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Distributed Coding Schemes for Continuous Data Collection in 

Wireless Sensor Networks 

 
 

XIUCAI YE   

 

This manuscript addresses the continuous data collection in WSNs with a mobile Base Station (mBS). We proposed continuous 

data collection schemes based on distributed coding. Our objective is to provide efficient methods for continuously collecting 

data segments with a high success ratio. 

 

 

 

1. Introduction     

  Wireless Sensor Networks (WSNs) are composed of a large 

number of sensor nodes, which do not rely on any pre-deployed 

network infrastructure. A sensor node has low CPU power, small 

bandwidth, limited battery and memory storage [1]. Thus, a 

sensor node can store only a small amount of data collected 

from its surroundings. A Base Station (BS) collects the data 

from sensor nodes and functions as an intermediate gateway 

between the sensor network and the application end users. Note 

that a BS can be a fixed or mobile one. Recent advances of 

embedded hardware and robot have made mobile sensors 

possible [2, 3]. 

WSNs have a wide range of applications, including 

environment monitoring, medical care, smart buildings, 

industrial and military applications [4]. An important problem 

that arises in application of WSNs is how to collect data 

continuously, especially in extreme environments. In some 

extreme environments such as Greenland or Alaska, it is 

difficult to travel and dangerous to work for humans [5] [6]. 

Instrumenting the environments with WSNs can enable 

long-term data collection, which could minimize the exposure of 

humans while allowing dense, targeted data collection to 

commence [5]. 

Consider that data are continuously sensed and collected by 

the sensor nodes in the extreme environments. The 

communication between the sensor nodes and a mobile Base 

Station (mBS) is scarce. Data collection is only performed from 

time to time by a mBS, as shown in Figure 1. Sensor nodes have 

to store the continuously collected data segments over time by 

themselves, and provide the desired data when the mBS arrives 

and performs data collection. Such kind of data collection is 

known as continuous data collection [7]. One of the typical 

examples is the habitat monitoring system in Great Duck Island 

[8], in which data collection is performed from time to time 

since seabird colonies are sensitive to human interaction. An 

efficient data retrieval is usually desired during the data 

collection. 

Due to limited energy and hostile environment, sensor nodes 

may fail suddenly and unpredictably, resulting in the loss of 

sensed data. Therefore, to provide robust data retrieval, it is 
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desirable to distribute the sensed data throughout the network 

for redundant storage [9]. Thus, the mobile base station can 

retrieve the sensed data from any subset of sensor nodes, even 

after some sensor nodes have failed.  

Coding is a powerful method for data storage and distribution, 

which can achieve efficient management of redundant data 

storage [10]. Many data storage and distribution schemes using 

coding techniques in a centralized way are proposed. A typical 

coding scheme is the erasure coding [10], in which coding is 

performed at a central entity and the combined segments are 

distributed to different storage locations. The Reed-Solomon 

coding is a well-known erasure coding scheme, which is widely 

employed in a computer network with distributed storage 

systems and redundant disk arrays [13, 14]. However, the 

centralized coding method cannot be employed directly in a 

sensor network, in which a sensor node is not able to store all 

the data segments and perform complicated encoding operations 

alone. 

A promising solution is the decentralized coding, which 

distributes the encoding operations to multiple nodes. Such 

decentralized coding schemes include decentralized 

implementations of erasure coding [9] [13], growth coding [14], 

network coding [7] [15]. Especially, Dimakis et al. [13] 

proposed an interesting coding scheme called Decentralized 

Erasure Coding (DEC), which may be applied for WSNs. In the 

DEC scheme, each sensor node encodes all the collected data 

segments. However, the DEC scheme is lack of support 

removing obsolete (old) data, i.e., it cannot support the 

continuous data collection in which the number of data 

segments is not predetermined. 

