 2014 Information Processing Society of Japan 201


