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Abstract: Deformable surfaces are surfaces that undergo non-rigid deformations. They can represent soft tissues
(e.g., human body, face, organ, cloth), and can be modeled by sequences of 3D surface meshes. Thanks to progresses
in sensing technologies, 3D reconstruction of deformable surfaces from real-world visual and spatial information can
nowadays be achieved with high accuracy (i.e., below 0.5 cm) and in reasonable time. For example, 3D video (i.e.,
sequence of full 3D models) representing live human performances or daily activities (e.g., dance or yoga) can be
obtained using various techniques (e.g., multiview stereo [1], [2], [3] or depth data fusion [4]). However, the com-
plexity and constant change in geometry and topology of these objects pose challenges for applying traditional vision
algorithms to the sequences. Over the past few years, new algorithms have been proposed for vision tasks such as
registration [5], [6], [7], [8], segmentation [9], and categorization [10] of such data. Among these tasks, the micro-
scopic categorization of surfaces is of specific interest to us, because it is critical to surveillance applications, such as
detecting organ anomalous behavior, skin deformation, leaks in tanks at power plant, or assessing fabric quality.
Deformable surfaces representing real-world objects (e.g., such as humans) can be assumed as a stream of temporally
continuous and indefinitely varying 3D geometrical data that possess certain temporal statistics. For example, clothing
made of soft fabrics worn by a human in motion usually exhibit different surface variations compared to bare skin.
However, as opposed to dynamic textures [11], [12], [13], visual appearance-based methods cannot be used directly to
capture the complex behavior of deformable surface, as surface texture does not carry spatial information and can have
poor quality (e.g., due to multiview stereo reconstruction artifacts). On the other hand, although actual sensing devices
and capture systems usually provide data contaminated with noise, the accuracy is already sufficient for research pur-
pose and many applications. Moreover it is reasonable to assume that sensing systems will continue to improve very
quickly. Hence, we propose to characterize deformable surfaces using a geometry-dynamics-based approach that relies
on intrinsic surface properties [14], [15]. We process as follows: 1) intrinsic surface features represented by continu-
ous scalar values (e.g., Koenderink shape indices [16]) are tracked over time and produce time series at each surface
point, 2) these observed local geometrical deformations are modeled using switching linear dynamical systems (LDS)
that capture spatiotemporal variation dynamics, and 3) classification is performed using a discriminative model based
on temporal distribution of LDS sets. Particularly, we introduce a timing-based low-level descriptor to capture local
spatiotemporal variations, and the bag-of-timings (BoT) paradigm to further handle challenging deformable surface
classification and segmentation with respect to different level of rigidities.
Our experiments on synthesized and real-world datasets with ground truth showcase classification and segmentation
robustness. In particular, we use public datasets of 3D video representing human performances which are challenging,
of good quality, and popular in CV and CG communities (i.e., data from MIT [17], Univ. Surrey [18], and INRIA [6]).
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