Removing obsolete (old) data is another important issue for 

storing data in a sensor network, since each sensor node has 

limit storage space. If sensor nodes get unattended from the 

mBS for a long time (e.g., the bad weather prohibits the mBS 

from performing data collection for a long time), the total data 

may exceed the total storage space of the entire sensor network. 

In many practical applications, new data has higher value than 

old ones. Thus, a sensor node should be able to remove the old 

data in order to accommodate newly collected ones [7]. In the 

DEC scheme [13], removing the old data includes decoding and 

re-encoding operations, which are time and resource consuming. 

Wang et al. [7] proposed an interesting decentralized coding 

scheme called Partial Network Coding (PNC) for continuous 
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data collection in a WSN with a mBS. PNC supports removing 

the obsolete data. Each combined segment encodes only the part 

of latest original data segments by removing the older data 

segments. The number of data segments encoded in a combined 

segment varies from 1 to m. By randomly querying a small 

subset of sensor nodes, the mBS can collect the m latest original 

data segments from the sensor network, where m is the number 

of latest original data segments in a time interval t in which n(t) 

(m n(t)) data segments are generated. However, not all the m 

latest original data segments are encoded in each combined 

segment. That is, the m latest original data segments cannot be 

always decoded completely when the mBS randomly queries 

some sensor nodes. Thus, PNC does not have high success ratio 

of collecting the m latest data segments. The success ratio of 

data collection in PNC can be improved by extending the 

storage space in each sensor node and extending the number of 

sensor nodes queried by the mBS. Note that the storage space of 

each sensor node depends on the number of latest original data 

segments. If the number of latest original data segments is large, 

the overhead for enhancement may be too big for a sensor node. 

The organization of the manuscript is shown as follows. 

Section 2 presents the system model and problem formulation. 

In Section 3, we present Distributed Separate Coding for Latest 

Data segment Collection (DSC-LDC) to collect the m latest data 

segments, where m is the number of latest original data 

segments in a time interval t in which n(t) (m  n(t)) data 

segments are generated. In Section r 4, we present Distributed 

Separate Coding for All Data segment Collection (DSC-ADC) 

to continuously collect all the n(t) data segments in a time 

interval t . Section 5 summarizes the manuscript and discusses 

the direction of the future work. 

 

2. System Description and Problem Formulation 

Consider that there are N sensor nodes in a wireless sensor 

network, where a set of sensor nodes sense information. Each 

sensor node has B buffers, b1, b2, ..., bB (i.e., the buffer size of 

each sensor node is B). Each buffer can store only one data 

segment. Consider to collect the data of samples (e.g., the 

temperatures measured in the beginning of some fixed time 

slots) by using a WSN, where the samples are generated 

continuously. A sample is represented by one data segment jc
, 

and generated in a fixed time slot. jc
is generated over the

thj

time slot. qc
is newer than pc

if q > p. 

 

Figure 1. Data collection by a mBS. 

Without loss of generality, we consider that there is one mBS 

(mobile Base Station) which performs data collection from time 

to time. For example, a helicopter acts as the mBS, as illustrated 

in Fig 1. During the data collection, the mBS will query a small 

subset of sensor nodes uniformly at random from the sensor 

network to collect data. 

Consider that the total number of data segments is n(t), where 

t is the data sensing time interval. Note that t is a variable, which 

value depends on when the mBS per-forms data collection. n(t) 

is a non-decreasing function of t. 

In Section 3, we consider to collect the m (m  n(t)) latest 

original data segments, where m is the number of latest data 

segments to be collected. Note that, in a time interval t, no 

matter how many data segments are generated, the required data 

segments are the m latest original data segments which are 

generated in the m latest time slots. 

In Section 4, we consider to collect all the data segments 

generated in a data sensing time interval t. The total number of 

data segments to be collected is n(t). Different form the m late 

data segment collection, in all data segment collection, the 

number of collected data segments n(t) is larger and n(t) is a 

variable that may increase as the time interval t increases. 

For data coding, we define a linear function as follows. 

1

k
u

i ij j

j

f c



, 

where 
u

if  is referred to as a combined segment, which encodes 

k data segments 1c
, ..., kc

 (
1 ( )k n t 

) in buffer bu of sensor 

node i. 
 1,...,

u

i i ik  
 is a coefficient vector of 

u

if .  Each 

item ij
 is randomly generated from a finite field Fq, where q is 

the finite field size. Note that the size (in bits) of a combined 

segment
u

if  equals to the size (in bits) of an original data 

segment jc
. Sensor node i stores the combined segment 

u

if  

and the associated coefficient vector in buffer bu, instead of 

storing the k original data segments 1c
, ..., kc

. Storing the 

coefficient vector 
u

i will take an additional storage space of k 

log2(q) bits, which is very small compared to large size of 

combined segment
u

if . Take an example similar to that 

considered in [16], the size of a combined segment is 20 KB, 

and the size of finite field for coefficients is
82q  . If 

u

if  

encodes 10 original data segments, the storage overhead for the 

coefficient vector is 80 bits or 10 bytes. Thus, the additional 

storage space required for the coefficient vector is less than 

0.05 %, which is a negligible overhead compared to the 

combined segment. 

Since sensor nodes sense the similar environment and collect 
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the data, we assume that the data segments for encoding in each 

sensor node are the same in a time slot. To achieve this 

condition, the sensor nodes may also communicate with each 

other to disseminate data segments. Many methods have been 

proposed for data dissemination for wireless sensor networks 

(e.g., the data dissemination methods in [17]). This manuscript 

focuses on the data encoding and storage processes in each 

sensor node and the data decoding process in the mBS. We 

assume that each data segment is recorded by all the sensor 

nodes by using some existing data dissemination method. 

To successfully decode the original data segments, the mBS 

should access enough number of sensor nodes for the data 

collection. If the mBS cannot decode the original data segments 

form the collected combined segments, it will repeat data 

collection until it succeeds. When the mBS repeats data 

collection, it randomly accesses enough number of sensor nodes 

again. The sensor network will consume more energy if the 

mBS repeats data collection, since more sensor nodes need to 

upload data to the mBS. Thus, the success ratio of data 

collection is a major evaluation criterion in the study [7]. We 

define the success ratio of data collection as follows. 

Definition 1 (Success ratio of data collection). The success 

ratio of data collection is the probability that the mBS 

successfully collects all the desired original data segments. 

 

3. Latest Data Segment Collection in Wireless 

Sensor Networks with a Mobile Base Station 

In this Section, we study the problem of continuous data 

collection to collect the m latest data segments, where m is the 

number of latest data segments in a time interval t in which n(t) 

(mn(t)) data segments are generated. 

  We present a novel Distributed Separate Coding scheme for m 

Latest Data segment Collection (DSC-LDC) in wireless sensor 

networks with a mobile Base Station (mBS). DSC-LDC includes 

three processes: the data encoding process, the data replacement 

process and the data decoding process. The data encoding and 

replacement processes are performed in each sensor node, while 

the data decoding process is performed in the mBS. We consider 

two cases. 1) Each sensor node has two buffers (i.e., buffer size 

B = 2).  2) Each sensor node has more than 2 buffers (i.e., 

buffer size B > 2). 

3.1 DSC-LDC for the case that each sensor node has two 

buffers 

In the case that each sensor node has two buffers (i.e., buffer 

size B = 2), m -1 original data segments are separately encoded 

in a combined segment. Let 
 if r

 be a combined segment 

which encodes the 
thr  recorded m-1 original data segments in 

sensor node i. Generally, we have 

 
( 1)

( 1)( 1) 1

r m

i ij j

j r m

f r c


   

 
. 

When a new combined segment
 if r

is formed, 
 if r

and its 

associated coefficient vector are stored in a corresponding buffer 

of sensor node i. A new combined segment encodes the latest 

original data segments. Note that the mBS wants to collect the m 

latest original data segments. If there has been a combined 

segment stored in the corresponding buffer, the new combined 

segment including the associated coefficient vector will replace 

the old ones. By the data replacement, each sensor node stores 

the two latest combined segments, which encode at least m 

latest original data segments. 

We prove that the minimum buffer size for a sensor node in 

DSC-LDC is two.  

When the mBS performs data collection, the set of original 

data segments encoded in the two latest combined segments in 

each sensor node includes all the m latest original data segments. 

In the decoding process, by querying any m-1 sensor nodes, the 

mBS collects 2(m-1) latest combined segments and the 

corresponding coefficient vectors. The key property required for 

successful decoding is that the coefficient vectors are linearly 

independent. Therefore, the success ratio of data collection in 

DSC-LDC mainly depends on the probability of linear 

independence for the coefficient vectors. The probability of 

linear independency for the coefficient vectors is over 99.6% for

82q  , and it increases as q increases [7]. Thus, in the case B=2, 

the success ratio of data collection is very close to 100% by 

using a large enough finite field size q for coefficients. 

3.2 DSC-LDC for the case that each sensor node has more 

than two buffers 

In the case that each sensor node has more than 2 buffers (i.e., 

buffer size B > 2), each sensor node separately encodes a certain 

number of original data segments in a combined segment. 

Consider that the certain number of original data segments 

encoded in a combined segment is x (x < m). B buffers can store 

B combined segments. A new combined segment encodes the 

latest original data segments. If there has been a combined 

segment stored in the corresponding buffer, the new combined 

segment including the associated coefficient vector will replace 

the old ones. The minimum and optimal value of x is  

1

1

1

m

x B




 

  

When the mBS performs data collection, the set of original 

data segments encoded in the B latest combined segments in 

each sensor node includes all the m latest original data segments. 

, m =1. 

, m >,. 
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In the decoding process, by querying any x sensor nodes, the 

mBS collects Bx latest combined segments and the 

corresponding coefficient vectors. By solving the B sets of 

linear equations, the mBS can decode all the original data 

segments. The key property required for successful decoding is 

that the coefficient vectors are linearly independent. In the case 

that B > 2, the success ratio of data collection is very close to 

100% by using a large enough finite field size q for coefficients. 

3.3 Performance evaluation 

In DSC-LDC, the necessary storage space in each sensor node 

can be adjusted by changing the number of sensor nodes queried 

by the mBS. Furthermore, the transmission cost for data 

submission to the mBS can be reduced with a few additional 

storage space in each sensor node.  

Note that PNC [7] also addresses the continuous data 

collection in WSNs. We compare the proposed DSC-LDC 

scheme with PNC, since it is the existing scheme that has an 

efficient solution for continuous data collection in WSNs. To the 

best of our knowledge, PNC is the only one scheme which can 

support data replacement for continuously collecting data 

segments.  

We compare DSC-LDC with PNC on success ratio of data 

collection and energy consumption for data transmission. The 

comprehensive performance evaluation has been conducted 

through computer simulation. It is shown that the proposed 

DSC-LDC scheme is the most recommendable one. 

3.4 Summary 

In this Section, we present Distributed Separate Coding for 

Latest Data segment Collection (DSC-LDC) in wireless sensor 

networks with a mobile Base Station (mBS). By separately 

encoding a certain number of data segments in a combined 

segment, and doing decoding-free data replacement in the 

buffers of each sensor node, the proposed DSC-LDC scheme is 

not only shown as an efficient storage method for continuously 

collecting data segments, but also achieves a high success ratio 

of data collection. We show that in DSC-LDC, the number of 

sensor nodes that should be queried by the mBS can be reduced 

with a few additional storage space in each sensor node, which 

result in reducing the energy consumption for data transmission 

to the mBS. We also show that the success ratio of data 

collection in DSC-LDC is very close to 100% by using a larger 

enough finite field for coefficients in both theoretical analysis 

and simulations. 

 

4. Collecting All Data Continuously in Wireless 

Sensor Networks with a Mobile Base Station 

In the continuous data collection, the sensor nodes may need 

to collect all the data segments and provide them to the mobile 

Base Station (mBS). After data collection by the mBS, the end 

users can try various physical models and test various 

hypotheses over all the collected data segments. 

In this Section, we study the problem of continuous data 

collection to collect all the n(t) data segments generated in a 

time interval t. We present Distributed Separate Coding for All 

Data segment Collection (DSC-ADC) in wireless sensor 

networks with a mobile base station (mBS). 

 In DSC-ADC, each sensor node separately encodes a certain 

number of original data segments in a combined segment and 

stores it in the corresponding buffer. Let 
 1 2, ,..., B

i i i iF f f f
 be 

a set of combined segments stored in sensor node i, where 
k

if  

is stored in buffer bk. The associated coefficient vector for 
k

if  

is also stored in buffer bk. ( )k

iC f  is the number of data 

segments encoded in
k

if . 

We consider two cases. 1) Right arrival case that the mBS 

arrives on time. 2) Late arrival case that the mBS arrives late. In 

general condition, the mBS performs data collection in a regular 

time interval t0, where t0 = min{t}. This case is called right 

arrival case. The total number of original data segments 

generated in time interval t0 is n(t0). If the mBS arrives when the 

time interval t ≥ t0, we call this case late arrival case. Note that 

n(t0) ≤ n(t).  

The encoding and decoding processes in the two cases are 

with some differences. The encoding and decoding processes in 

the right arrival case are easier, since the total number of 

original data segments generated in a time interval is a fixed 

value. While in late arrival case, the total number of original 

data segments may increase as the time interval increases. A 

challenge issue is how to let the fixed buffers in each sensor 

node to store all the data segments whether the mBS arrives on 

time or late. 

4.1 Data encoding and decoding in the right arrival case 

In the right arrival case, each sensor node will separately 

encode a certain number of original data segments in each 

combined segment, and store the B combined segments and the 

associated coefficient vectors in its B buffers. Assume that the 

certain number of data segments encoded in a combined 

segment is x (x < n(t0)). Since the maximum number of data 

segments encoded in a combined segment is x, the total number 

of data segments encoded in the B combined segments is at most 

Bx. Thus, we can obtain the minimum buffer size of each sensor 

node as 

            0( ) /B n t x    . 

In the right arrival case, each sensor node with buffer size 

0( ) /B n t x     is enough to store the combined segments which 

encode all the original data segments.  

When the mBS performs data collection, all original data 
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segments are encoded in the B combined segments in each 

sensor node. In the decoding process, by querying any x sensor 

nodes, the mBS collects Bx combined segments and the 

corresponding coefficient vectors. By solving the B sets of linear 

equations about the B collected combined segments, the mBS 

can decode all the original data segments. The key property 

required for successful decoding is that the coefficient vectors 

are linearly independent. In the right arrival case, the success 

ratio of data collection is very close to 100% by using a large 

enough finite field size q for coefficients. 

4.2 Data encoding and decoding in the late arrival case 

In the late arrival case, if the mBS arrives late, the sensor 

nodes do not know in which time and how long the mBS will 

delay, they just separately encode x data segments in a combined 

segment and store it in the corresponding buffer. If the total 

number of original data segments n(t) ≤ Bx, by continuing to 

encode the original data segments in the last combined segment 

B

if , the buffers are still enough. But if n(t) > Bx, the data 

segments will exceed the total storage space of the sensor nodes 

if they still combine x original data segments in a combined 

fashion.  

The encoding and storage process when n(t) ≤ Bx are the 

same as right arrival case. When n(t) > Bx, the original data 

segments will be encoded one by one in the existing combined 

segments. Let r be a positive integer. If the sequence number of 

jc
satisfies j = r · Bx + k, jc

will be encoded in 
k

if as the 

following equation. 

'k k

i i ij jf f c 
, 

where 
'k

if is the former combined segment stored in buffer k 

before jc
 is encoded. 

  When n(t) ≤ Bx, the mBS can reconstruct all the original 

data segments by querying any x sensor nodes with high 

probability. The decoding process is the same as the right arrival 

case. When n(t) > Bx, the mBS queries any x + v sensor nodes to 

collect data, where
( ( ) - ) /v n t Bx B    . When the mBS performs 

data collection, there are B combined segments stored in each 

sensor node. After decoding all the linear equations about the B 

combined data segments, the mBS can obtain all the original 

data segments. The success ratio of data collection is very close 

to 100% by using a large enough finite field size q for 

coefficients. 

4.3 Performance evaluation 

We evaluate the performance of the proposed DSC-ADC 

scheme by simulations. In the simulations, we consider the 

following scenarios. 1)  Success ratio of data collection. 2) 

Energy consumption during data collection by the mBS. 3) Data 

collection time.  

We evaluate the proposed scheme by changing the buffer size 

in each sensor node. The number of sensor nodes that should be 

queried by the mBS can be reduced with a few additional 

storage space in each sensor node. Thus, the energy 

consumption and data collection time can be reduced with a few 

additional storage space in each sensor node. The simulation 

results further demonstrates the feasibility and superiority of the 

proposed DSC-ADC scheme. 

4.4 Summary 

In this Section, we present Distributed Separate Coding for 

All Data segment Collection (DSC-ADC) in wireless sensor 

networks with a mobile base station (mBS). By separately 

encoding a certain number of data segments in a combined 

segment, and storing the combined segments in the 

corresponding buffers of each sensor node, the DSC-ADC 

scheme provides an efficient storage method to collect all data 

segments that can be applied in both the right arrival case and 

the late arrival case. By randomly querying a small subset of 

sensor nodes, the mBS can reconstruct all the original data 

segments with high probability. We also show that the success 

ratio of data collection in DSC-ADC is very close to 100% by 

using a larger enough finite field for coefficients in both 

theoretical analysis and simulations. 

 

5. Conclusion and Future Work 

In this manuscript, we address the continuous data collection 

in wireless sensor networks with a mobile base station. We 

consider two scenarios of continuous data collection. 1) Latest 

data segment collection. 2) All data segment collection. We 

propose two Distributed Separate Coding based schemes for the 

two scenarios, respectively. The two proposed schemes are 

Distributed Separate Coding for Latest Data segment Collection 

(DSC-LDC) and Distributed Separate Coding for All Data 

segment Collection (DSC-ADC).  

In DSC-LDC, by separate encoding and doing decoding-free 

data replacement in the buffers of each sensor node, the 

proposed DSC-LDC scheme is an efficient method to collect the 

m latest data segments with high success ratio. DSC-LDC is 

flexible and efficient compared to the related work (i.e., PNC). 

The discussion and simulation both show that DSC-LDC 

improves the performance in many situations. In DSC-ADC, by 

separate encoding and strategic storage in the buffers of each 

sensor node, the DSC-ADC scheme provides an efficient storage 

method to collect all data segments with high success ratio in 

both the right arrival case and the late arrival case. We show that 

the success ratio of data collection in DSC-LDC and DSC-ADC 

are both very close to 100% by using larger enough finite field 

for coefficients in both theoretical analysis and simulations. 
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In this manuscript, the proposed distributed coding schemes 

are based on random linear coding, since random linear coding 

is easy and suitable to deploy in wireless sensor networks. In the 

future work, we will consider other coding methods, such as 

fountain coding. Fountain coding is a promising solution to 

reduce the decoding complexity. However, the implement of 

Fountain codes in WSNs is more difficult than that of random 

linear coding. We will consider an efficient scheme to 

strategically encode and store the sensed data by Fountain 

Coding in wireless sensor networks. 
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